
Storage allocation

Madhavan Mukund, S P Suresh

Programming Language Concepts

Lecture 8, 01 February 2024



Variables, functions and storage

Variables represent data residing in a memory location

Compiler creates a map from variables to memory addresses

Functions represent blocks of (reusable) code

Complexities introduced by recursion

Many versions of the same local variable active at the same time

Need a way to keep track of all copies of a local x

Figure out which copy of x is referred to at any point of the execution

Scope and lifetime of variables

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 2 / 19



Variables, functions and storage

Variables represent data residing in a memory location

Compiler creates a map from variables to memory addresses

Functions represent blocks of (reusable) code

Complexities introduced by recursion

Many versions of the same local variable active at the same time

Need a way to keep track of all copies of a local x

Figure out which copy of x is referred to at any point of the execution

Scope and lifetime of variables

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 2 / 19



Variables, functions and storage

Variables represent data residing in a memory location

Compiler creates a map from variables to memory addresses

Functions represent blocks of (reusable) code

Complexities introduced by recursion

Many versions of the same local variable active at the same time

Need a way to keep track of all copies of a local x

Figure out which copy of x is referred to at any point of the execution

Scope and lifetime of variables

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 2 / 19



Scope

Consider the following program
block

{

int x = 2;

int y = 4;

{

int y = 3;

x = x+2; y = x+y;

print(x,y);

}

x = x+2; y = x+y;

print(x,y);

}

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 3 / 19



Scope

Consider the following program
block

{

int x = 2;

int y = 4;

{

int y = 3;

x = x+2; y = x+y;

print(x,y);

}

x = x+2; y = x+y;

print(x,y);

}

Outer y is hidden.

Updated y value is not propagated outside

4, 7

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 3 / 19

Sophies



Scope

Consider the following program
block

{

int x = 2;

int y = 4;

{

int y = 3;

x = x+2; y = x+y;

print(x,y);

}

x = x+2; y = x+y;

print(x,y);

}

Outer y is hidden.

Updated y value is not propagated outside

4, 7

Outer y value and updated x value

6, 10

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 3 / 19



Scope and Lifetime

Scope – Region of text in which a declaration is visible

Lifetime – Duration, at run-time, that a memory location is allocated for a specific
declaration

Consider the example below

Scope of outer x is the two outer blocks

Scope of the inner x is the innermost block

Lifetime of inner x is the time during which
innermost block is active

Lifetime of outer x is the time during which
outermost block is active (includes the lifetime of
inner x)

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 4 / 19



Scope and Lifetime

Scope – Region of text in which a declaration is visible

Lifetime – Duration, at run-time, that a memory location is allocated for a specific
declaration

Consider the example below

Scope of outer x is the two outer blocks

Scope of the inner x is the innermost block

Lifetime of inner x is the time during which
innermost block is active

Lifetime of outer x is the time during which
outermost block is active (includes the lifetime of
inner x)

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 4 / 19



Scope and Lifetime

Scope – Region of text in which a declaration is visible

Lifetime – Duration, at run-time, that a memory location is allocated for a specific
declaration

Consider the example below

{ int x = ...;

{ int y = ...;

{ int x = ...;

...

}

}

}

Scope of outer x is the two outer blocks

Scope of the inner x is the innermost block

Lifetime of inner x is the time during which
innermost block is active

Lifetime of outer x is the time during which
outermost block is active (includes the lifetime of
inner x)

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 4 / 19



Scope and Lifetime

Scope – Region of text in which a declaration is visible

Lifetime – Duration, at run-time, that a memory location is allocated for a specific
declaration

Consider the example below

{ int x = ...;

{ int y = ...;

{ int x = ...;

...

}

}

}

Scope of outer x is the two outer blocks

Scope of the inner x is the innermost block

Lifetime of inner x is the time during which
innermost block is active

Lifetime of outer x is the time during which
outermost block is active (includes the lifetime of
inner x)

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 4 / 19



Scope and Lifetime

Scope – Region of text in which a declaration is visible

Lifetime – Duration, at run-time, that a memory location is allocated for a specific
declaration

Consider the example below

{ int x = ...;

{ int y = ...;

{ int x = ...;

...

