PLC : Lambda Calculus Assignment

Set: April 25, 2024

Due: May 3, 2024, 23.55

General instructions:

1. Submit your solutions as a PDF. The file should be named <un>.pdf, where un is your username. You can either write on paper and scan as PDF, or write in an iPad / notebook and export to PDF.
2. Properly parenthesize your lambda expressions and use spacing to keep it readable.
3. Recall that the Church encoding of n, denoted $\langle n\rangle$, is the expression $\lambda f x \cdot f^{n} x$, where for any λ-terms P and $Q, P^{0} Q$ is defined to be just Q, and $P^{i+1} Q:=P\left(P^{i} Q\right)$.

1 Untyped lambda calculus

1. Let $\langle e x p\rangle:=\lambda p q f x \cdot p q f x$. Assuming that $0^{0}=1$, prove that for all $m, n \geqslant 0$,

$$
\langle\exp \rangle\langle m\rangle\langle n\rangle \xrightarrow{*} \beta\left\langle n^{m}\right\rangle .
$$

Hint: Prove the following claims in order:
(a) For all $i \geqslant 0$, for all λ-terms P and $Q, P^{i+1} Q=P^{i}(P Q)$.
(b) For all $k, l \geqslant 0$ and for all λ-terms P and $Q,(<k>P)^{l} Q \xrightarrow{*}{ }_{\beta} P^{k l} Q$.
(c) For all $n, m \geqslant 0$ and for all λ-terms P and $Q,\langle n\rangle{ }^{m} P Q \xrightarrow{*}{ }_{\beta} P{n^{m}} Q$.
(d) Conclude therefore that $\langle\exp \rangle\langle m\rangle\langle n\rangle \xrightarrow{*} \beta\left\langle n^{m}\right\rangle$.
2. Recall that a redex is any λ-expression of the form $(\lambda x \cdot M) N$. A normal term is one which does not contain a redex (as a subexpression). Prove that every normal term M is of the form $\lambda x_{1} x_{2} \ldots x_{k} \cdot y M_{1} M_{2} \ldots M_{l}$, where $k, l \geqslant 0, y$ is a variable, and M_{1}, \ldots, M_{l} are normal terms. (Note that when $k=0$, the expression is just $y M_{1} M_{2} \ldots M_{l}$, and when $l=0$, the expression is just $\lambda x_{1} x_{2} \ldots x_{k} \cdot y$. Of course, when $k=l=0$, the expression is just y.)
3. Find a λ-term that encodes the predecessor function pred defined as follows:

$$
\begin{array}{r}
\operatorname{pred}(0):=0 \\
\operatorname{pred}(n+1):=n
\end{array}
$$

4. Find a λ-term that encodes the maximum function max defined as follows:

$$
\max (m, n):= \begin{cases}m & \text { if } m \geqslant n \\ n & \text { otherwise }\end{cases}
$$

5. Find a λ-term M such that for all λ-terms F, G and H,

$$
M F G H \xrightarrow{*} F H(M(G H)) .
$$

Hint: Recall that for any term K, if we define $M:=(\lambda x \cdot K(x x))(\lambda x \cdot K(x x))$, then $M \longrightarrow K M$. Find an appropriate K and use this fact.

2 Typed lambda calculus

1. Give the most general types for the following λ-terms. Show the steps of applying the type inference algorithm presented in class to arrive at the type.
(a) $\lambda f x \cdot f x$
(b) $\lambda f x \cdot f(f x)$
(c) $\lambda x y z \cdot x y z$
(d) $\lambda x y z \cdot x(y z)$
(e) $\lambda x y \cdot x(\lambda z \cdot z y)$
2. Recall from class that we define <int> $:=(p \rightarrow p) \rightarrow(p \rightarrow p)$ for a fixed type variable p. We also showed in class that for all $n \geqslant 0$, we can derive the typing judgement \vdash < $n>$: <int>. Recall the encodings for the successor function, addition, and multiplication:

$$
\begin{aligned}
\langle s u c c\rangle & :=\lambda m f x \cdot f(m f x) \\
\langle p l u s\rangle & :=\lambda m n f x \cdot m f(n f x) \\
\langle m u l t\rangle & :=\lambda m n f x \cdot m(n f) x
\end{aligned}
$$

Derive the following typing judgements:
(a) \vdash <succ> : <int> \rightarrow <int>
(b) \vdash <plus> : <int> \rightarrow <int> \rightarrow <int>
(c) \vdash <mult> : <int> \rightarrow <int> \rightarrow <int>

