
Programming Language Support for Concurrency

Madhavan Mukund, S P Suresh

Programming Language Concepts

Lecture 15, 7 March 2024

Race conditions

Concurrent update of a shared variable can lead to data inconsistenccy

Race condition

Control behaviour of threads to regulate concurrent updates

Critical sections — sections of code where shared variables are updated

Mutual exclusion — at most one thread at a time can be in a critical section

We can construct protocols that guarantee mutual exclusion to critical sections

Watch out for starvation and deadlock

These protocols cleverly use regular variables

No assumptions about initial values, atomicity of updates

Di�cult to generalize such protocols to arbitrary situations

Look to programming language for features that control synchronization

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 2 / 22

Test and set

The fundamental issue preventing consistent concurrent updates of shared varuables
is test-and-set

To increment a counter, check its current value, then add 1

If more than one thread does this in parallel, updates may overlap and get lost

Need to combine test and set into an atomic, indivisible step

Cannot be guaranteed without adding this as a language primitive

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 3 / 22

&

H

Test and set

The fundamental issue preventing consistent concurrent updates of shared varuables
is test-and-set

To increment a counter, check its current value, then add 1

If more than one thread does this in parallel, updates may overlap and get lost

Need to combine test and set into an atomic, indivisible step

Cannot be guaranteed without adding this as a language primitive

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 3 / 22

Test and set

The fundamental issue preventing consistent concurrent updates of shared varuables
is test-and-set

To increment a counter, check its current value, then add 1

If more than one thread does this in parallel, updates may overlap and get lost

Need to combine test and set into an atomic, indivisible step

Cannot be guaranteed without adding this as a language primitive

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 3 / 22

Test and set

The fundamental issue preventing consistent concurrent updates of shared varuables
is test-and-set

To increment a counter, check its current value, then add 1

If more than one thread does this in parallel, updates may overlap and get lost

Need to combine test and set into an atomic, indivisible step

Cannot be guaranteed without adding this as a language primitive

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 3 / 22

Test and set

The fundamental issue preventing consistent concurrent updates of shared varuables
is test-and-set

To increment a counter, check its current value, then add 1

If more than one thread does this in parallel, updates may overlap and get lost

Need to combine test and set into an atomic, indivisible step

Cannot be guaranteed without adding this as a language primitive

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 3 / 22

Compan And Swap [CAS]

Semaphores

Programming language support for
mutual exclusion

Dijkstra’s semaphores

Integer variable with atomic
test-and-set operation

A semaphore S supports two atomic
operations

P(s) — from Dutch passeren, to pass

V(s) — from Dutch vrygeven, to
release

P(S) atomically executes the following

V(S) atomically executes the following

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 4 / 22

Semaphores

Programming language support for
mutual exclusion

Dijkstra’s semaphores

Integer variable with atomic
test-and-set operation

A semaphore S supports two atomic
operations

P(s) — from Dutch passeren, to pass

V(s) — from Dutch vrygeven, to
release

P(S) atomically executes the following

V(S) atomically executes the following

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 4 / 22

Semaphores

Programming language support for
mutual exclusion

Dijkstra’s semaphores

Integer variable with atomic
test-and-set operation

A semaphore S supports two atomic
operations

P(s) — from Dutch passeren, to pass

V(s) — from Dutch vrygeven, to
release

P(S) atomically executes the following

V(S) atomically executes the following

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 4 / 22

↑

Semaphores

Programming language support for
mutual exclusion

Dijkstra’s semaphores

Integer variable with atomic
test-and-set operation

A semaphore S supports two atomic
operations

P(s) — from Dutch passeren, to pass

V(s) — from Dutch vrygeven, to
release

P(S) atomically executes the following
if (S > 0)
decrement S;

else
wait for S to become positive;

V(S) atomically executes the following

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 4 / 22

Semaphores

Programming language support for
mutual exclusion

Dijkstra’s semaphores

Integer variable with atomic
test-and-set operation

A semaphore S supports two atomic
operations

P(s) — from Dutch passeren, to pass

V(s) — from Dutch vrygeven, to
release

P(S) atomically executes the following
if (S > 0)
decrement S;

else
wait for S to become positive;

V(S) atomically executes the following
if (there are threads waiting

for S to become positive)
wake one of them up;
//choice is nondeterministic

else
increment S;

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 4 / 22

testost [C S ==

Using semaphores

Mutual exclusion using semaphores
Thread 1 Thread 2
... ...
P(S); P(S);
// Enter critical section // Enter critical section

... ...
// Leave critical section // Leave critical section
V(S); V(S);
... ...

