
Classes, objects, Java

Madhavan Mukund, S P Suresh

Programming Language Concepts

Lecture 3, 16 January 2024



Programming with objects

Object are like abstract datatypes

Hidden data with set of public operations

All interaction through operations — messages, methods, member-functions, . . .

Class

Template for a data type

How data is stored

How public functions manipulate data

Object

Concrete instance of template

Each object maintains a separate copy of local data

Invoke methods on objects — send a message to the object

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 2 / 29



Important features

Abstraction

Public interface, private implementation

Control external access to internal details

Subtyping

A subtype of B ) whenever object of type B is needed, object of type A can be used

Compatibility of interfaces

Inheritance

Extend functionality of a class, reuse of implementations

Dynamic lookup

Whether a method can be invoked on an object is a static property — type-checking

How the method acts is a dynamic property of how the object is implemented

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 3 / 29



Important features

Abstraction

Public interface, private implementation

Control external access to internal details

Subtyping

A subtype of B ) whenever object of type B is needed, object of type A can be used

Compatibility of interfaces

Inheritance

Extend functionality of a class, reuse of implementations

Dynamic lookup

Whether a method can be invoked on an object is a static property — type-checking

How the method acts is a dynamic property of how the object is implemented

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 3 / 29



Important features

Abstraction

Public interface, private implementation

Control external access to internal details

Subtyping

A subtype of B ) whenever object of type B is needed, object of type A can be used

Compatibility of interfaces

Inheritance

Extend functionality of a class, reuse of implementations

Dynamic lookup

Whether a method can be invoked on an object is a static property — type-checking

How the method acts is a dynamic property of how the object is implemented

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 3 / 29



Important features

Abstraction

Public interface, private implementation

Control external access to internal details

Subtyping

A subtype of B ) whenever object of type B is needed, object of type A can be used

Compatibility of interfaces

Inheritance

Extend functionality of a class, reuse of implementations

Dynamic lookup

Whether a method can be invoked on an object is a static property — type-checking

How the method acts is a dynamic property of how the object is implemented

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 3 / 29



Objects in Python

Need a mechanism to hide private implementation details

Declare component private or public

Working within privacy constraints

Class Square extends Rectangle

Instance variables of Rectangle are private

How can the constructor for Square set these private variables?

Square doesn’t (and shouldn’t) know the names of the private instance variables

Need to have elaborate declarations

Type and visibility of variables

Static type checking catches errors early

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 4 / 29



Objects in Python

Need a mechanism to hide private implementation details

Declare component private or public

Working within privacy constraints

Class Square extends Rectangle

Instance variables of Rectangle are private

How can the constructor for Square set these private variables?

Square doesn’t (and shouldn’t) know the names of the private instance variables

Need to have elaborate declarations

Type and visibility of variables

Static type checking catches errors early

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 4 / 29



Objects in Python

Need a mechanism to hide private implementation details

Declare component private or public

Working within privacy constraints

Class Square extends Rectangle

Instance variables of Rectangle are private

How can the constructor for Square set these private variables?

Square doesn’t (and shouldn’t) know the names of the private instance variables

Need to have elaborate declarations

Type and visibility of variables

Static type checking catches errors early

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 4 / 29



Objects in Python

Need a mechanism to hide private implementation details

Declare component private or public

Working within privacy constraints

Class Square extends Rectangle

Instance variables of Rectangle are private

How can the constructor for Square set these private variables?

Square doesn’t (and shouldn’t) know the names of the private instance variables

Need to have elaborate declarations

Type and visibility of variables

Static type checking catches errors early

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 4 / 29



Getting started with Java

The C Programming Language,

Brian W Kernighan, Dennis M Ritchie

The only way to learn a new programming
language is by writing programs in it. The
first program is the same for all languages.

Print the words
hello, world

This is a big hurdle; to leap over it you
have to create the program text
somewhere, compile it successfully, load it,
run it, and find out where your output
went. With these mechanical details
mastered, everything else is comparatively
easy

In Python
. . . C
. . . and Java

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 5 / 29



Getting started with Java

The C Programming Language,

Brian W Kernighan, Dennis M Ritchie

The only way to learn a new programming
language is by writing programs in it. The
first program is the same for all languages.