}

}

}

Scope of outer x is the two outer blocks

Scope of the inner x is the innermost block

Lifetime of inner x is the time during which
innermost block is active

Lifetime of outer x is the time during which
outermost block is active (includes the lifetime of
inner x)

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 4 / 19

↳o



Scope and Lifetime

Scope – Region of text in which a declaration is visible

Lifetime – Duration, at run-time, that a memory location is allocated for a specific
declaration

Consider the example below

{ int x = ...;

{ int y = ...;

{ int x = ...;

...

}

}

}

Scope of outer x is the two outer blocks

Scope of the inner x is the innermost block

Lifetime of inner x is the time during which
innermost block is active

Lifetime of outer x is the time during which
outermost block is active (includes the lifetime of
inner x)

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 4 / 19



Scope and Lifetime

Scope – Region of text in which a declaration is visible

Lifetime – Duration, at run-time, that a memory location is allocated for a specific
declaration

Consider the example below

{ int x = ...;

{ int y = ...;

{ int x = ...;

...

}

}

}

Scope of outer x is the two outer blocks

Scope of the inner x is the innermost block

Lifetime of inner x is the time during which
innermost block is active

Lifetime of outer x is the time during which
outermost block is active (includes the lifetime of
inner x)

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 4 / 19



static variables

Recall that static variables are associated with a class as a whole

Do not require instantiation of objects

The static variable howManyAs counts the
number of instances of A created

Lifetime of howManyAs spans the execution of
the entire program

Scope of howManyAs is limited to the class A

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 5 / 19



static variables

Recall that static variables are associated with a class as a whole

Do not require instantiation of objects

public class A {

static int howManyAs = 0;

int id;

public A(int id) {

howManyAs += 1;

this.id = id;

}

}

The static variable howManyAs counts the
number of instances of A created

Lifetime of howManyAs spans the execution of
the entire program

Scope of howManyAs is limited to the class A

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 5 / 19



static variables

Recall that static variables are associated with a class as a whole

Do not require instantiation of objects

public class A {

static int howManyAs = 0;

int id;

public A(int id) {

howManyAs += 1;

this.id = id;

}

}

The static variable howManyAs counts the
number of instances of A created

Lifetime of howManyAs spans the execution of
the entire program

Scope of howManyAs is limited to the class A

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 5 / 19



static variables

Recall that static variables are associated with a class as a whole

Do not require instantiation of objects

public class A {

static int howManyAs = 0;

int id;

public A(int id) {

howManyAs += 1;

this.id = id;

}

}

The static variable howManyAs counts the
number of instances of A created

Lifetime of howManyAs spans the execution of
the entire program

Scope of howManyAs is limited to the class A

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 5 / 19



static variables

Recall that static variables are associated with a class as a whole

Do not require instantiation of objects

public class A {

static int howManyAs = 0;

int id;

public A(int id) {

howManyAs += 1;

this.id = id;

}

}

The static variable howManyAs counts the
number of instances of A created

Lifetime of howManyAs spans the execution of
the entire program

Scope of howManyAs is limited to the class A

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 5 / 19



Activation Record

For local variables and function parameters, we need to store one copy for each
function invocation (or activation)

Activation record — collection of all data related to a function invocation

Includes space for local variables, parameters, intermediate results, and some
pointers

Also called a stack frame — the reason will be clear later

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 6 / 19



Activation Record

For local variables and function parameters, we need to store one copy for each
function invocation (or activation)

Activation record — collection of all data related to a function invocation

Includes space for local variables, parameters, intermediate results, and some
pointers

Also called a stack frame — the reason will be clear later

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 6 / 19



Activation Record

For local variables and function parameters, we need to store one copy for each
function invocation (or activation)

Activation record — collection of all data related to a function invocation

Includes space for local variables, parameters, intermediate results, and some
pointers

Also called a stack frame — the reason will be clear later

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 6 / 19



Activation Record

For local variables and function parameters, we need to store one copy for each
function invocation (or activation)

Activation record — collection of all data related to a function invocation

Includes space for local variables, parameters, intermediate results, and some
pointers

Also called a stack frame — the reason will be clear later

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 6 / 19



Call graph

A call graph helps us visualize the
function calls during a program
execution

The set of active function calls at any
point of time lies on the path from the
root to the right most leaf

If f calls g, then g is completed before f

Store the activation records on a stack

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 7 / 19



Call graph

A call graph helps us visualize the
function calls during a program
execution

main

f

g

f f

f

h

f g

f g

The set of active function calls at any
point of time lies on the path from the
root to the right most leaf