Semaphores guarantee

Mutual exclusion

Freedom from starvation

Freedom from deadlock

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 5 / 22

4
same semaphor-

Using semaphores

Mutual exclusion using semaphores
Thread 1 Thread 2
... ...
P(S); P(S);
// Enter critical section // Enter critical section

... ...
// Leave critical section // Leave critical section
V(S); V(S);
... ...

Semaphores guarantee

Mutual exclusion

Freedom from starvation

Freedom from deadlock

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 5 / 22

Problems with semaphores

Too low level

No clear relationship between a semaphore and the critical region that it protects

All threads must cooperate to correctly reset semaphore

Cannot enforce that each P(S) has a matching V(S)

Can even execute V(S) without having done P(S)

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 6 / 22

Problems with semaphores

Too low level

No clear relationship between a semaphore and the critical region that it protects

All threads must cooperate to correctly reset semaphore

Cannot enforce that each P(S) has a matching V(S)

Can even execute V(S) without having done P(S)

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 6 / 22

Problems with semaphores

Too low level

No clear relationship between a semaphore and the critical region that it protects

All threads must cooperate to correctly reset semaphore

Cannot enforce that each P(S) has a matching V(S)

Can even execute V(S) without having done P(S)

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 6 / 22

Problems with semaphores

Too low level

No clear relationship between a semaphore and the critical region that it protects

All threads must cooperate to correctly reset semaphore

Cannot enforce that each P(S) has a matching V(S)

Can even execute V(S) without having done P(S)

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 6 / 22

Problems with semaphores

Too low level

No clear relationship between a semaphore and the critical region that it protects

All threads must cooperate to correctly reset semaphore

Cannot enforce that each P(S) has a matching V(S)

Can even execute V(S) without having done P(S)

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 6 / 22

Monitors

Attach synchronization control to the data
that is being protected

Monitors — Per Brinch Hansen and CAR
Hoare

Monitor is like a class in an OO language

Data definition — to which access is
restricted across threads

Collections of functions operating on this
data — all are implicitly mutually
exclusive

Monitor guarantees mutual exclusion — if
one function is active, any other function
will have to wait for it to finish

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 7 / 22

Monitors

Attach synchronization control to the data
that is being protected

Monitors — Per Brinch Hansen and CAR
Hoare

Monitor is like a class in an OO language

Data definition — to which access is
restricted across threads

Collections of functions operating on this
data — all are implicitly mutually
exclusive

Monitor guarantees mutual exclusion — if
one function is active, any other function
will have to wait for it to finish

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 7 / 22

Monitors

Attach synchronization control to the data
that is being protected

Monitors — Per Brinch Hansen and CAR
Hoare

Monitor is like a class in an OO language

Data definition — to which access is
restricted across threads

Collections of functions operating on this
data — all are implicitly mutually
exclusive

Monitor guarantees mutual exclusion — if
one function is active, any other function
will have to wait for it to finish

monitor bank_account{

double accounts[100];

boolean transfer (double amount,

int source,

int target){

if (accounts[source] < amount){

return false;

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

double audit(){

// compute balance across all accounts

double balance = 0.00;

for (int i = 0; i < 100; i++){

balance += accounts[i];

}

return balance;

}

}

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 7 / 22

①

Monitors

Attach synchronization control to the data
that is being protected

Monitors — Per Brinch Hansen and CAR
Hoare

Monitor is like a class in an OO language

Data definition — to which access is
restricted across threads

Collections of functions operating on this
data — all are implicitly mutually
exclusive

Monitor guarantees mutual exclusion — if
one function is active, any other function
will have to wait for it to finish

monitor bank_account{

double accounts[100];

boolean transfer (double amount,

int source,

int target){

if (accounts[source] < amount){

return false;

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

double audit(){

// compute balance across all accounts

double balance = 0.00;

for (int i = 0; i < 100; i++){

balance += accounts[i];

}

return balance;

}

}

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 7 / 22

Monitors: external queue

Monitor ensures transfer and audit are
mutually exclusive

If Thread 1 is executing transfer and
Thread 2 invokes audit, it must wait

Implicit queue associated with each
monitor

Contains all processes waiting for access

In practice, this may be just a set, not a
queue

monitor bank_account{

double accounts[100];

boolean transfer (double amount,

int source,

int target){

if (accounts[source] < amount){

return false;

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

double audit(){

// compute balance across all accounts

double balance = 0.00;

for (int i = 0; i < 100; i++){

balance += accounts[i];

}

return balance;

