
Introduction to the notation of λ-calculus
(Lecture Notes)

Gérard Boudol, INRIA, Sophia-Antipolis

(Translated and typeset by Madhavan Mukund)

1 Functional expressions: Application

The λ-calculus is a calculus of functions (the main goal of this course is to justify this
assertion), and, moreover, a notation for functions.

What is a function? In set theory, it is a graph—that is, a (total) functional part of
a Cartesian product. The notation

f : A→ B

or f ∈ BA stands for the fact that f ⊆ A × B and ∀x∃!y. (x, y) ∈ f . From the point
of view of programming, or more generally of computation, this definition does not say
much. More interesting is the notion of function in the usual sense of mathematics—a
computational procedure which permits us to calculate an answer when provided with
some arguments. For example, we write

f : x 7→ (x2 + x)2

or, more generally,

f : x 7→ E or, for instance, f(x) = E

where E is an expression consisting of some operations, some constants and some variables
(on which the function depends — x in our example).

This notion of function is vague: to make it more precise, we need to specify what
we mean by expressions—what are the “basic building blocks” from which we construct
expressions and what are the rules for putting them together?

We will introduce the notation of λ-calculus by addressing the following question: how
can we write expressions which describe computational procedures in a suitably general
manner?

At first sight, there do not appear to be any general rules — what is common to the
following expressions?

√
1− x2
x3 + 1

∫ 2π

0

∫ ∞
0

e−r
2

r dr dθ

(
x− λ 1

0 x− λ

)
or, for instance,

1

|x| =
{
x if x ≥ 0
−x otherwise

In fact, the set theoretic definition of a function suggests a uniform way of construct-
ing expressions, by applying a function f to its arguments x1, x2, . . . , xk, written as
f(x1, x2, . . . , xk). For example, the expressions (x2 + x)2 should be written thus, using
the functions plus(x, y) = x+ y and exp(x, y) = yx:

exp(2, plus(exp(2, x), x))

If we assume that we know the number of arguments required by the basic functions, we
can get rid of parentheses and commas and write:

exp 2 plus exp 2 x x

The reason why we do not systematically use this notation is that it rapidly becomes
unreadable—except by a machine. In addition, in some cases this notation can be am-
biguous: if f and g are two functions of one argument, fgx can be read as either f(g(x))
if g : A → B and f : B → C, or as f(g)(x) if g : A → B and f : BA → DC . We do not
take into account the domains of definition and the values of functions, because we want
to deal with functions which can be understood without referring to their arguments, like
the identity function ι(x) = x, or the constant function ka(x) = a associated with an
object a.

An early step towards the notation of λ-calculus was taken by Schönfinkel (1924):
“we denote the value of a function f for the argument x by simple juxtaposition of the
signs for the function and the argument, that is fx”. Note that we immediately have to
take some precautions with this notation: if we wish to write correctly the function which
we normally denote by f(g(x)), we are forced to use several parentheses. The notation
for applying a function f to its argument x is formally (fx), but we are allowed to omit
superfluous external parentheses. This permits us to denote the preceding expression by
f(gx).

Schönfinkel further noted that we can use this notation for functions of more than
one argument. Thus, f(x1, x2, . . . , xk) becomes

(· · · ((fx1)x2) · · ·xk).

Since this notation is rather heavy, Schönfinkel proposed a convention by which (· · · ((fx1)x2) · · ·xk)
is abridged as

fx1x2 · · ·xk.

For instance, we write plus x y instead of the more formal (plus x)y for the function
plus(x, y). This means that we consider the function plus of two variables as a function
of one variable, whose output is itself a function of one variable. For example, plus 2 is
the function which adds 2, which becomes clear if we write (plus 2)n = 2 + n. This is a
general phenomenon: any function

f : A×B → C

can be transformed into a function

f ∗ : A→ CB

2

where, for each a ∈ A, the function f ∗(a) is defined (using normal mathematical notation
this time) as f ∗(a)(b) = f(a, b).