If f calls g, then g is completed before f

Store the activation records on a stack

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 7 / 19

y
(



Call graph

A call graph helps us visualize the
function calls during a program
execution

main

f

g

f f

f

h

f g

f g

The set of active function calls at any
point of time lies on the path from the
root to the right most leaf

If f calls g, then g is completed before f

Store the activation records on a stack

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 7 / 19



Call graph

A call graph helps us visualize the
function calls during a program
execution

main

f

g

f f

f

h

f g

f g

The set of active function calls at any
point of time lies on the path from the
root to the right most leaf

If f calls g, then g is completed before f

Store the activation records on a stack

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 7 / 19



Call graph

A call graph helps us visualize the
function calls during a program
execution

main

f

g

f f

f

h

f g

f g

The set of active function calls at any
point of time lies on the path from the
root to the right most leaf

If f calls g, then g is completed before f

Store the activation records on a stack

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 7 / 19



Activation records on stack

main

f

g

f f

f

h

f g

f g

Assume that main has local variables a
and b, f has x and y, and g has z

Place activation records on a stack —
grows and shrinks as a program
executes

The stack evolves as follows:

main a,b a,b a,b a,b a,b

f x,y x,y x,y x,y

g z z z

f x,y

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 8 / 19

-.
db



Activation records on stack

main

f

g

f f

f

h

f g

f g

Assume that main has local variables a
and b, f has x and y, and g has z

Place activation records on a stack —
grows and shrinks as a program
executes

The stack evolves as follows:

main a,b a,b a,b a,b a,b

f x,y x,y x,y x,y

g z z z

f x,y

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 8 / 19



Activation records on stack

main

f

g

f f

f

h

f g

f g

Assume that main has local variables a
and b, f has x and y, and g has z

Place activation records on a stack —
grows and shrinks as a program
executes

The stack evolves as follows:

main a,b a,b a,b a,b a,b

f x,y x,y x,y x,y

g z z z

f x,y

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 8 / 19

M

&-



General layout of a program in memory

Code Segment

Data Segment

Stack#

Heap"

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 9 / 19



Activation record

Contains information pertaining to a function invocation

Added to the top of the stack at the start of the function invocation

Removed from the stack at the end of the function invocation

Stores parameters, local variables, temporary variables used in running the function

Various pointers — Control link, access link, return address

System-wide pointers

Program counter — address of the next instruction to execute

Stack pointer — points to the top of the system stack

Frame pointer — points to the start of the topmost frame on stack

Data in topmost frame accessed via o↵sets from the frame pointer or stack pointer —
o↵sets can computed at compile time

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 10 / 19



Activation record

Contains information pertaining to a function invocation

Added to the top of the stack at the start of the function invocation

Removed from the stack at the end of the function invocation

Stores parameters, local variables, temporary variables used in running the function

Various pointers — Control link, access link, return address

System-wide pointers

Program counter — address of the next instruction to execute

Stack pointer — points to the top of the system stack

Frame pointer — points to the start of the topmost frame on stack

Data in topmost frame accessed via o↵sets from the frame pointer or stack pointer —
o↵sets can computed at compile time

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 10 / 19



Activation record

Contains information pertaining to a function invocation

Added to the top of the stack at the start of the function invocation

Removed from the stack at the end of the function invocation

Stores parameters, local variables, temporary variables used in running the function

Various pointers — Control link, access link, return address

System-wide pointers

Program counter — address of the next instruction to execute

Stack pointer — points to the top of the system stack

Frame pointer — points to the start of the topmost frame on stack

Data in topmost frame accessed via o↵sets from the frame pointer or stack pointer —
o↵sets can computed at compile time

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 10 / 19



Activation record

Contains information pertaining to a function invocation

Added to the top of the stack at the start of the function invocation

Removed from the stack at the end of the function invocation

Stores parameters, local variables, temporary variables used in running the function

Various pointers — Control link, access link, return address

System-wide pointers

Program counter — address of the next instruction to execute

Stack pointer — points to the top of the system stack

Frame pointer — points to the start of the topmost frame on stack

Data in topmost frame accessed via o↵sets from the frame pointer or stack pointer —
o↵sets can computed at compile time

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 10 / 19



Activation record . . .