Print the words
hello, world

This is a big hurdle; to leap over it you
have to create the program text
somewhere, compile it successfully, load it,
run it, and find out where your output
went. With these mechanical details
mastered, everything else is comparatively
easy

In Python

print("hello, world")

. . . C

. . . and Java

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 5 / 29



Getting started with Java

The C Programming Language,

Brian W Kernighan, Dennis M Ritchie

The only way to learn a new programming
language is by writing programs in it. The
first program is the same for all languages.

Print the words
hello, world

This is a big hurdle; to leap over it you
have to create the program text
somewhere, compile it successfully, load it,
run it, and find out where your output
went. With these mechanical details
mastered, everything else is comparatively
easy

In Python

print("hello, world")

. . . C

#include <stdio.h>

main()

{

printf("hello, world\n");

}

. . . and Java

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 5 / 29



Getting started with Java

The C Programming Language,

Brian W Kernighan, Dennis M Ritchie

The only way to learn a new programming
language is by writing programs in it. The
first program is the same for all languages.

Print the words
hello, world

This is a big hurdle; to leap over it you
have to create the program text
somewhere, compile it successfully, load it,
run it, and find out where your output
went. With these mechanical details
mastered, everything else is comparatively
easy

In Python

print("hello, world")

. . . C

#include <stdio.h>

main()

{

printf("hello, world\n");

}

. . . and Java

public class helloworld{

public static void main(String[] args)

{

System.out.println("hello, world");

}

}

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 5 / 29



Why so complicated?

Let’s unpack the syntax

All code in Java lives within a class

No free floating functions, unlike
Python and other languages

Modifier public specifies visibility

How does the program start?

Fix a function name that will be
called by default

From C, the convention is to call
this function main()

public class helloworld{

public static void main(String[] args)

{

System.out.println("hello, world");

}

}

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 6 / 29



Why so complicated?

Let’s unpack the syntax

All code in Java lives within a class

No free floating functions, unlike
Python and other languages

Modifier public specifies visibility

How does the program start?

Fix a function name that will be
called by default

From C, the convention is to call
this function main()

public class helloworld{

public static void main(String[] args)

{

System.out.println("hello, world");

}

}

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 6 / 29



Why so complicated?

Let’s unpack the syntax

All code in Java lives within a class

No free floating functions, unlike
Python and other languages

Modifier public specifies visibility

How does the program start?

Fix a function name that will be
called by default

From C, the convention is to call
this function main()

public class helloworld{

public static void main(String[] args)

{

System.out.println("hello, world");

}

}

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 6 / 29



Why so complicated . . .

Need to specify input and output
types for main()

The signature of main()

Input parameter is an array of
strings; command line arguments

No output, so return type is void

Visibility

Function has be available to run
from outside the class

Modifier public

public class helloworld{

public static void main(String[] args)

{

System.out.println("hello, world");

}

}

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 7 / 29



Why so complicated . . .

Need to specify input and output
types for main()

The signature of main()

Input parameter is an array of
strings; command line arguments

No output, so return type is void

Visibility

Function has be available to run
from outside the class

Modifier public

public class helloworld{

public static void main(String[] args)

{

System.out.println("hello, world");

}

}

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 7 / 29



Why so complicated . . .

Availability

Functions defined inside classes are
attached to objects

How can we create an object before
starting?

Modifier static — function that
exists independent of dynamic
creation of objects

public class helloworld{

public static void main(String[] args)

{

System.out.println("hello, world");

}

}

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 8 / 29



Why so complicated . . .

The actual operation

System is a public class

out is a stream object defined in
System

Like a file handle

Note that out must also be
static

println() is a method associated
with streams

Prints argument with a newline,
like Python print()

public class helloworld{

public static void main(String[] args)

{

System.out.println("hello, world");

}

}

Punctuation {, }, ; to delimit blocks, statements

Unlike layout and indentation in Python

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 9 / 29



Why so complicated . . .

The actual operation

System is a public class

out is a stream object defined in
System

Like a file handle

Note that out must also be
static

println() is a method associated
with streams

Prints argument with a newline,
like Python print()

public class helloworld{

public static void main(String[] args)

{

System.out.println("hello, world");

}

}

Punctuation {, }, ; to delimit blocks, statements

Unlike layout and indentation in Python

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 9 / 29



Why so complicated . . .

The actual operation

System is a public class

out is a stream object defined in
System

Like a file handle

Note that out must also be
static

println() is a method associated
with streams

Prints argument with a newline,
like Python print()

public class helloworld{

public static void main(String[] args)

{

System.out.println("hello, world");

}

}

Punctuation {, }, ; to delimit blocks, statements

Unlike layout and indentation in Python

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 9 / 29



Why so complicated . . .