Note that by writing (fx)y the notion of “number of arguments” of a function
disappears—more precisely, every function is a function of one argument. Moreover,
as we have seen, a function can very well be an argument to another function. For ex-
ample, in accordance with the “uniform” functional notation that we have adopted, we
should denote the transformation f 7→ f ∗ by the form (∗f). (This transformation is know
as “currying” but is in fact due to Schönfinkel and was actually known even earlier, to
Frege, for example.)

Recall that a function which takes other functions as arguments, like ∗, is called a
functional. The λ-calculus notation (fx) has the advantage of making more “symmetric”
the role of the function and the argument, and thus removing the distinction, to some
extent, between the two.

It is time to define more formally the syntax which we have discussed for functional
expressions. Assume that we have an arbitrarily large set X of variables, whose elements
are denoted by lower case letters such as f , g, . . . , x, y, z, . . . and a set F of func-
tional symbols (among which are, for example, plus and exp). The functional expressions
(or, more precisely, the applicative expressions) which we consider are generated by the
following grammar:

E ::= x | f | (EE)

where x is an arbitrary variable and f is an arbitrary functional symbol. In other words,
applicative expressions are the sequences of symbols obtained from the following rules:

(i) Every variable x and every functional symbol f is an applicative expression.

(ii) If E0 and E1 are applicative expressions, so is (E0E1), the application of E0 to E1.

Recall the conventions adopted so far: we can omit external parentheses in an expression—
that is, we can write E0E1 for (E0E1). Further, E0E1E2 · · ·Ek should be understood as
(· · · ((E0E1)E2) · · ·Ek). For instance, exp(plus 2) and (exp plus)2, as also plus xyz and
2(plusx), are expressions.

Question: What is the meaning of these expressions?

This syntax for applicative expressions may appear rather weak (what interesting
things can we do with these expressions?). It may even appear suspect (does the ex-
pression 2(plus x) have any meaning?) In fact, if we are also given the power to define
functions with these expressions, we find that we already have a very rich game on our
hands. Suppose, for instance, that f and g are functions and x is a variable. We define
the operation, or more precisely the functional, B by:

Bfgx =def f(gx)

It is clear that Bfg is the composition of the functions f and g, normally denoted by
f ◦ g. Now, we can define the powers of a function f—that is

fn = f ◦ · · · ◦ f︸ ︷︷ ︸
n times

3

More formally, we begin with the identity function I, defined by Ix =def x. We then
have:

f 0 =def I
fn+1 =def Bffn

We have, for example f 0x = x and

fn+1x = (Bffn)x = f(fnx)

Exercise 1.1: Using the preceding definition for fn, show that

fnx = f(· · · (f︸ ︷︷ ︸x) · · ·)
n times

From this, show that fn(fmx) = fn+mx and (fn)mx = fnmx.

All this suggests that we can do some arithmetic, as follows: for each integer n, define
a functional kn which iterates n times the function which it is supplied as an argument:
knfx = fnx. The definition of these functionals is as follows:

k0fx =def x
kn+1fx =def Bf(knf)x

Exercise 1.2: Verify that k1fx = fx, k2fx = f(fx), etc.

We can now give meaning to the problematic expression which we encountered earlier—
2(plus x)—if we understand this to be k2(plus x). In effect, we have

(k2(plus x))y = (plus x)((plus x)y)

which we can read as 2x + y. Regarding the expressions kn as “the integers”, we can
ask if we know how to define “multiplication”—that is, a function(al) mult such that
mult knkm = knm. More precisely, we want

mult kn kmfx = knmfx

Keeping in mind the fact that knfx = fnx and (fn)mx = fnmx, whereby knmfx =
(km(knf))x, we should have

mult kn kmfx = (kn(kmf))x

Replacing the parameters kn and km by the variables p and q in this equation, we have:

mult pqfx =def q(pf)x

Furthermore

mult knkmfx = (km(knf))x
= (knf)mx
= (fn)mx
= fnmx = knmfx

Observe that in the reasoning we have followed, we have implicitly used two principles:

4

(i) When given a definition X =def E, we can replace X by E in all contexts.