Control link Frame pointer

Access link

Return address

Return value

Parameters

Locals

Temporaries Stack pointer

Control link points to activation record
of caller

Access link is for non-local variable
access

Return address is the address of first
instruction to execute after the function
call returns

Return value stores the return value,
which should be picked up by the caller

Temporaries are locations to store
intermediate values in

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 11 / 19



Activation record . . .

Control link Frame pointer

Access link

Return address

Return value

Parameters

Locals

Temporaries Stack pointer

Control link points to activation record
of caller

Access link is for non-local variable
access

Return address is the address of first
instruction to execute after the function
call returns

Return value stores the return value,
which should be picked up by the caller

Temporaries are locations to store
intermediate values in

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 11 / 19



Activation record . . .

Control link Frame pointer

Access link

Return address

Return value

Parameters

Locals

Temporaries Stack pointer

Control link points to activation record
of caller

Access link is for non-local variable
access

Return address is the address of first
instruction to execute after the function
call returns

Return value stores the return value,
which should be picked up by the caller

Temporaries are locations to store
intermediate values in

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 11 / 19



Activation record . . .

Control link Frame pointer

Access link

Return address

Return value

Parameters

Locals

Temporaries Stack pointer

Control link points to activation record
of caller

Access link is for non-local variable
access

Return address is the address of first
instruction to execute after the function
call returns

Return value stores the return value,
which should be picked up by the caller

Temporaries are locations to store
intermediate values in

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 11 / 19



Activation record . . .

Control link Frame pointer

Access link

Return address

Return value

Parameters

Locals

Temporaries Stack pointer

Control link points to activation record
of caller

Access link is for non-local variable
access

Return address is the address of first
instruction to execute after the function
call returns

Return value stores the return value,
which should be picked up by the caller

Temporaries are locations to store
intermediate values in

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 11 / 19



Activation record . . .

Control link Frame pointer

Access link

Return address

Return value

Parameters

Locals

Temporaries Stack pointer

Control link points to activation record
of caller

Access link is for non-local variable
access

Return address is the address of first
instruction to execute after the function
call returns

Return value stores the return value,
which should be picked up by the caller

Temporaries are locations to store
intermediate values in

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 11 / 19



Access links

func f {

int x = 0;

int fib(int n) {

if n <= 1 then return n;

else {

x += 1;

return fib(n-1) + fib(n-2);

}

}

print(fib(4));

}

Count the number of additions in fib(4)

x is non-local

fib(4) is called by f, so x can be
accessed by following the control link

But fib(3) is called by fib(4), so
control link cannot be used to access x

Need a new kind of link — access link
pointing to “outer” activation record

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 12 / 19



Access links

func f {

int x = 0;

int fib(int n) {

if n <= 1 then return n;

else {

x += 1;

return fib(n-1) + fib(n-2);

}

}

print(fib(4));

}

Count the number of additions in fib(4)

x is non-local

fib(4) is called by f, so x can be
accessed by following the control link

But fib(3) is called by fib(4), so
control link cannot be used to access x

Need a new kind of link — access link
pointing to “outer” activation record

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 12 / 19



Access links

func f {

int x = 0;

int fib(int n) {

if n <= 1 then return n;

else {

x += 1;

return fib(n-1) + fib(n-2);

}

}

print(fib(4));

}

Count the number of additions in fib(4)

x is non-local

fib(4) is called by f, so x can be
accessed by following the control link

But fib(3) is called by fib(4), so
control link cannot be used to access x

Need a new kind of link — access link
pointing to “outer” activation record

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 12 / 19



Access links

func f {

int x = 0;

int fib(int n) {

if n <= 1 then return n;

else {

x += 1;

return fib(n-1) + fib(n-2);

}

}

print(fib(4));

}

Count the number of additions in fib(4)

x is non-local

fib(4) is called by f, so x can be
accessed by following the control link

But fib(3) is called by fib(4), so
control link cannot be used to access x

Need a new kind of link — access link
pointing to “outer” activation record

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 12 / 19

could

/



Access links

func f {

int x = 0;

int fib(int n) {

if n <= 1 then return n;

else {

x += 1;

return fib(n-1) + fib(n-2);

}

}

print(fib(4));

}

Count the number of additions in fib(4)

x is non-local

fib(4) is called by f, so x can be
accessed by following the control link

But fib(3) is called by fib(4), so
control link cannot be used to access x

Need a new kind of link — access link
pointing to “outer” activation record

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 12 / 19



Dynamic allocation

class A {

int x, y, z;

A(x,y,z) {

this.x = x; ...