The actual operation

System is a public class

out is a stream object defined in
System

Like a file handle

Note that out must also be
static

println() is a method associated
with streams

Prints argument with a newline,
like Python print()

public class helloworld{

public static void main(String[] args)

{

System.out.println("hello, world");

}

}

Punctuation {, }, ; to delimit blocks, statements

Unlike layout and indentation in Python

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 9 / 29



Compiling and running Java code

A Java program is a collection of
classes

Each class is defined in a separate file
with the same name, with extension
java

Class helloworld in
helloworld.java

public class helloworld{

public static void main(String[] args)

{

System.out.println("hello, world");

}

}

Java programs are usually interpreted on Java Virtual Machine (JVM)

JVM provides a uniform execution environment across operating systems

Semantics of Java is defined in terms of JVM, OS-independent

“Write once, run anywhere”

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 10 / 29



Compiling and running Java code

A Java program is a collection of
classes

Each class is defined in a separate file
with the same name, with extension
java

Class helloworld in
helloworld.java

public class helloworld{

public static void main(String[] args)

{

System.out.println("hello, world");

}

}

Java programs are usually interpreted on Java Virtual Machine (JVM)

JVM provides a uniform execution environment across operating systems

Semantics of Java is defined in terms of JVM, OS-independent

“Write once, run anywhere”

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 10 / 29



Compiling and running Java code

A Java program is a collection of
classes

Each class is defined in a separate file
with the same name, with extension
java

Class helloworld in
helloworld.java

public class helloworld{

public static void main(String[] args)

{

System.out.println("hello, world");

}

}

Java programs are usually interpreted on Java Virtual Machine (JVM)

JVM provides a uniform execution environment across operating systems

Semantics of Java is defined in terms of JVM, OS-independent

“Write once, run anywhere”

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 10 / 29



Compiling and running Java code

javac compiles into JVM bytecode

javac helloworld.java creates
bytecode file helloworld.class

java helloworld interprets and
runs bytecode in helloworld.class

public class helloworld{

public static void main(String[] args)

{

System.out.println("hello, world");

}

}

Note:

javac requires file extension .java

java should not be provided file extension .class

javac automatically follows dependencies and compiles all classes required

Su�cient to trigger compilation for class containing main()

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 11 / 29



Compiling and running Java code

javac compiles into JVM bytecode

javac helloworld.java creates
bytecode file helloworld.class

java helloworld interprets and
runs bytecode in helloworld.class

public class helloworld{

public static void main(String[] args)

{

System.out.println("hello, world");

}

}

Note:

javac requires file extension .java

java should not be provided file extension .class

javac automatically follows dependencies and compiles all classes required

Su�cient to trigger compilation for class containing main()

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 11 / 29



Compiling and running Java code

javac compiles into JVM bytecode

javac helloworld.java creates
bytecode file helloworld.class

java helloworld interprets and
runs bytecode in helloworld.class

public class helloworld{

public static void main(String[] args)

{

System.out.println("hello, world");

}

}

Note:

javac requires file extension .java

java should not be provided file extension .class

javac automatically follows dependencies and compiles all classes required

Su�cient to trigger compilation for class containing main()