(ii) When we have F = E, we can replace F ′ by E ′ in all contexts, where F ′ and E ′

are expressions obtained by replacing in F and E respectively a variable x by an
expression X.

Continuing with the idea of doing a little arithmetic, it is also easy to see how to
define a functional “successor”, such that succ kn = kn+1—more precisely, succ knfx =
kn+1fx = f(knfx). It is sufficient to write:

succ pfx =def f(pfx)

Similarly, since

kn+mfx = fn+mx
= fn(fmx) = knf(kmfx)

we can, by replacing the parameters kn and km with variables p and q in this equation,
define “addition” by:

plus pqfx =def pf(qfx)

Exercise 1.3: Verify that plus k1knfx = succ knfx.

Exponentiation is even easier: define exp pq = (pq) (by which we observe that application
is not a “product” but actually an exponential).

We thus begin to see that the simple notion of applying one expression to another is
a much richer concept than we could have ever imagined. Let us now look at another
example: suppose we wish to define a “conditional branch” which allows function defi-
nitions like if B then X else Y . We will write this as a function cond which takes three
arguments, B, X and Y . We want this function to satisfy

cond BXY =

{
X if B is “true”
Y if B is “false”

The idea is the following. We define

cond bxy =def bxy

so that it only remains to find representations for “true” and “false” such that “true”
applied to X and then Y is X while “false” applied to X and then Y is Y . The solution
is obvious: for “true” we write

Txy =def x

while

Fxy =def y

It is conventional to use the symbol K rather than T, because this symbol brings to mind
the idea of a constant function, which does not depend on its argument—this becomes
clearer if one writes the previous equation for T in the form (Ka)x = a, where Ka is the
constant function which always yields the value a.

5

Thus, the simple notion of expression constructed using variables and application is
in fact very rich—one can, in fact, do away with functional symbols f ∈ F and still have
an interesting calculus. Often, we have also used the facility of defining the value of an
expression in terms of the result of applying it to other expressions, like B fgx =def f(gx).
Actually, this facility should not be used indiscriminately, as it can lead to paradoxes. For
example, nothing prevents us from defining a functional ϕ which, applied to any function
f , gives the following result:

ϕf =def

{
k0 if ff 6= k0
k1 otherwise

(This example is due to A. Meyer.) We thus have ϕf 6= ff , and, in particular, ϕϕ 6= ϕϕ.
We thus find ourselves forced to either abandon (or restrict) the ability to apply any
expression to any other or to abandon (or restrict) the facility to define expressions in
terms of functions of other expressions. We shall see that the real problem comes from the
ability to write inequations such as ff 6= k0. In what follows, we shall restrict ourselves
to the following method of defining functions: we can define a function f by one (and
only one) equation

f x1 · · ·xn =def E

where E is an applicative expression which does not contain any variables other than
x1, . . . , xn. This definition mechanism is just a means of abbreviation—in all contexts,
we are allowed to replace f X1 · · ·Xn by E ′, where E ′ is obtained from E by replacing
each variable xi by the corresponding argument Xi. The resulting calculus is essentially
the combinatory logic of Curry.

2 Functional expressions: Abstraction

The second step towards the notation of λ-calculus consists of simplifying the definition
mechanism which we have just described. To introduce this simplification, let us return
to the notion of a function as a computational procedure. When we write f : x 7→ E
or f(x) = E, it is understood that the expression E is a “function of x” such as, for
example, E = (x2 + x)2. At the same time, the formal expressions which we have
been writing till now were made up of variables and applications (and also eventually of
predefined functional symbols) and we have assumed when writing f x1 · · ·xn =def E that
the expression E is a “function of x1, . . . , xn”.