}

}

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 8 / 22

Monitors: external queue

Monitor ensures transfer and audit are
mutually exclusive

If Thread 1 is executing transfer and
Thread 2 invokes audit, it must wait

Implicit queue associated with each
monitor

Contains all processes waiting for access

In practice, this may be just a set, not a
queue

monitor bank_account{

double accounts[100];

boolean transfer (double amount,

int source,

int target){

if (accounts[source] < amount){

return false;

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

double audit(){

// compute balance across all accounts

double balance = 0.00;

for (int i = 0; i < 100; i++){

balance += accounts[i];

}

return balance;

}

}

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 8 / 22

Monitors: external queue

Monitor ensures transfer and audit are
mutually exclusive

If Thread 1 is executing transfer and
Thread 2 invokes audit, it must wait

Implicit queue associated with each
monitor

Contains all processes waiting for access

In practice, this may be just a set, not a
queue

monitor bank_account{

double accounts[100];

boolean transfer (double amount,

int source,

int target){

if (accounts[source] < amount){

return false;

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

double audit(){

// compute balance across all accounts

double balance = 0.00;

for (int i = 0; i < 100; i++){

balance += accounts[i];

}

return balance;

}

}

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 8 / 22

Making monitors more flexible

Our definition of monitors may be too restrictive
transfer(500.00,i,j);
transfer(400.00,j,k);

This should always succeed if accounts[i] > 500

If these calls are reordered and accounts[j] < 400 initially, this will fail

A possible fix — let an account wait for pending inflows

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 9 / 22

Making monitors more flexible

Our definition of monitors may be too restrictive
transfer(500.00,i,j);
transfer(400.00,j,k);

This should always succeed if accounts[i] > 500

If these calls are reordered and accounts[j] < 400 initially, this will fail

A possible fix — let an account wait for pending inflows

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 9 / 22

Making monitors more flexible

Our definition of monitors may be too restrictive
transfer(500.00,i,j);
transfer(400.00,j,k);

This should always succeed if accounts[i] > 500

If these calls are reordered and accounts[j] < 400 initially, this will fail

A possible fix — let an account wait for pending inflows

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 9 / 22

Making monitors more flexible

Our definition of monitors may be too restrictive
transfer(500.00,i,j);
transfer(400.00,j,k);

This should always succeed if accounts[i] > 500

If these calls are reordered and accounts[j] < 400 initially, this will fail

A possible fix — let an account wait for pending inflows
boolean transfer (double amount, int source, int target){
if (accounts[source] < amount){

// wait for another transaction to transfer money
// into accounts[source]

}
accounts[source] -= amount;
accounts[target] += amount;
return true;

}

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 9 / 22

Monitors — wait()

boolean transfer (double amount, int source, int target){
if (accounts[source] < amount){
// wait for another transaction to transfer money
// into accounts[source]

}
accounts[source] -= amount;
accounts[target] += amount;
return true;

}

All other processes are blocked out while this process waits!

Need a mechanism for a thread to suspend itself and give up the monitor

A suspended process is waiting for monitor to change its state

Have a separate internal queue, as opposed to external queue where initially blocked
threads wait

Dual operation to notify and wake up suspended processes

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 10 / 22

Monitors — wait()

boolean transfer (double amount, int source, int target){
if (accounts[source] < amount){
// wait for another transaction to transfer money
// into accounts[source]

}
accounts[source] -= amount;
accounts[target] += amount;
return true;

}

All other processes are blocked out while this process waits!

Need a mechanism for a thread to suspend itself and give up the monitor

A suspended process is waiting for monitor to change its state

Have a separate internal queue, as opposed to external queue where initially blocked
threads wait

Dual operation to notify and wake up suspended processes

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 10 / 22

Monitors — wait()

boolean transfer (double amount, int source, int target){
if (accounts[source] < amount){
// wait for another transaction to transfer money
// into accounts[source]

}
accounts[source] -= amount;
accounts[target] += amount;
return true;

}

All other processes are blocked out while this process waits!

Need a mechanism for a thread to suspend itself and give up the monitor

A suspended process is waiting for monitor to change its state

Have a separate internal queue, as opposed to external queue where initially blocked
threads wait

Dual operation to notify and wake up suspended processes

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 10 / 22

Monitors — wait()

boolean transfer (double amount, int source, int target){
if (accounts[source] < amount){
// wait for another transaction to transfer money
// into accounts[source]

}
accounts[source] -= amount;
accounts[target] += amount;
return true;

}

All other processes are blocked out while this process waits!