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 11 / 29



Scalar types

In an object-oriented language, all data should be
encapsulated as objects

However, this is cumbersome

Useful to manipulate numeric values like
conventional languages

Java has eight primitive scalar types

int, long, short, byte

float, double

char

boolean

Size of each type is fixed by JVM
Does not depend on native architecture

2-byte char for Unicode

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 12 / 29



Scalar types

In an object-oriented language, all data should be
encapsulated as objects

However, this is cumbersome

Useful to manipulate numeric values like
conventional languages

Java has eight primitive scalar types

int, long, short, byte

float, double

char

boolean

Size of each type is fixed by JVM
Does not depend on native architecture

2-byte char for Unicode

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 12 / 29



Scalar types

In an object-oriented language, all data should be
encapsulated as objects

However, this is cumbersome

Useful to manipulate numeric values like
conventional languages

Java has eight primitive scalar types

int, long, short, byte

float, double

char

boolean

Size of each type is fixed by JVM
Does not depend on native architecture

2-byte char for Unicode

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 12 / 29



Scalar types

In an object-oriented language, all data should be
encapsulated as objects

However, this is cumbersome

Useful to manipulate numeric values like
conventional languages

Java has eight primitive scalar types

int, long, short, byte

float, double

char

boolean

Size of each type is fixed by JVM
Does not depend on native architecture

Type Size in bytes
int 4
long 8
short 2
byte 1
float 4
double 8
char 2

boolean 1

2-byte char for Unicode

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 12 / 29



Scalar types

In an object-oriented language, all data should be
encapsulated as objects

However, this is cumbersome

Useful to manipulate numeric values like
conventional languages

Java has eight primitive scalar types

int, long, short, byte

float, double

char

boolean

Size of each type is fixed by JVM
Does not depend on native architecture

Type Size in bytes
int 4
long 8
short 2
byte 1
float 4
double 8
char 2

boolean 1

2-byte char for Unicode

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 12 / 29



Declarations, assigning values

We declare variables before we use them

int x, y;

double y;

char c;

boolean b1, b2;

Note the semicolons after each
statement

The assignment statement works as
usual

Characters are written with
single-quotes (only)

Double quotes denote strings

Boolean constants are true, false

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 13 / 29



Declarations, assigning values

We declare variables before we use them

int x, y;

double y;

char c;

boolean b1, b2;

Note the semicolons after each
statement

The assignment statement works as
usual

int x,y;

x = 5;

y = 7;

Characters are written with
single-quotes (only)

Double quotes denote strings

Boolean constants are true, false

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 13 / 29



Declarations, assigning values

We declare variables before we use them

int x, y;

double y;

char c;

boolean b1, b2;

Note the semicolons after each
statement

The assignment statement works as
usual

int x,y;

x = 5;

y = 7;

Characters are written with
single-quotes (only)

char c,d;

c = ’x’;

d = ’\u03C0’; // Greek pi, unicode

Double quotes denote strings

Boolean constants are true, false

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 13 / 29



Declarations, assigning values

We declare variables before we use them

int x, y;

double y;

char c;

boolean b1, b2;

Note the semicolons after each
statement

The assignment statement works as
usual

int x,y;

x = 5;

y = 7;

Characters are written with
single-quotes (only)

char c,d;

c = ’x’;

d = ’\u03C0’; // Greek pi, unicode

Double quotes denote strings

Boolean constants are true, false

boolean b1, b2;

b1 = false;

b2 = true;

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 13 / 29



Initialization, constants

Declarations can come anywhere

int x;

x = 10;

double y;

Use this judiciously to retain
readability

Initialize at time of declaration

Can we declare a value to be a
constant?

Note: Append f after number for
float, else interpreted as double

Modifier final indicates a constant

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 14 / 29



Initialization, constants

Declarations can come anywhere

int x;

x = 10;

double y;

Use this judiciously to retain
readability

Initialize at time of declaration

int x = 10;

double y = 5.7;

Can we declare a value to be a
constant?

Note: Append f after number for
float, else interpreted as double

Modifier final indicates a constant

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 14 / 29



Initialization, constants

Declarations can come anywhere

int x;

x = 10;

double y;

Use this judiciously to retain
readability

Initialize at time of declaration

int x = 10;

double y = 5.7;

Can we declare a value to be a
constant?

float pi = 3.1415927f;

pi = 22/7; // Disallow?

Note: Append f after number for
float, else interpreted as double

Modifier final indicates a constant

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 14 / 29



Initialization, constants

Declarations can come anywhere

int x;

x = 10;

double y;

Use this judiciously to retain
readability

Initialize at time of declaration

int x = 10;

double y = 5.7;

Can we declare a value to be a
constant?

float pi = 3.1415927f;

pi = 22/7; // Disallow?

Note: Append f after number for
float, else interpreted as double

Modifier final indicates a constant

final float pi = 3.1415927f;

pi = 22/7; // Flagged as error;

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 14 / 29



Operators, shortcuts, type casting

Arithmetic operators are the usual ones

+, -, *, /, %

No separate integer division operator //

When both arguments are integer, / is
integer division

Note implicit conversion from int to
float

No exponentiation operater, use
Math.pow()

Math.pow(a,n) returns an

Special operators for incrementing and
decrementing integers

Shortcut for updating a variable

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 15 / 29



Operators, shortcuts, type casting

Arithmetic operators are the usual ones

+, -, *, /, %

No separate integer division operator //

When both arguments are integer, / is
integer division

float f = 22/7; // Value is 3.0

Note implicit conversion from int to
float

No exponentiation operater, use
Math.pow()