What Church proposed with the λ-calculus was to make explicit the fact that an
expression E is a function of x. More precisely, the λ-calculus provides a notation for
designating the function of x represented by the expression E—that is, precisely the
function f in f : x 7→ E. This notation is λxE, which we are supposed to read as “the
function of x represented by the expression E”. This gives us a new way of forming
expressions: if x is a variable and E an expression, then λxE is an expression, which
we call the abstraction of x in E. For clarity, this is often written as λx.E, though the
dot is not necessary. This expression is also written sometimes as (λxM)—for example,
consider the expression (λxM)N—because writing λxMN leads to some confusion. In a
certain sense, which will be eventually be made formal, if f = λxE, the application of f
to x is just E—-that is, (λxE)x = E.

6

This notation will allow us to greatly abdridge the definitions we have seen earlier. The
principle is the following: the expression Xx =def E can be transformed into X =def λxE,
using the idea that fx = E if f = λxE. For instance, the identity function, which was
defined as Ix =def x, can now be defined directly as:

I =def λxx

This is the “function of x whose value is x”. At the same time, the definition Bfgx =def

f(gx) can be transformed into Bfg =def λx.f(gx). But nothing forces us to stop here:
we can continue in this vein and obtain Bf =def λgλx.f(gx). Eventually, we obtain:

B =def λfλgλx.f(gx)

Here, again, we can read B as the “function of f , g and x whose value is f(gx)”. In the
same way, for the “integers”:

k0 =def λfλx.x
kn+1 =def λfλx.Bf(knf)x

Let us introduce an abbreviation to economize on symbols: a sequence of abstractions
such as λx1λx2 · · ·λxkE will be denoted by λx1x2 . . . xk.E, and thus a defining equation
of the form fx1 · · · xn =def E can be transformed into f =def λx1 · · ·xn.E. Thus, we can
redefine the functions we have defined earlier on the “integers” as follows:

mult =def λpqfx.q(pf)x
succ =def λpfx.f(pfx)
plus =def λpqfx.pf(qfx)
exp =def λpq.(pq)

and, in the same vein,

cond =def λbxy.bxy
K =def λxy.x(= T)
F =def λxy.y

The terms K and F are selectors , which select one or the other of their two arguments.
We can now officially introduce the syntax of the pure λ-calculus—pure in the sense

that we dispense with predefined function symbols. The terms of the λ-calculus are given
the following grammar:

M ::= x | λxM | (MM)

Normally, λ-terms are denote by capital letters such as M , N , P , R, . . .
The question which we have to address now is how to compute with our new expres-

sions λxM . For instance, how do we show that IX = X or that BFGX = F (GX)? To
approach this question, let us look one last time at the example f(x) = (x2 +x)2 and see
how to calculate f(2), for instance:

f(2) = (22 + 2)2

= (4 + 2)2

= 62 = 36

If we examine the first step in the computation, we observer that computing f(2) consists,
in the first place, of replacing the formal parameter x by 2 in the expression of the

7

function, here (x2 + x)2. This is what we will do in the λ-calculus as well: when we
apply a function f = λxE to an argument X, we begin by substituting X for x in the
expression E of the function. And, in truth, the λ-calculus “stops right there”—except
for iterating this process. In other words, the only mechanism of calculation that we use
will be that of replacing the application of a function to its argument—that is, a term of
the form (λxM)N—by the result of substituting the argument N for the parameter x in
the expression M of the function. Thus, for instance:

I X =def (λx.x)X = X
B FGX =def (λfgx.f(gx))FGX = (λgx.F (gx))GX

= (λx.F (Gx))X
= F (GX)

In the same way
k0fx =def (λfx.x)fx = (λx.x)x = x

Notice that we do not permit the replacement of a function symbol by its definition as a
computation step. If we wish to compute an expression M which contains a functional f
defined as f =def N , where N is a λ-term, we treat f as a variable and compute instead
the value of (λf.M)N .