Need a mechanism for a thread to suspend itself and give up the monitor

A suspended process is waiting for monitor to change its state

Have a separate internal queue, as opposed to external queue where initially blocked
threads wait

Dual operation to notify and wake up suspended processes

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 10 / 22

Monitors — wait()

boolean transfer (double amount, int source, int target){
if (accounts[source] < amount){
// wait for another transaction to transfer money
// into accounts[source]

}
accounts[source] -= amount;
accounts[target] += amount;
return true;

}

All other processes are blocked out while this process waits!

Need a mechanism for a thread to suspend itself and give up the monitor

A suspended process is waiting for monitor to change its state

Have a separate internal queue, as opposed to external queue where initially blocked
threads wait

Dual operation to notify and wake up suspended processes

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 10 / 22

Monitors — notify()

boolean transfer (double amount, int source, int target){
if (accounts[source] < amount){ wait(); }
accounts[source] -= amount;
accounts[target] += amount;
notify();
return true;

}

What happens when a process executes notify()?

Signal and exit — notifying process immediately exits the monitor

notify() must be the last instruction

Signal and wait — notifying process swaps roles and goes into the internal queue of
the monitor

Signal and continue — notifying process keeps control till it completes and then one
of the notified processes steps in

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 11 / 22

Monitors — notify()

boolean transfer (double amount, int source, int target){
if (accounts[source] < amount){ wait(); }
accounts[source] -= amount;
accounts[target] += amount;
notify();
return true;

}

What happens when a process executes notify()?

Signal and exit — notifying process immediately exits the monitor

notify() must be the last instruction

Signal and wait — notifying process swaps roles and goes into the internal queue of
the monitor

Signal and continue — notifying process keeps control till it completes and then one
of the notified processes steps in

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 11 / 22

↓
:

Monitors — notify()

boolean transfer (double amount, int source, int target){
if (accounts[source] < amount){ wait(); }
accounts[source] -= amount;
accounts[target] += amount;
notify();
return true;

}

What happens when a process executes notify()?

Signal and exit — notifying process immediately exits the monitor

notify() must be the last instruction

Signal and wait — notifying process swaps roles and goes into the internal queue of
the monitor

Signal and continue — notifying process keeps control till it completes and then one
of the notified processes steps in

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 11 / 22

Monitors — notify()

boolean transfer (double amount, int source, int target){
if (accounts[source] < amount){ wait(); }
accounts[source] -= amount;
accounts[target] += amount;
notify();
return true;

}

What happens when a process executes notify()?

Signal and exit — notifying process immediately exits the monitor

notify() must be the last instruction

Signal and wait — notifying process swaps roles and goes into the internal queue of
the monitor

Signal and continue — notifying process keeps control till it completes and then one
of the notified processes steps in

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 11 / 22

Monitors — notify()

boolean transfer (double amount, int source, int target){
if (accounts[source] < amount){ wait(); }
accounts[source] -= amount;
accounts[target] += amount;
notify();
return true;

}

What happens when a process executes notify()?

Signal and exit — notifying process immediately exits the monitor

notify() must be the last instruction

Signal and wait — notifying process swaps roles and goes into the internal queue of
the monitor

Signal and continue — notifying process keeps control till it completes and then one
of the notified processes steps in

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 11 / 22

-

g

Monitors — wait() and notify()

Should check the wait() condition again on wake up

Change of state may not be su�cient to continue — e.g., not enough inflow into the
account to allow transfer

A thread can be again interleaved between notification and running

At wake-up, the state was fine, but it has changed again due to some other concurrent
action

wait() should be in a while, not in an if

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 12 / 22

Monitors — wait() and notify()

Should check the wait() condition again on wake up

Change of state may not be su�cient to continue — e.g., not enough inflow into the
account to allow transfer

A thread can be again interleaved between notification and running

At wake-up, the state was fine, but it has changed again due to some other concurrent
action

wait() should be in a while, not in an if

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 12 / 22

Monitors — wait() and notify()

Should check the wait() condition again on wake up

Change of state may not be su�cient to continue — e.g., not enough inflow into the
account to allow transfer

A thread can be again interleaved between notification and running

At wake-up, the state was fine, but it has changed again due to some other concurrent
action

wait() should be in a while, not in an if

boolean transfer (double amount, int source, int target){
while (accounts[source] < amount){ wait(); }
accounts[source] -= amount;
accounts[target] += amount;
notify();
return true;

}

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 12 / 22

C

Condition variables

After transfer, notify() is only
useful for threads waiting for target
account of transfer to change state

Makes sense to have more than one
internal queue

Monitor can have condition variables
to describe internal queues

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 13 / 22

Condition variables

After transfer, notify() is only
useful for threads waiting for target
account of transfer to change state

