
Logic Programming: Lecture 2

Madhavan Mukund

Chennai Mathematical Institute

madhavan@cmi.ac.in

PLC, 7 April 2017

madhavan@cmi.ac.in

Programming with relations

Represent edge relation using the following facts.

edge(3,4).

edge(5,4).

edge(5,1).

edge(1,2).

edge(3,5).

edge(2,3).

Define path using the following rules.

path(X,Y) :- X = Y.

path(X,Y) :- edge(X,Z), path(Z,Y).

Read the rules read as follows:

Rule 1 For all X, (X,X) ∈ path.

Rule 2 For all X,Y, (X,Y) ∈ path if there exists Z such that

(X,Z) ∈ edge and (Z,Y) ∈ path.

Facts and rules

path(X,Y) :- X = Y.

path(X,Y) :- edge(X,Z), path(Z,Y).

◮ Each rule is of the form

Conclusion if Premise1 and Premise2 . . . and Premisen

◮ if is written :-

◮ and is written ,

◮ This type of logical formula is called a Horn Clause

◮ Quantification of variables

◮ Variables in goal are universally quantified

◮ X, Y above

◮ Variables in premise are existentially quantified

◮ Z above

Computing in Prolog

◮ Ask a query

◮ Prolog scans facts and rules top-to-bottom

◮ If the head of a rule matches the query, the body generates

subgoals.

◮ Matching is unification

◮ Sub goals are tried depth-first

◮ If a subgoal fails, backtrack and try another value

◮ Backtracking is sensitive to order of facts

Unification and pattern matching

◮ A goal of the form X = Y denotes unification.

path(X,Y) :- X = Y.

path(X,Y) :- edge(X,Z), path(Z,Y).

◮ Can implicitly represent such goals in the head

path(X,X).

path(X,Y) :- edge(X,Z), path(Z,Y).

◮ Unification provides a formal justification for pattern matching

in rule definitions

◮ Unlike Haskell, a repeated variable in the pattern is meaningful

◮ In Haskell, we cannot write

path (x,x) = True

Reversing the question

◮ Consider the question

?- edge(3,X).

◮ Find all X such that (3,X) ∈ edge

◮ Prolog lists out all satisfying values, one by one

X=4;

X=5;

X=2;

No.

Lists

◮ Write [Head | Tail] for Haskell’s (head:tail)

◮ [] denotes the emptylist

◮ No types, so lists need not be homogeneous!

◮ Checking membership in a list

member(X,[Y|T]) :- X = Y.

member(X,[Y|T]) :- member(X,T).

◮ Use patterns instead of explicit unification

member(X,[X|T]).

member(X,[H|T]) :- member(X,T).

◮ . . . plus anonymous variables.

member(X,[X|_]).

member(X,[_|T]) :- member(X,T).

Arithmetic

Computing length of a list

length([],0).

length([_|T],N) :- length(T,M), N = M+1.

What does the following query yield?

?- length([1,2,3,4],N).

N=0+1+1+1+1

◮ X = Y is unification

◮ X is Y captures arithmetic equality

length([],0).

length([_|T],N) :- length(T,M), N is M+1.

Arithmetic . . .

Another approach

length(L,N) :- auxlength(L,0,N).

auxlength([],N,N).

auxlength([H|T],M,N) :- auxlength(T,M1,N), M1 is M+1.

?- length([0,1,2],N) generates goals

auxlength([0,1,2],0,N)

auxlength([1,2],1,N)

auxlength([2],2,N)

auxlength([],3,N)

auxlength([],3,3)

Second argument to auxlength accumulates answer.

Coping with circular definitions

edge(g,h).

edge(d,a).

edge(g,d).

edge(e,d).

edge(h,f).

edge(e,f).

edge(a,e).

edge(a,b).

edge(b,f).

edge(b,c).

edge(f,c).

a b
c

d

e
f

g h

path(X,X).

path(X,Y) :- edge(X,Z), path(Z,Y).

What does ?- path(a,b) compute?

Coping with circularity . . .

Instead

path(X,X,T).

path(X,Y,T) :- edge(X,Z), legal(Z,T), path(Z,Y,[Z|T]).

legal(Z,[]).

legal(Z,[H|T]) :- Z\==H, legal(Z,T).

◮ path(X,Y,T) succeeds if there is a path from X to Y that

does not visit any nodes in T

◮ T is an accumulator

Quicksort in Prolog

◮ How we describe a sorting algorithm in a logic program?