}

public int f(int n) {

int arr[n]; ...

}

}

main {

A aObj(2,5,7);

aObj.f(100); ...

}

Functions can handle complex data types – arrays /
classes, . . .

Dynamic data structures like linked lists / graphs

No pre-specified bound on the number of elements

The activation record for main will store a pointer
(or reference) to the object aObj stored on the
heap!

aObj itself has pointers to the class definition

The AR for f has a pointer to an array stored on
heap

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 13 / 19



Dynamic allocation

class A {

int x, y, z;

A(x,y,z) {

this.x = x; ...

}

public int f(int n) {

int arr[n]; ...

}

}

main {

A aObj(2,5,7);

aObj.f(100); ...

}

Functions can handle complex data types – arrays /
classes, . . .

Dynamic data structures like linked lists / graphs

No pre-specified bound on the number of elements

The activation record for main will store a pointer
(or reference) to the object aObj stored on the
heap!

aObj itself has pointers to the class definition

The AR for f has a pointer to an array stored on
heap

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 13 / 19



Dynamic allocation

class A {

int x, y, z;

A(x,y,z) {

this.x = x; ...

}

public int f(int n) {

int arr[n]; ...

}

}

main {

A aObj(2,5,7);

aObj.f(100); ...

}

Functions can handle complex data types – arrays /
classes, . . .

Dynamic data structures like linked lists / graphs

No pre-specified bound on the number of elements

The activation record for main will store a pointer
(or reference) to the object aObj stored on the
heap!

aObj itself has pointers to the class definition

The AR for f has a pointer to an array stored on
heap

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 13 / 19





Dynamic allocation

class A {

int x, y, z;

A(x,y,z) {

this.x = x; ...

}

public int f(int n) {

int arr[n]; ...

}

}

main {

A aObj(2,5,7);

aObj.f(100); ...

}

Functions can handle complex data types – arrays /
classes, . . .

Dynamic data structures like linked lists / graphs

No pre-specified bound on the number of elements

The activation record for main will store a pointer
(or reference) to the object aObj stored on the
heap!

aObj itself has pointers to the class definition

The AR for f has a pointer to an array stored on
heap

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 13 / 19



Dynamic allocation

class A {

int x, y, z;

A(x,y,z) {

this.x = x; ...

}

public int f(int n) {

int arr[n]; ...

}

}

main {

A aObj(2,5,7);

aObj.f(100); ...

}

Functions can handle complex data types – arrays /
classes, . . .

Dynamic data structures like linked lists / graphs

No pre-specified bound on the number of elements

The activation record for main will store a pointer
(or reference) to the object aObj stored on the
heap!

aObj itself has pointers to the class definition

The AR for f has a pointer to an array stored on
heap

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 13 / 19



Heap

Heap — just a chunk of memory
Unstructured
Nothing to do with the heap data
structure used to implement priority
queues!

Typically depicted as “growing upward”
(and the stack grows downward)

Consist of chunks of allocated and
unallocated memory

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 14 / 19



Heap

Heap — just a chunk of memory
Unstructured
Nothing to do with the heap data
structure used to implement priority
queues!

Typically depicted as “growing upward”
(and the stack grows downward)

Consist of chunks of allocated and
unallocated memory

Stack#

Heap"

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 14 / 19



Heap

Heap — just a chunk of memory
Unstructured
Nothing to do with the heap data
structure used to implement priority
queues!

Typically depicted as “growing upward”
(and the stack grows downward)

Consist of chunks of allocated and
unallocated memory

Stack#

Heap"

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 14 / 19



Stack and heap

...

aObjmain

n = 100f

arr

Stack

x = 2

y = 5

z = 7

class

aO
bj

A(...)

f(...)

A
’s
ta
bl
e

100 integers

constructor

code for f

Code segment

Heap

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 15 / 19



Overriding, inheritance etc.

Table for each class has a pointer to
table for superclass

Overloaded function

Find its pointer in the table for the
class

Otherwise look at parent’s table

Might need to follow a chain of pointers
to determine the code to run on a
method call

Runtime polymorphism has a simple
implementation

Consider an array of Shape, each
element being an instance of a subclass

Elements of the array are pointers to
objects

The object data has a pointer to the
precise subclass it is an instance of!