Math.pow(a,n) returns an

Special operators for incrementing and
decrementing integers

Shortcut for updating a variable

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 15 / 29



Operators, shortcuts, type casting

Arithmetic operators are the usual ones

+, -, *, /, %

No separate integer division operator //

When both arguments are integer, / is
integer division

float f = 22/7; // Value is 3.0

Note implicit conversion from int to
float

No exponentiation operater, use
Math.pow()

Math.pow(a,n) returns an

Special operators for incrementing and
decrementing integers

Shortcut for updating a variable

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 15 / 29



Operators, shortcuts, type casting

Arithmetic operators are the usual ones

+, -, *, /, %

No separate integer division operator //

When both arguments are integer, / is
integer division

float f = 22/7; // Value is 3.0

Note implicit conversion from int to
float

No exponentiation operater, use
Math.pow()

Math.pow(a,n) returns an

Special operators for incrementing and
decrementing integers

int a = 0, b = 10;

a++; // Same as a = a+1

b--; // Same as b = b-1

Shortcut for updating a variable

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 15 / 29



Operators, shortcuts, type casting

Arithmetic operators are the usual ones

+, -, *, /, %

No separate integer division operator //

When both arguments are integer, / is
integer division

float f = 22/7; // Value is 3.0

Note implicit conversion from int to
float

No exponentiation operater, use
Math.pow()

Math.pow(a,n) returns an

Special operators for incrementing and
decrementing integers

int a = 0, b = 10;

a++; // Same as a = a+1

b--; // Same as b = b-1

Shortcut for updating a variable

int a = 0, b = 10;

a += 7; // Same as a = a+7

b *= 12; // Same as b = b*12

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 15 / 29



Strings

String is a built in class

String s,t;

String constants enclosed in double
quotes

+ is overloaded for string concatenation

Strings are not arrays of characters

Cannot write

Instead, invoke method substring in
class String

s = s.substring(0,3) + "p!";

If we change a String, we get a new
object

After the update, s points to a new
String

Java does automatic garbage
collection

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 16 / 29



Strings

String is a built in class

String s,t;

String constants enclosed in double
quotes

String s = "Hello", t = "world";

+ is overloaded for string concatenation

Strings are not arrays of characters

Cannot write

Instead, invoke method substring in
class String

s = s.substring(0,3) + "p!";

If we change a String, we get a new
object

After the update, s points to a new
String

Java does automatic garbage
collection

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 16 / 29



Strings

String is a built in class

String s,t;

String constants enclosed in double
quotes

String s = "Hello", t = "world";

+ is overloaded for string concatenation

String s = "Hello";

String t = "world";

String u = s + " " + t;

// "Hello world"

Strings are not arrays of characters

Cannot write

Instead, invoke method substring in
class String

s = s.substring(0,3) + "p!";

If we change a String, we get a new
object

After the update, s points to a new
String

Java does automatic garbage
collection

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 16 / 29



Strings

String is a built in class

String s,t;

String constants enclosed in double
quotes

String s = "Hello", t = "world";

+ is overloaded for string concatenation

String s = "Hello";

String t = "world";

String u = s + " " + t;

// "Hello world"

Strings are not arrays of characters

Cannot write

s[3] = ’p’;

s[4] = ’!’;

Instead, invoke method substring in
class String

s = s.substring(0,3) + "p!";

If we change a String, we get a new
object

After the update, s points to a new
String

Java does automatic garbage
collection

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 16 / 29



Strings

String is a built in class

String s,t;

String constants enclosed in double
quotes

String s = "Hello", t = "world";

+ is overloaded for string concatenation

String s = "Hello";

String t = "world";

String u = s + " " + t;

// "Hello world"

Strings are not arrays of characters

Cannot write

s[3] = ’p’;

s[4] = ’!’;

Instead, invoke method substring in
class String

s = s.substring(0,3) + "p!";

If we change a String, we get a new
object

After the update, s points to a new
String

Java does automatic garbage
collection

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 16 / 29



Strings

String is a built in class

String s,t;

String constants enclosed in double
quotes

String s = "Hello", t = "world";

+ is overloaded for string concatenation

String s = "Hello";

String t = "world";

String u = s + " " + t;

// "Hello world"

Strings are not arrays of characters

Cannot write

s[3] = ’p’;

s[4] = ’!’;

Instead, invoke method substring in
class String

s = s.substring(0,3) + "p!";

If we change a String, we get a new
object

After the update, s points to a new
String

Java does automatic garbage
collection

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 16 / 29



Arrays

Arrays are also objects

Typical declaration

Or int a[] instead of int[] a

Combine as int[] a = new

int[100];

a.length gives size of a

Note, for String, it is a method
s.length()!