% quicksort(Xs, Ys) :- Ys is a sorted permutation of Xs

quicksort([], []).

quicksort([X | Xs], Ys) :-

partition(X, Xs, Littles, Bigs),

quicksort(Littles, Ls),

quicksort(Bigs, Bs),

append(Ls, [X | Bs], Ys).

where

% partition(X, Xs, Ls, Bs) :-

% Ls : list of elements of Xs that are < X

% Bs : list of elements of Xs that are >= X

partition(_, [], [], []).

partition(X, [Y | Xs], [Y | Ls], Bs) :-

X > Y, partition(X, Xs, Ls, Bs).

partition(X, [Y | Xs], Ls, [Y | Bs]) :-

X =< Y, partition(X, Xs, Ls, Bs).

Quicksort in Prolog

Two issues that arise in quicksort.

◮ Wasteful recomputations in last clause of partition

...

partition(X, [Y | Xs], [Y | Ls], Bs) :-

X > Y, partition(X, Xs, Ls, Bs).

partition(X, [Y | Xs], Ls, [Y | Bs]) :-

X =< Y, partition(X, Xs, Ls, Bs).

◮ Consider ?- partition(7,[9,8,1,5],Ls,Bs).

◮ append(Ls, [X | Bs], Ys).

◮ As in functional programming, complexity of append is

proportional to length of Ls

◮ Can this be avoided?

Backtracking in Prolog

Consider rules

G :- P1,P2,P3.

G :- P4,P5,P6.

◮ First try G.

◮ If P3 fails, backtrack and retry P2.

◮ If P2 fails, backtrack and retry P1.

◮ If P1 fails, try second rule.

◮ Second rule is tried after all possible ways of satisfying first

rule fail.

Backtracking in Prolog . . .

Goal p(X), rules of the form if B then S else T

p(x) :- B,S.

p(X) :- not B, T.

◮ not B succeeds if B fails.

◮ Can we avoid recomputing B?

Cut

◮ Special goal !, called cut

p(x) :- B, !, S.

p(x) :- T.

◮ ! always succeeds

◮ Discard alternative ways of computing B

◮ Discard second rule p(x) :- T.

More generally, if we have

p(s1) :- A1 .

. . .

p(si) :- B,!,C.

. . .

p(sk) :- Ak .

B is not retried and clauses i+1 to k are discarded.

Cut . . .

◮ Cut is typically used for efficiency, avoid recomputing

conditions.

% partition(X, Xs, Ls, Bs) :-

% Ls : list of elements of Xs that are < X

% Bs : list of elements of Xs that are >= X

partition(_, [], [], []).

partition(X, [Y | Xs], [Y | Ls], Bs) :-

X > Y, !, partition(X, Xs, Ls, Bs).

partition(X, [Y | Xs], Ls, [Y | Bs]) :-

partition(X, Xs, Ls, Bs).

Control structures

◮ call(X) invokes X as a goal.

once(G) :- call(G),!.

for(0,G) :- !.

for(N,G) :- N > 0, call(G), M is N-1, for(M,G),!.

if_then_else(B, S, T) :- call(B),!,call(S).

if_then_else(B, S, T) :- call(T).

Use with care. Destroys declarative structure!

Control structures

◮ Goal fail always fails

not(G) :- call(G),!,fail

not(_).

◮ Use not with care

◮ To generate all members of a list that are not 1

◮ member(X, Ls), not(X = 1).
√

◮ not(X = 1), member(X, Ls). ×

◮ Should only use not when term is already instantiated

?- not(X = 1).

no

Quicksort in Prolog

Two issues that arise in quicksort.

◮ Wasteful recomputations in last clause of partition

...

partition(X, [Y | Xs], [Y | Ls], Bs) :-

X > Y, partition(X, Xs, Ls, Bs).

partition(X, [Y | Xs], Ls, [Y | Bs]) :-

X =< Y, partition(X, Xs, Ls, Bs).

◮ Consider ?- partition(7,[9,8,1,5],Ls,Bs).

◮ append(Ls, [X | Bs], Ys).

◮ As in functional programming, complexity of append is

proportional to length of Ls

◮ Can this be avoided?

Difference lists

◮ Represent a list in terms of front and back

L1 L2

| |

| --

------*----| |

| | | --

a b c

◮ Unify L1 with [a,b,c|Z] and L2 with Z

◮ L2 points to a “hole” that can be instantiated by another term

Difference lists . . .

◮ Suppose we want to append L1 and L3

L1 L2 L3 L4

| | | |

| -- | --

------*----| | *---*---| |

| | | -- | | --

a b c d e

◮ app(L1,L2,L3,L4,X,Y) succeeds when difference lists

(L1,L2) and (L3,L4) combine to form difference list (X,Y)

◮ Single goal

app(L1,L2,L2,L3,L1,L3).

◮ Normally, difference lists are denoted L1-L2.

app(L1-L2,L2-L3,L1-L3).

◮ If X is a difference list, unify with Y-[] to rectify it