Calling perimeter on each element of
the array runs the code pointed to by
the appropriate subclass table

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 16 / 19



Overriding, inheritance etc.

Table for each class has a pointer to
table for superclass

Overloaded function

Find its pointer in the table for the
class

Otherwise look at parent’s table

Might need to follow a chain of pointers
to determine the code to run on a
method call

Runtime polymorphism has a simple
implementation

Consider an array of Shape, each
element being an instance of a subclass

Elements of the array are pointers to
objects

The object data has a pointer to the
precise subclass it is an instance of!

Calling perimeter on each element of
the array runs the code pointed to by
the appropriate subclass table

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 16 / 19



Overriding, inheritance etc.

Table for each class has a pointer to
table for superclass

Overloaded function

Find its pointer in the table for the
class

Otherwise look at parent’s table

Might need to follow a chain of pointers
to determine the code to run on a
method call

Runtime polymorphism has a simple
implementation

Consider an array of Shape, each
element being an instance of a subclass

Elements of the array are pointers to
objects

The object data has a pointer to the
precise subclass it is an instance of!

Calling perimeter on each element of
the array runs the code pointed to by
the appropriate subclass table

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 16 / 19



Overriding, inheritance etc.

Table for each class has a pointer to
table for superclass

Overloaded function

Find its pointer in the table for the
class

Otherwise look at parent’s table

Might need to follow a chain of pointers
to determine the code to run on a
method call

Runtime polymorphism has a simple
implementation

Consider an array of Shape, each
element being an instance of a subclass

Elements of the array are pointers to
objects

The object data has a pointer to the
precise subclass it is an instance of!

Calling perimeter on each element of
the array runs the code pointed to by
the appropriate subclass table

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 16 / 19



Overriding, inheritance etc.

Table for each class has a pointer to
table for superclass

Overloaded function

Find its pointer in the table for the
class

Otherwise look at parent’s table

Might need to follow a chain of pointers
to determine the code to run on a
method call

Runtime polymorphism has a simple
implementation

Consider an array of Shape, each
element being an instance of a subclass

Elements of the array are pointers to
objects

The object data has a pointer to the
precise subclass it is an instance of!

Calling perimeter on each element of
the array runs the code pointed to by
the appropriate subclass table

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 16 / 19



Overriding, inheritance etc.

Table for each class has a pointer to
table for superclass

Overloaded function

Find its pointer in the table for the
class

Otherwise look at parent’s table

Might need to follow a chain of pointers
to determine the code to run on a
method call

Runtime polymorphism has a simple
implementation

Consider an array of Shape, each
element being an instance of a subclass

Elements of the array are pointers to
objects

The object data has a pointer to the
precise subclass it is an instance of!

Calling perimeter on each element of
the array runs the code pointed to by
the appropriate subclass table

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 16 / 19



Overriding, inheritance etc.

Table for each class has a pointer to
table for superclass

Overloaded function

Find its pointer in the table for the
class

Otherwise look at parent’s table

Might need to follow a chain of pointers
to determine the code to run on a
method call

Runtime polymorphism has a simple
implementation

Consider an array of Shape, each
element being an instance of a subclass

Elements of the array are pointers to
objects

The object data has a pointer to the
precise subclass it is an instance of!

Calling perimeter on each element of
the array runs the code pointed to by
the appropriate subclass table

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 16 / 19



Overriding, inheritance etc.

Table for each class has a pointer to
table for superclass

Overloaded function

Find its pointer in the table for the
class

Otherwise look at parent’s table

Might need to follow a chain of pointers
to determine the code to run on a
method call

Runtime polymorphism has a simple
implementation

Consider an array of Shape, each
element being an instance of a subclass

Elements of the array are pointers to
objects

The object data has a pointer to the
precise subclass it is an instance of!

Calling perimeter on each element of
the array runs the code pointed to by
the appropriate subclass table

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 16 / 19



Overriding, inheritance etc.

Table for each class has a pointer to
table for superclass

Overloaded function

Find its pointer in the table for the
class

Otherwise look at parent’s table

Might need to follow a chain of pointers
to determine the code to run on a
method call

Runtime polymorphism has a simple
implementation

Consider an array of Shape, each
element being an instance of a subclass

Elements of the array are pointers to
objects

The object data has a pointer to the
precise subclass it is an instance of!

