
PLC : Lambda Calculus Assignment

Set: April 25, 2024
Due: May 3, 2024, 23.55

General instructions:

1. Submit your solutions as a PDF. The file should be named <un>.pdf, where un is your
username. You can either write on paper and scan as PDF, or write in an iPad / notebook
and export to PDF.

2. Properly parenthesize your lambda expressions and use spacing to keep it readable.

3. Recall that the Church encoding of n, denoted ‹n›, is the expression λfx · fnx, where for any
λ-terms P and Q, P0Q is defined to be just Q, and P i+1Q := P (P iQ).

1 Untyped lambda calculus

1. Let ‹exp› := λpq f x · pq f x. Assuming that 00 = 1, prove that for allm,n ⩾ 0,
‹exp› ‹m› ‹n› ∗−−→β ‹nm›.

Hint: Prove the following claims in order:

(a) For all i ⩾ 0, for all λ-terms P and Q, P i+1Q = P i (PQ).
(b) For all k, l ⩾ 0 and for all λ-terms P and Q, (‹k›P) lQ ∗−−→β PklQ.
(c) For all n,m ⩾ 0 and for all λ-terms P and Q, ‹n›m PQ ∗−−→β Pnm Q.
(d) Conclude therefore that ‹exp› ‹m› ‹n› ∗−−→β ‹nm›.

2. Recall that a redex is any λ-expression of the form (λx ·M)N. A normal term is one which
does not contain a redex (as a subexpression). Prove that every normal term M is of the
form λx1 x2 . . . xk · yM1M2 . . .Ml, where k, l ⩾ 0, y is a variable, and M1, . . . ,Ml are normal
terms. (Note that when k = 0, the expression is just yM1M2 . . .Ml, and when l = 0, the
expression is just λx1 x2 . . . xk · y. Of course, when k = l = 0, the expression is just y.)

3. Find a λ-term that encodes the predecessor function pred defined as follows:

pred(0) := 0
pred(n+ 1) := n

1

4. Find a λ-term that encodes themaximum functionmax defined as follows:

max(m,n) :=

(
m ifm ⩾ n
n otherwise

5. Find a λ-termM such that for all λ-terms F,G and H,

MFGH ∗−−→ FH (M (GH)).

Hint: Recall that for any term K, if we defineM := (λx ·K (xx)) (λx ·K (xx)), thenM −−→ KM.
Find an appropriate K and use this fact.

2 Typed lambda calculus

1. Give themost general types for the following λ-terms. Show the steps of applying the type
inference algorithm presented in class to arrive at the type.

(a) λf x · f x
(b) λf x · f (f x)
(c) λxy z · xy z
(d) λxy z · x (y z)
(e) λxy · x (λz · z y)

2. Recall from class that we define ‹int› := (p→ p)→ (p→ p) for a fixed type variable p. We
also showed in class that for all n ⩾ 0, we can derive the typing judgement ⊢ ‹n› : ‹int›.
Recall the encodings for the successor function, addition, and multiplication:

‹succ› := λmfx · f (mfx)
‹plus› := λmnfx ·mf (n f x)
‹mult› := λmnfx ·m (n f)x

Derive the following typing judgements:

(a) ⊢ ‹succ› : ‹int›→ ‹int›

(b) ⊢ ‹plus› : ‹int›→ ‹int›→ ‹int›

(c) ⊢ ‹mult› : ‹int›→ ‹int›→ ‹int›

2

	Untyped lambda calculus
	Typed lambda calculus