Let us denote by M [N/x] the result of substituting N for x in M . The “fundamental
law” of the λ-calculus is that we can replace, in all contexts, a term of the form (λxM)N ,
which is called a radical , by M [N/x]. This is expressed by the equation

(β) (λx.M)N = M [N/x]

Note that a special case of this equation is (λxM)x = M , which agrees with what we
have proposed earlier. The congruence generated by this equation is called β-conversion—
that is, the smallest equivalence relation which is compatible with the two construction
rules for terms, application and abstraction, which contains (β). This congruence is de-
noted M =β N . By definition, if M =β N we can replace M by N in any context.
To be completely formal, we can say that β-conversion is characterized by the following
properties:

(λx.M)N =β M [N/x]
M =β M

M =β N ⇒ N =β M
M =β N and N =β R ⇒ M =β R

M =β N ⇒ λxM =β λxN
M =β M

′ and N =β N
′ ⇒ (MN) =β (M ′N ′)

For instance, since, as we have seen, k0 fx =β x, we have:

Bf(k0f)x =β f(k0fx)
=β fx

From this, we can conclude that

k1 =β λfx.fx

In the same way, we compute k2:

8

k2 = λfx.Bf(k1 f)x
=β λfx.Bf((λfx.fx)x
=β λfx.Bf(λx.fx)x
=β λfx.f((λx.fx)x)
=β λfx.f(fx)

Since Bf(knf)x =β f((knf)x), we could have simplified the definition of kn+1 into kn+1 =
λfx.f(knfx).

Exercise 2.1: Show that for all n

kn =β λfx. f(· · · (f︸ ︷︷ ︸x) · · ·)
n times

Show that λfx.knfx =β kn for all n. Conclude that

mult kn k1 =β kn

Show that succ k1 =β k2. Verify that plus k1 N =β succ N . Show that

kn =β kn succ k0

for all n.

Observe that one consequence of this exercise is that:

kn =β succ(· · · (succ︸ ︷︷ ︸ k0) · · ·)
n times

which is the usual representation of the integers. Often, in the λ-calculus, it is assumed
that the integers are represented by terms of the form

cn =def λfx. f(· · · (f︸ ︷︷ ︸x) · · ·)
n times

These are the “Church integers”. We shall see that cn =β kn. The reason for preferring
the Church integers to kn is the following: the terms cn are in normal form in the sense
that they do not contain any subterms of the form (λxM)N . In other words, there is no
more computation left to be done in the cns. In the same way, it can be verified that
all the terms that we have written for arithmetic operations, as well as the terms cond,
K and F, are in normal form and one can compute, for instance, that cond K =β K and
cond F =β F.

This suggests that to calculate means to find the normal form of a term, which can be
treated as the result of the calculation. Unfortunately, this idea cannot be pushed very
far. First of all, we have spoken of “the” normal form of a term, but it is not obvious
that this is well-defined. For instance, when calculating k2 earlier, we could have written
k2 =β λfx.f(k1fx) rather than k2 =β λfx.Bf((λfx.fx)f)x. We can verify that if we
follow the computation further, we again reach the term λfx.f(fx). This is a general
result—we shall see that the normal form of a term, if it exists, is unique. A second

9

question is to know if the normal form of a term always exists. We shall see that this is
not the case.

To see this, let us return for a moment to the definition mechanism which we have
adopted. When we write fx1 · · ·xn =def E, nothing prevents the expression E from
containing the symbol f. In such a case, we have a recursive definition for the function f.
Can we still represent such a function f by a λ-term? Clearly, it is not sufficient to write
f =def λx1 . . . xn.E, as this will force us to expand f on the right hand side, leading to
an infinitely long expression. To see how to do this, let us write the expression E, which
contains f, in the form E = [· · · f · · ·] (the symbol f may appear more than once in E).
The “trick”, to find a λ-term which satisfies the equation fx1 · · ·xn =def E, is to consider
the expression E∗ obtained by replacing f in E by ff , where f is a variable—that is,
E∗ = [· · · ff · · ·]. Now, write

F =def λfλx1 . . . xn.E∗ = λfλx1 . . . xn.[· · · ff · · ·]