Makes sense to have more than one
internal queue

Monitor can have condition variables
to describe internal queues

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 13 / 22

Condition variables

After transfer, notify() is only
useful for threads waiting for target
account of transfer to change state

Makes sense to have more than one
internal queue

Monitor can have condition variables
to describe internal queues

monitor bank_account{

double accounts[100];

queue q[100]; // one internal queue

// for each account

boolean transfer (double amount,

int source,

int target){

while (accounts[source] < amount){

q[source].wait(); // wait in the queue

// associated with source

}

accounts[source] -= amount;

accounts[target] += amount;

q[target].notify(); // notify the queue

// associated with target

return true;

}

// compute the balance across all accounts

double audit(){ ...}

}

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 13 / 22

F

--

-

Monitors in Java

Monitors incorporated within existing
class definitions

Function declared synchronized is to
be executed atomically

Each object has a lock

To execute a synchronized method,
thread must acquire lock

Thread gives up lock when the
method exits

Only one thread can have the lock at
any time

Wait for lock in external queue

public class bank_account{

double accounts[100];

public synchronized boolean

transfer(double amount, int source, int target){

while (accounts[source] < amount){ wait(); }

accounts[source] -= amount;

accounts[target] += amount;

notifyAll();

return true;

}

public synchronized double audit(){

double balance = 0.0;

for (int i = 0; i < 100; i++)

balance += accounts[i];

return balance;

}

public double current_balance(int i){

return accounts[i]; // not synchronized!

}

}

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 14 / 22

-

-

&

Monitors in Java

Monitors incorporated within existing
class definitions

Function declared synchronized is to
be executed atomically

Each object has a lock

To execute a synchronized method,
thread must acquire lock

Thread gives up lock when the
method exits

Only one thread can have the lock at
any time

Wait for lock in external queue

public class bank_account{

double accounts[100];

public synchronized boolean

transfer(double amount, int source, int target){

while (accounts[source] < amount){ wait(); }

accounts[source] -= amount;

accounts[target] += amount;

notifyAll();

return true;

}

public synchronized double audit(){

double balance = 0.0;

for (int i = 0; i < 100; i++)

balance += accounts[i];

return balance;

}

public double current_balance(int i){

return accounts[i]; // not synchronized!

}

}

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 14 / 22

Monitors in Java

Monitors incorporated within existing
class definitions

Function declared synchronized is to
be executed atomically

Each object has a lock

To execute a synchronized method,
thread must acquire lock

Thread gives up lock when the
method exits

Only one thread can have the lock at
any time

Wait for lock in external queue

public class bank_account{

double accounts[100];

public synchronized boolean

transfer(double amount, int source, int target){

while (accounts[source] < amount){ wait(); }

accounts[source] -= amount;

accounts[target] += amount;

notifyAll();

return true;

}

public synchronized double audit(){

double balance = 0.0;

for (int i = 0; i < 100; i++)

balance += accounts[i];

return balance;

}

public double current_balance(int i){

return accounts[i]; // not synchronized!

}

}

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 14 / 22

Monitors in Java

Monitors incorporated within existing
class definitions

Function declared synchronized is to
be executed atomically

Each object has a lock

To execute a synchronized method,
thread must acquire lock

Thread gives up lock when the
method exits

Only one thread can have the lock at
any time

Wait for lock in external queue

public class bank_account{

double accounts[100];

public synchronized boolean

transfer(double amount, int source, int target){

while (accounts[source] < amount){ wait(); }

accounts[source] -= amount;

accounts[target] += amount;

notifyAll();

return true;

}

public synchronized double audit(){

double balance = 0.0;

for (int i = 0; i < 100; i++)

balance += accounts[i];

return balance;

}

public double current_balance(int i){

return accounts[i]; // not synchronized!

}

}

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 14 / 22

Monitors in Java

wait() and notify() to suspend and
resume

Wait — single internal queue

Notify

notify() signals one (arbitrary)
waiting process

notifyAll() signals all waiting
processes

Java uses signal and continue

public class bank_account{

double accounts[100];

public synchronized boolean

transfer(double amount, int source, int target){

while (accounts[source] < amount){ wait(); }

accounts[source] -= amount;

accounts[target] += amount;

notifyAll();

return true;

}

public synchronized double audit(){

double balance = 0.0;

for (int i = 0; i < 100; i++)

balance += accounts[i];

return balance;

}

public double current_balance(int i){

return accounts[i]; // not synchronized!