Calling perimeter on each element of
the array runs the code pointed to by
the appropriate subclass table

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 16 / 19



Overriding, inheritance etc.

Table for each class has a pointer to
table for superclass

Overloaded function

Find its pointer in the table for the
class

Otherwise look at parent’s table

Might need to follow a chain of pointers
to determine the code to run on a
method call

Runtime polymorphism has a simple
implementation

Consider an array of Shape, each
element being an instance of a subclass

Elements of the array are pointers to
objects

The object data has a pointer to the
precise subclass it is an instance of!

Calling perimeter on each element of
the array runs the code pointed to by
the appropriate subclass table

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 16 / 19



Heaps and memory management

As functions are called, they allocate data on the heap

At the end of the function, the allocated data on heap might not be needed

Some data might be inaccessible from stack!

All computation and reference to data starts from the stack, but the data itself
might be in heap

Allocated data might no longer have a reference from the stack (direct or indirect)

This is called garbage – waste of memory

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 17 / 19



Heaps and memory management

As functions are called, they allocate data on the heap

At the end of the function, the allocated data on heap might not be needed

Some data might be inaccessible from stack!

All computation and reference to data starts from the stack, but the data itself
might be in heap

Allocated data might no longer have a reference from the stack (direct or indirect)

This is called garbage – waste of memory

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 17 / 19



Heaps and memory management

As functions are called, they allocate data on the heap

At the end of the function, the allocated data on heap might not be needed

Some data might be inaccessible from stack!

All computation and reference to data starts from the stack, but the data itself
might be in heap

Allocated data might no longer have a reference from the stack (direct or indirect)

This is called garbage – waste of memory

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 17 / 19



Heaps and memory management

As functions are called, they allocate data on the heap

At the end of the function, the allocated data on heap might not be needed

Some data might be inaccessible from stack!

All computation and reference to data starts from the stack, but the data itself
might be in heap

Allocated data might no longer have a reference from the stack (direct or indirect)

This is called garbage – waste of memory

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 17 / 19



Heaps and memory management

As functions are called, they allocate data on the heap

At the end of the function, the allocated data on heap might not be needed

Some data might be inaccessible from stack!

All computation and reference to data starts from the stack, but the data itself
might be in heap

Allocated data might no longer have a reference from the stack (direct or indirect)

This is called garbage – waste of memory

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 17 / 19



Heaps and memory management

As functions are called, they allocate data on the heap

At the end of the function, the allocated data on heap might not be needed

Some data might be inaccessible from stack!

All computation and reference to data starts from the stack, but the data itself
might be in heap

Allocated data might no longer have a reference from the stack (direct or indirect)

This is called garbage – waste of memory

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 17 / 19



Explicit memory management

Older languages expect programmer to manage memory

malloc / free in C, new / delete in C++

free / delete tells the system to take back ownership of memory locations from
the program – deallocation

Can cause the problem of dangling pointers – pointers to deallocated variables

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 18 / 19



Explicit memory management

Older languages expect programmer to manage memory

malloc / free in C, new / delete in C++

free / delete tells the system to take back ownership of memory locations from
the program – deallocation

Can cause the problem of dangling pointers – pointers to deallocated variables

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 18 / 19



Explicit memory management

Older languages expect programmer to manage memory

malloc / free in C, new / delete in C++

free / delete tells the system to take back ownership of memory locations from
the program – deallocation

Can cause the problem of dangling pointers – pointers to deallocated variables

int *x = malloc(sizeof(int));

*x = 10;

y = x;

free(x);

...

x

y

Stack

10

freed!

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 18 / 19



Garbage

Dangling pointers are a serious problem!

Accessing a deallocated location could give arbitrary results

Huge security risk!

Garbage is not so serious, but wastes resources!

Can happen even with explicit deallocation

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 19 / 19



Garbage

Dangling pointers are a serious problem!

Accessing a deallocated location could give arbitrary results

Huge security risk!

Garbage is not so serious, but wastes resources!

Can happen even with explicit deallocation

int *x = malloc(sizeof(int));

*x = 10;

x = NULL;

...

x = 0x0...0

Stack

10

inaccessible!

Madhavan Mukund/S P Suresh Storage allocation PLC, Lecture 8, 01 Feb 2024 19 / 19