Then it is easy to see that

FF =β λx1 . . . xn[· · ·FF · · ·]

which means that FF satisfies the defining equation for f. We can now write

f =def FF where F = λfλx1 . . . xn.E
∗

For instance, we can use this “trick” (which permits us to rephrase (simple) recursive
functional equations in terms of the λ-calculus) in order to define the factorial function,
which is given by:

fact x =def (if x = k0 then k1 else mult x(fact (pred x)))

Actually, we need to know how to define a “test for 0” (which is part of a later exercise),
and also how to define the predecessor function pred in order to define the factorial
function. Let us look at another, simpler, example which uses the previous technique:
suppose that we wish to define a functional f which satisfies the equation

fx =def x(fx)

Since here the expression E∗ is x(ffx), we obtain F = λfx.x(ffx), and it is sufficient
to write

f =def FF = (λfx.x(ffx))(λfx.x(ffx))

It is easy to verify that f =β λx.x(fx), and thus fX =β X(fX) for all X. This functional
is known as the fixed point operator , because the definition of a fixed point of a function
f is an operator p such that f(p) = p. This fixed point operator, due to Turing, is
traditionally denoted Θ.

We have shown that all λ-terms M , regarded as functions of one argument, have a
fixed point ΘM . This can appear surprising. For instance, what could possibly be the
fixed point of the successor function? Let us calculate:

10

Θ succ = succ(Θ succ)
=β λfx.f(Θ succfx)
=β λfx.f(succ(Θ succ)fx)
=β λfx.f((λfx.f(Θ succfx))fx)
=β λfx.f(f(Θ succfx))
...

We see that the computation continues indefinitely, and even if the (infinite) “term”
which appears

c∞ = λfx.f(f(· · · f(f(· · ·

seems to signify an infinite number, we have to conclude that the term Θ succ does not
have a normal form, or, alternatively, that computing this term does not yield a result.
Another example which is much simpler is the fixed point of the identity function Θ I.
There again, if we try to compute this term, we find that the computation does not
terminate, because all that we can say is that Θ I =β I(Θ I) =β Θ I. Despite this, the
situation is different, because while Θ succ appears to have some meaning, there appears
to be no way to give a sensible interpretation to Θ I (observe that any term is a fixed
point of the identity). Yet another example: When using our technique for rephrasing
recursive equations, it is possible to rephrase an equation which appears absurd—the
equation which defines the constant f by f =def f. It suffices to write ∆ =def λf.ff , and
the solution is ∆∆. The term ∆ is the duplication operator, or duplicator, and the term
∆∆ is normally denoted Ω. All that we can say of this term is that Ω =β Ω.

It could be tempting to declare that all terms whose computation does not terminate—
that is, all terms which do not have a normal form—are equivalent or identical in a certain
sense: they all represent “undefined” terms. We have already noted, with the example
of Θ succ (as compared to Ω in the preceding example) that this is not the best thing to
do. In fact, this point of view is inconsistent. To see, this, let us formalize the preceding
idea in the following way: suppose that the “semantics” of the λ-calculus is a congruence
M ≈ N which identifies all “undefined” terms, and which contains the “fundamental
law”, and thus the computation relation, namely β-conversion =β. It turns out that such
a “semantics” identifies all terms—X ≈ Y for all X and Y . Consider the function f
defined by the equation

fxb =def cond bx(fxb)

This function can be defined in the λ-calculus by

f =def FF where F = λfxb.cond bx(ffxb)

To see its significance, let us compute fXK and fXF.

fXK =β (λxb.cond bx(fxb))XK
=β cond KX(fXK)
=β X

and

11

fXF =β (λxb.cond bx(fxb))XF
=β cond FX(fXF)

p =β fXF

In a certain sense, we can say that f is the function λxb.(if b then x), which gives its
first argument if its second one is “true” and which gives nothing if its second is “false”.
Another way of saying this is that f has the same meaning as λxb.cond bxΩ =β λxb.bxΩ (a
similar, but more interesting, example is dealt with in an exercise below). Now, suppose
that ≈ is a “semantics” in the sense which we have defined. We then have:

fZ =β (λxb.condbx(fxb))Z
=β λb.condbZ(fZb)
=β λb.condbZG, where G = cond bZ(fZb)
=β λb.cond bZ(cond bZG)
...