}

}

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 15 / 22

Monitors in Java

wait() and notify() to suspend and
resume

Wait — single internal queue

Notify

notify() signals one (arbitrary)
waiting process

notifyAll() signals all waiting
processes

Java uses signal and continue

public class bank_account{

double accounts[100];

public synchronized boolean

transfer(double amount, int source, int target){

while (accounts[source] < amount){ wait(); }

accounts[source] -= amount;

accounts[target] += amount;

notifyAll();

return true;

}

public synchronized double audit(){

double balance = 0.0;

for (int i = 0; i < 100; i++)

balance += accounts[i];

return balance;

}

public double current_balance(int i){

return accounts[i]; // not synchronized!

}

}

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 15 / 22

Monitors in Java

wait() and notify() to suspend and
resume

Wait — single internal queue

Notify

notify() signals one (arbitrary)
waiting process

notifyAll() signals all waiting
processes

Java uses signal and continue

public class bank_account{

double accounts[100];

public synchronized boolean

transfer(double amount, int source, int target){

while (accounts[source] < amount){ wait(); }

accounts[source] -= amount;

accounts[target] += amount;

notifyAll();

return true;

}

public synchronized double audit(){

double balance = 0.0;

for (int i = 0; i < 100; i++)

balance += accounts[i];

return balance;

}

public double current_balance(int i){

return accounts[i]; // not synchronized!

}

}

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 15 / 22

ALWAYS USE THIS !

Object locks . . .

Use object locks to synchronize
arbitrary blocks of code

f() and g() can start in parallel

Only one of the threads can grab the
lock for o

Each object has its own internal queue

Can convert methods from “externally”
synchronized to “internally”
synchronized

“Anonymous” wait(), notify(),
notifyAll() abbreviate this.wait(),
this.notify(), this.notifyAll()

public class XYZ{

Object o = new Object();

public int f(){

..

synchronized(o){ ... }

}

public double g(){

..

synchronized(o){ ... }

}

}

}

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 16 / 22

CRITICAL

-
SECTIONS

2

I

Object locks . . .

Use object locks to synchronize
arbitrary blocks of code

f() and g() can start in parallel

Only one of the threads can grab the
lock for o

Each object has its own internal queue

Can convert methods from “externally”
synchronized to “internally”
synchronized

“Anonymous” wait(), notify(),
notifyAll() abbreviate this.wait(),
this.notify(), this.notifyAll()

public class XYZ{

Object o = new Object();

public int f(){

..

synchronized(o){ ... }

}

public double g(){

..

synchronized(o){ ... }

}

}

}

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 16 / 22

Object locks . . .

Use object locks to synchronize
arbitrary blocks of code

f() and g() can start in parallel

Only one of the threads can grab the
lock for o

Each object has its own internal queue

Can convert methods from “externally”
synchronized to “internally”
synchronized

“Anonymous” wait(), notify(),
notifyAll() abbreviate this.wait(),
this.notify(), this.notifyAll()

Object o = new Object();

public int f(){

..

synchronized(o){

...

o.wait(); // Wait in queue attached to "o"

...

}

}

public double g(){

..

synchronized(o){

...

o.notifyAll(); // Wake up queue attached to "o"

...

}

}

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 16 / 22

- for o

- external
quee

-

&
- -Internal for o

Object locks . . .

Use object locks to synchronize
arbitrary blocks of code

f() and g() can start in parallel

Only one of the threads can grab the
lock for o

Each object has its own internal queue

Can convert methods from “externally”
synchronized to “internally”
synchronized

“Anonymous” wait(), notify(),
notifyAll() abbreviate this.wait(),
this.notify(), this.notifyAll()

public double h(){

synchronized(this){

...

}

}

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 16 / 22

Object locks . . .

Use object locks to synchronize
arbitrary blocks of code

f() and g() can start in parallel

Only one of the threads can grab the
lock for o

Each object has its own internal queue

Can convert methods from “externally”
synchronized to “internally”
synchronized

“Anonymous” wait(), notify(),
notifyAll() abbreviate this.wait(),
this.notify(), this.notifyAll()

public double h(){

synchronized(this){

...

}

}

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 16 / 22

Object locks . . .

Actually, wait() can be “interrupted” by an InterruptedException

Should write

Error to use wait(), notify(), notifyAll() outside synchronized method

IllegalMonitorStateException

Likewise, use o.wait(), o.notify(), o.notifyAll() only in block synchronized
on o

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 17 / 22

Object locks . . .

Actually, wait() can be “interrupted” by an InterruptedException

Should write
try{
wait();

}
catch (InterruptedException e) {
...