Array indices run from 0 to a.length-1

Size of the array can vary

Array constants: {v1, v2, v3}

For example

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 17 / 29



Arrays

Arrays are also objects

Typical declaration

int[] a;

a = new int[100];

Or int a[] instead of int[] a

Combine as int[] a = new

int[100];

a.length gives size of a

Note, for String, it is a method
s.length()!

Array indices run from 0 to a.length-1

Size of the array can vary

Array constants: {v1, v2, v3}

For example

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 17 / 29



Arrays

Arrays are also objects

Typical declaration

int[] a;

a = new int[100];

Or int a[] instead of int[] a

Combine as int[] a = new

int[100];

a.length gives size of a

Note, for String, it is a method
s.length()!

Array indices run from 0 to a.length-1

Size of the array can vary

Array constants: {v1, v2, v3}

For example

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 17 / 29



Arrays

Arrays are also objects

Typical declaration

int[] a;

a = new int[100];

Or int a[] instead of int[] a

Combine as int[] a = new

int[100];

a.length gives size of a

Note, for String, it is a method
s.length()!

Array indices run from 0 to a.length-1

Size of the array can vary

Array constants: {v1, v2, v3}

For example

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 17 / 29



Arrays

Arrays are also objects

Typical declaration

int[] a;

a = new int[100];

Or int a[] instead of int[] a

Combine as int[] a = new

int[100];

a.length gives size of a

Note, for String, it is a method
s.length()!

Array indices run from 0 to a.length-1

Size of the array can vary

Array constants: {v1, v2, v3}

For example

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 17 / 29



Arrays

Arrays are also objects

Typical declaration

int[] a;

a = new int[100];

Or int a[] instead of int[] a

Combine as int[] a = new

int[100];

a.length gives size of a

Note, for String, it is a method
s.length()!

Array indices run from 0 to a.length-1

Size of the array can vary

Array constants: {v1, v2, v3}

For example

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 17 / 29



Arrays

Arrays are also objects

Typical declaration

int[] a;

a = new int[100];

Or int a[] instead of int[] a

Combine as int[] a = new

int[100];

a.length gives size of a

Note, for String, it is a method
s.length()!

Array indices run from 0 to a.length-1

Size of the array can vary

Array constants: {v1, v2, v3}

For example

int[] a;

int n;

n = 10;

a = new int[n];

n = 20;

a = new int[n];

a = {2, 3, 5, 7, 11};

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 17 / 29



Control flow

Program layout

Statements end with semi-colon

Blocks of statements delimited by braces

Conditional execution

if (condition) { ... } else { ... }

Conditional loops

while (condition) { ... }
do { ... } while (condition)

Iteration
Two kinds of for

Multiway branching – switch

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 18 / 29



Control flow

Program layout

Statements end with semi-colon

Blocks of statements delimited by braces

Conditional execution

if (condition) { ... } else { ... }

Conditional loops

while (condition) { ... }
do { ... } while (condition)

Iteration
Two kinds of for

Multiway branching – switch

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 18 / 29



Control flow

Program layout

Statements end with semi-colon

Blocks of statements delimited by braces

Conditional execution

if (condition) { ... } else { ... }

Conditional loops

while (condition) { ... }
do { ... } while (condition)

Iteration
Two kinds of for

Multiway branching – switch

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 18 / 29



Control flow

Program layout

Statements end with semi-colon

Blocks of statements delimited by braces

Conditional execution

if (condition) { ... } else { ... }

Conditional loops

while (condition) { ... }
do { ... } while (condition)

Iteration
Two kinds of for

Multiway branching – switch

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 18 / 29



Control flow

Program layout

Statements end with semi-colon

Blocks of statements delimited by braces

Conditional execution

if (condition) { ... } else { ... }

Conditional loops

while (condition) { ... }
do { ... } while (condition)