Since the computation of fZ does not terminate for any Z, we are forced to write fX ≈ fY
for all X and Y . And, since fX ≈ fY ⇒ fXM ≈ fYM for all M , we then have
fXK ≈ fYK for all X and all Y . But then X ≈ Y , since fZK ≈ Z for all Z. What we
have shown is summarized in the following proposition.

Proposition: Let ≈ be an equivalence relation on λ-terms with the following proper-
ties:

(i) ≈ satisfies the fundamental law—that is, (λxM)N ≈M [N/x].

(ii) ≈ identifies all terms which do not have a normal form—that is, if M and N do
not have normal forms, then M ≈ N .

(iii) Functions which are equivalent under ≈ yield equivalent results when applied to the
same argument—that is, M ≈ N ⇒ (∀R)MR ≈ NR.

Then, ≈ is inconsistent: X ≈ Y for all X and Y .

We see that the notion of a normal form cannot really take the place of the notion of a
result and serve as the foundation of a coherent semantics for the λ-calculus—which must
satisfy, at the very least, the conditions we have demanded of ≈. One reason is that if we
consider all terms without normal forms to be “undefined” and equal, then an “undefined”
function can well give a well-defined result when applied to certain arguments, as we have
seen with λxb.cond bxΩ, and this is inconsistent. The core of this course will be to study
the following question: what is a coherent semantics for the λ-calculus? Can we give
meaning to “infinite objects” which appear to make sense, such as Θ succ, and also give a
coherent status to undefined objects, the prototypical one being Ω? Can we give meaning
to functions like λxb.cond bxΩ, whose only defect is that they do not have a normal form?
Note that β-conversion is not the solution, because we would like to identify, for instance,
Ω and Θ I, while Ω 6=β ΘI.

Exercise 2.2: We define the pair formed by two terms M and N as follows:

〈M,N〉 =def λx.xMN

12

(i) Define a combinator P such that PMN =β 〈M,N〉 for all M and N .

(ii) Define projection combinators proj0 and proj1 such that proji〈M0,M1〉 =β Mi. Hint:
The usual projection functions are functions πi : A0×A1 → Ai such that πi(x0, x1) =
xi. To find proj0 and proj1, recall that one can transform πi into π∗i : A0 → (Ai)

A1.

(iii) The currying of a function f : A × B → C is the function f ∗ : A → CB such that
f ∗(x)(y) = f(x, y). Find an expression for this functional—that is, a combinator ∗
such that (∗F)MN =β F 〈M,N〉 for all F , M and N .

Exercise 2.3: Write a λ-term D which represents logical disjunction—that is, which
satisfies DTX =β T and DFX =β X. Hint: Experiment first with the disjunction of the
form “if . . . then . . . else”.

Write a λ-term for conjunction C which satisfies CTX =β X and CFX =β F.

Exercise 2.4: Define a “test for 0”—that is, an expression Z such that Z knXY =β X
if n = 0 and Z knXY =β Y otherwise. Hint: Set Z = λzxy.zEF . To find the appropriate
expressions E and F , notice that k0 is, with a change of variable, the same object as the
selector F, and that kn+1 =β λfx.fN where N = knfx.

Exercise 2.5: Compute Knfx1 · · ·xn and Bnfgx1 · · ·xn. Define

Φ =def λfghx.f(gx)(hx)

Compute Φnfghx1 · · ·xn.

Exercise 2.6: Compute ΘF. Write a λ-term Ξ which satifies the equation Ξx = Ξ.
Calculate (ΘK)X1 · · ·Xn. Find a λ-term for the function f defined by the equation

fxb =def cond bx(λb.f xb)

Compute fXK, fXFK and fXFFK.

13