};

Error to use wait(), notify(), notifyAll() outside synchronized method

IllegalMonitorStateException

Likewise, use o.wait(), o.notify(), o.notifyAll() only in block synchronized
on o

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 17 / 22

Object locks . . .

Actually, wait() can be “interrupted” by an InterruptedException

Should write
try{
wait();

}
catch (InterruptedException e) {
...

};

Error to use wait(), notify(), notifyAll() outside synchronized method

IllegalMonitorStateException

Likewise, use o.wait(), o.notify(), o.notifyAll() only in block synchronized
on o

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 17 / 22

Object locks . . .

Actually, wait() can be “interrupted” by an InterruptedException

Should write
try{
wait();

}
catch (InterruptedException e) {
...

};

Error to use wait(), notify(), notifyAll() outside synchronized method

IllegalMonitorStateException

Likewise, use o.wait(), o.notify(), o.notifyAll() only in block synchronized
on o

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 17 / 22

Creating threads in Java

Have a class extend Thread

Define a function run() where
execution can begin in parallel

Invoking p[i].start() initiates
p[i].run() in a separate thread

Directly calling p[i].run() does not
execute in separate thread!

sleep(t) suspends thread for t
milliseconds

Static function — use
Thread.sleep() if current class does
not extend Thread

Throws InterruptedException —
later

public class Parallel extends Thread{

private int id;

public Parallel(int i){ id = i; }

public void run(){

for (int j = 0; j < 100; j++){

System.out.println("My id is "+id);

try{

sleep(1000); // Sleep for 1000 ms

}

catch(InterruptedException e){}

}

}

}

public class TestParallel {

public static void main(String[] args){

Parallel p[] = new Parallel[5];

for (int i = 0; i < 5; i++){

p[i] = new Parallel(i);

p[i].start(); // Start p[i].run()

} // in concurrent thread

}

}
Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 18 / 22

#

Creating threads in Java

Have a class extend Thread

Define a function run() where
execution can begin in parallel

Invoking p[i].start() initiates
p[i].run() in a separate thread

Directly calling p[i].run() does not
execute in separate thread!

sleep(t) suspends thread for t
milliseconds

Static function — use
Thread.sleep() if current class does
not extend Thread

Throws InterruptedException —
later

Typical output

My id is 0
My id is 3
My id is 2
My id is 1
My id is 4
My id is 0
My id is 2
My id is 3
My id is 4
My id is 1
My id is 0
My id is 3
My id is 1
My id is 2
My id is 4
My id is 0
...

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 18 / 22

Java threads . . .

Cannot always extend Thread

Single inheritance

Instead, implement Runnable

To use Runnable class, explicitly create
a Thread and start() it

public class Parallel implements Runnable{

// only the line above has changed

private int id;

public Parallel(int i){ ... } // Constructor

public void run(){ ... }

}

public class TestParallel {

public static void main(String[] args){

Parallel p[] = new Parallel[5];

Thread t[] = new Thread[5];

for (int i = 0; i < 5; i++){

p[i] = new Parallel(i);

t[i] = new Thread(p[i]);

// Make a thread t[i] from p[i]

t[i].start(); // Start off p[i].run()

// Note: t[i].start(),

} // not p[i].start()

}

}

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 19 / 22

Life cycle of a Java thread

A thread can be in six states

New: Created but not start()ed.

Runnable: start()ed and ready to be scheduled.

Need not be actually “running”

No guarantee made about how scheduling is done

Most Java implementations use time-slicing

Not available to run

Blocked — waiting for a lock, unblocked when lock is granted

Waiting — suspended by wait(), unblocked by notify() or notfifyAll()

Timed wait — within sleep(..), released when sleep timer expires

Dead: thread terminates.

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 20 / 22

Life cycle of a Java thread

A thread can be in six states

New: Created but not start()ed.

Runnable: start()ed and ready to be scheduled.

Need not be actually “running”

No guarantee made about how scheduling is done

Most Java implementations use time-slicing

Not available to run

Blocked — waiting for a lock, unblocked when lock is granted

Waiting — suspended by wait(), unblocked by notify() or notfifyAll()

Timed wait — within sleep(..), released when sleep timer expires

Dead: thread terminates.

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 20 / 22

Life cycle of a Java thread

A thread can be in six states

New: Created but not start()ed.

Runnable: start()ed and ready to be scheduled.

Need not be actually “running”

No guarantee made about how scheduling is done

Most Java implementations use time-slicing

Not available to run

Blocked — waiting for a lock, unblocked when lock is granted

Waiting — suspended by wait(), unblocked by notify() or notfifyAll()

Timed wait — within sleep(..), released when sleep timer expires

Dead: thread terminates.