Iteration
Two kinds of for

Multiway branching – switch

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 18 / 29



Conditional execution

if (c) {...} else {...}
else is optional

Condition must be in parentheses

If body is a single statement, braces are not
needed

No elif, à la Python

Indentation is not forced

Just align else if

Nested if is a single statement, no separate
braces required

No surprises

Aside: no def for function definition

public class MyClass {

...

public static int sign(int v) {

if (v < 0) {

return(-1);

} else if (v > 0) {

return(1);

} else {

return(0);

}

}

}

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 19 / 29



Conditional loops

while (c) {...}
Condition must be in parentheses

If body is a single statement, braces are not
needed

do {...} while (c)

Condition is checked at the end of the loop

At least one iteration

Useful for interactive user input

public class MyClass {

...

public static int sumupto(int n) {

int sum = 0;

while (n > 0){

sum += n;

n--;

}

return(sum);

}

}

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 20 / 29



Conditional loops

while (c) {...}
Condition must be in parentheses

If body is a single statement, braces are not
needed

do {...} while (c)

Condition is checked at the end of the loop

At least one iteration

Useful for interactive user input

public class MyClass {

...

public static int sumupto(int n) {

int sum = 0;

int i = 0;

do {

sum += i;

i++;

} while (i <= n);

return(sum);

}

}

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 20 / 29



Conditional loops

while (c) {...}
Condition must be in parentheses

If body is a single statement, braces are not
needed

do {...} while (c)

Condition is checked at the end of the loop

At least one iteration

Useful for interactive user input

do {

read input;

} while (input-condition);

public class MyClass {

...

public static int sumupto(int n) {

int sum = 0;

int i = 0;

do {

sum += i;

i++;

} while (i <= n);

return(sum);

}

}

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 20 / 29



Iteration

for loop is inherited from C

for (init; cond; upd) {...}
init is initialization

cond is terminating condition

upd is update

Intended use is
for(i = 0; i < n; i++){...}

Completely equivalent to

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 21 / 29



Iteration

for loop is inherited from C

for (init; cond; upd) {...}
init is initialization

cond is terminating condition

upd is update

Intended use is
for(i = 0; i < n; i++){...}

Completely equivalent to

public class MyClass {

...

public static int sumarray(int[] a) {

int sum = 0;

int n = a.length;

int i;

for (i = 0; i < n; i++){

sum += a[i];

}

return(sum);

}

}

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 21 / 29



Iteration

for loop is inherited from C

for (init; cond; upd) {...}
init is initialization

cond is terminating condition

upd is update

Intended use is
for(i = 0; i < n; i++){...}

Completely equivalent to

i = 0;

while (i < n) {

i++;

}

public class MyClass {

...

public static int sumarray(int[] a) {

int sum = 0;

int n = a.length;

int i;

for (i = 0; i < n; i++){

sum += a[i];

}

return(sum);

}

}

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 21 / 29



Iteration

Intended use is
for(i = 0; i < n; i++){...}

Completely equivalent to

i = 0;

while (i < n) {

i++;

}

However, not good style to write for
instead of while

Can define loop variable within loop

The scope of i is local to the loop

An instance of more general local
scoping allowed in Java

public class MyClass {

...

public static int sumarray(int[] a) {

int sum = 0;

int n = a.length;

int i;

for (i = 0; i < n; i++){

sum += a[i];

}

return(sum);

}

}

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 22 / 29



Iteration

Intended use is
for(i = 0; i < n; i++){...}

Completely equivalent to

i = 0;

while (i < n) {

i++;

}

However, not good style to write for
instead of while

Can define loop variable within loop

The scope of i is local to the loop

An instance of more general local
scoping allowed in Java

public class MyClass {

...

public static int sumarray(int[] a) {

int sum = 0;

int n = a.length;

int i;

for (i = 0; i < n; i++){

sum += a[i];

}

return(sum);

}

}

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 22 / 29



Iteration

Intended use is
for(i = 0; i < n; i++){...}

Completely equivalent to

i = 0;

while (i < n) {

i++;

}

However, not good style to write for
instead of while

Can define loop variable within loop

The scope of i is local to the loop

An instance of more general local
scoping allowed in Java

public class MyClass {

...

public static int sumarray(int[] a) {

int sum = 0;

int n = a.length;

for (int i = 0; i < n; i++){

sum += a[i];

}

return(sum);

}

}

Madhavan Mukund/S P Suresh Classes, objects, Java PLC, Lecture 3, 16 Jan 2024 22 / 29