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 20 / 22

Life cycle of a Java thread

A thread can be in six states

New: Created but not start()ed.

Runnable: start()ed and ready to be scheduled.

Need not be actually “running”

No guarantee made about how scheduling is done

Most Java implementations use time-slicing

Not available to run

Blocked — waiting for a lock, unblocked when lock is granted

Waiting — suspended by wait(), unblocked by notify() or notfifyAll()

Timed wait — within sleep(..), released when sleep timer expires

Dead: thread terminates.

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 20 / 22

Life cycle of a Java thread

A thread can be in six states

New: Created but not start()ed.

Runnable: start()ed and ready to be scheduled.

Need not be actually “running”

No guarantee made about how scheduling is done

Most Java implementations use time-slicing

Not available to run

Blocked — waiting for a lock, unblocked when lock is granted

Waiting — suspended by wait(), unblocked by notify() or notfifyAll()

Timed wait — within sleep(..), released when sleep timer expires

Dead: thread terminates.

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 20 / 22

Life cycle of a Java thread

A thread can be in six states — thread status via t.getState()

New: Created but not start()ed.

Runnable: start()ed and ready to be scheduled.

Need not be actually “running”

No guarantee made about how scheduling is done

Most Java implementations use time-slicing

Not available to run

Blocked — waiting for a lock, unblocked when lock is granted

Waiting — suspended by wait(), unblocked by notify() or notfifyAll()

Timed wait — within sleep(..), released when sleep timer expires

Dead: thread terminates.

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 20 / 22

Interrupts

One thread can interrupt another using
interrupt()

p[i].interrupt(); interrupts thread
p[i]

Raises InterruptedException within
wait(), sleep()

No exception raised if thread is running!

interrupt() sets a status flag

interrupted() checks interrupt status
and clears the flag

Detecting an interrupt while running or
waiting

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 21 / 22

Interrupts

One thread can interrupt another using
interrupt()

p[i].interrupt(); interrupts thread
p[i]

Raises InterruptedException within
wait(), sleep()

No exception raised if thread is running!

interrupt() sets a status flag

interrupted() checks interrupt status
and clears the flag

Detecting an interrupt while running or
waiting

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 21 / 22

Interrupts

One thread can interrupt another using
interrupt()

p[i].interrupt(); interrupts thread
p[i]

Raises InterruptedException within
wait(), sleep()

No exception raised if thread is running!

interrupt() sets a status flag

interrupted() checks interrupt status
and clears the flag

Detecting an interrupt while running or
waiting

public void run(){
try{
j = 0;
while(!interrupted() && j < 100){

System.out.println("My id is "+id);
sleep(1000); // Sleep for 1000 ms
j++;

}
}
catch(InterruptedException e){}

}

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 21 / 22

F

More about threads . . .

Check a thread’s interrupt status

Use t.isInterrupted() to check status of t’s interrupt flag

Does not clear flag

Can give up running status

yield() gives up active state to another thread

Static method in Thread

Normally, scheduling of threads is handled by OS — preemptive

Some mobile platforms use cooperative scheduling — thread loses control only if it
yields

Waiting for other threads

t.join() waits for t to terminate

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 22 / 22

More about threads . . .

Check a thread’s interrupt status

Use t.isInterrupted() to check status of t’s interrupt flag

Does not clear flag

Can give up running status

yield() gives up active state to another thread

Static method in Thread

Normally, scheduling of threads is handled by OS — preemptive

Some mobile platforms use cooperative scheduling — thread loses control only if it
yields

Waiting for other threads

t.join() waits for t to terminate

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 22 / 22

More about threads . . .

Check a thread’s interrupt status

Use t.isInterrupted() to check status of t’s interrupt flag

Does not clear flag

Can give up running status

yield() gives up active state to another thread

Static method in Thread

Normally, scheduling of threads is handled by OS — preemptive

Some mobile platforms use cooperative scheduling — thread loses control only if it
yields

Waiting for other threads

t.join() waits for t to terminate

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 22 / 22

More about threads . . .

Check a thread’s interrupt status

Use t.isInterrupted() to check status of t’s interrupt flag

Does not clear flag

Can give up running status

yield() gives up active state to another thread

Static method in Thread

Normally, scheduling of threads is handled by OS — preemptive

Some mobile platforms use cooperative scheduling — thread loses control only if it
yields

Waiting for other threads

t.join() waits for t to terminate

Madhavan Mukund/S P Suresh Programming Language Support for Concurrency PLC, Lecture 15, 7 Mar 2024 22 / 22

