Logic Programming: Lecture 1

Madhavan Mukund

Chennai Mathematical Institute

madhavan@cmi.ac.in

PLC, 3 April 2017

madhavan@cmi.ac.in

Logic programming

> Programming with relations
» Variables

» Names starting with a capital letter
» X, Y, Name, ...

» Constants

» Names starting with a small letter
» ball, node, graph, a, b,
» Uninterpreted — no types like Char, Bool etc!

» Exception: natural numbers, some arithmetic

Defining relations

A Prolog program describes a relation
Example: A graph
/1\

-——

» Want to define a relation path(X,Y)
> path(X,Y) holds if there is a path from X to ¥

Facts and rules

N
\

-— =

Represent edge relation using the following facts.

edge(3,4).
edge(5,4) .
edge(5,1).
edge(1,2).
edge(3,5).
edge(2,3).

Facts and rules . ..

N
\

-— =

Define path using the following rules.

path(X,Y) :- X =Y.
path(X,Y) :- edge(X,Z), path(Z,Y).

Read the rules read as follows:

Rule 1 For all X, (X,X) € path.

Rule 2 For all X,Y, (X,Y) € path if there exists Z such that
(X,Z) € edge and (Z,Y) € path.

Facts and rules . ..

path(X,Y) :- X = Y.
path(X,Y) :- edge(X,Z), path(Z,Y).

» Each rule is of the form

Conclusion if Premise; and Premise, ...and Premise,
» if is written : -
» and is written ,

» This type of logical formula is called a Horn Clause

» Quantification of variables

» Variables in goal are universally quantified

> X, Y above

» Variables in premise are existentially quantified

> 7 above

Computing in Prolog

» Ask a question (a query)
?7- path(3,1).

» Prolog scans facts and rules top-to-bottom

» 3 cannot be unified with 1, skip Rule 1.
» Rule 2 generates two subgoals. Find Z such that

» (3,Z) € edge and
» (Z,1) € path.
» Sub goals are tried depth-first

» (3,Z) € edge?
> (3,4) € edge,setZ = 4

» (4,1) € path? 4 cannot be unifed with 1, two subgoals, new

Z7

» (4,2°) € edge
» (2’,1) € path

» Cannot find Z’ such that (4,72°) € edge!

Backtracking

» (3,Z) € edge?
» edge(3,4) € edge,setZ = 4

» (4,1) € path? 4 cannot be unified with 1, two subgoals,
new 7’

» (4,Z2°) € edge
» (2’,1) € path

» No Z’ such that (4,Z’) € edge
» Backtrack and try another value for Z

» edge(3,5) € edge,setZ =5
» (5,1) € path? (5,1) € edge, v/
Backtracking is sensitive to order of facts

» We had put edge (3,4) before edge (3,5)

Reversing the question

» Consider the question
7- edge(3,X).
» Find all X such that (3,X) € edge

» Prolog lists out all satisfying values, one by one

X=4;
X=5;
X=2;
No.

Unification and pattern matching

> A goal of the form X = Y denotes unification.

path(X,Y) :- X =Y.
path(X,Y) :- edge(X,Z), path(Z,Y).

» Can implicitly represent such goals in the head

path(X,X).
path(X,Y) :- edge(X,Z), path(Z,Y).

» Unification provides a formal justification for pattern matching
in rule definitions

» Unlike Haskell, a repeated variable in the pattern is meaningful

» In Haskell, we cannot write

path (x,x) = True

Complex data and terms

Represent arbitrary structures with nested terms

» A record or struct of the form

personal_dataf{
name : amit
date_of_birth{
year : 1980
month : 5
day : 30
}
}

> ...can be represented by a term

personal_data(name (amit),
date_of_birth(year (1980) ,month(5),day(30)))

Lists

v

Write [Head | Taill for Haskell's (head:tail)

» [] denotes the emptylist
» No types, so lists need not be homogeneous!

v

Checking membership in a list

member (X, [YIT]) :- X = Y.
member (X, [Y|IT]) :- member(X,T).

v

Use patterns instead of explicit unification

member (X, [X|T]).
member (X, [H|T]) :- member(X,T).

» ...plus anonymous variables.

member (X, [X]|_]).
member (X, [_|T]) :- member(X,T).

Lists ...

Appending two lists
> append(X,Y, [X|Y]) . will not work
» append([1,2],[a,b],Z] yields Z = [[1,2],a,b]
» Inductive definition, like Haskell

append(Xs, Ys, Zs) :- Xs = []1, Zs = Vs.
append(Xs, Ys, Zs) :- Xs = [H | Ts], Zs = [H | Us],
append(Ts, Ys, Us).
» Again, eliminate explicit unification

append([], Ys, Ys).
append([X | Xs], Ys, [X | Zs]) :- append(Xs, Ys, Zs).

Reversing the computation

?- append(Xs, Ys, [mon, wed, fril).

All possible ways to split the list

Xs = [
Ys = [mon, wed, fri] ;

Xs = [mon]
Ys = [wed, fri] ;

Xs = [mon, wed]

Ys = [fri] ;

Xs = [mon, wed, fri]
Ys = [1 ;

no

Reversing the computation ...

» Want to define a relation sublist (Xs,Vs)

» Yields the rule

sublist(Xs, Ys) :- append(_, Zs, Ys), append(Xs, _, Zs).

» What happens if we try the following instead?

sublist(Xs, Ys) :- append(Xs, _, Zs), append(_, Zs, Ys).

Reversing the computation ...

Type inference for simply typed lambda calculus

x € Var | \>x.M | MN

» Inference rules to derive type judgments of the form A+ M : s

» Ais list {x; : t;} of type “assumptions” for variables
» Under the assumptions in A the expression M has type s.

x:teA
Abx:t
A-M:s—t, A-EN:s
A (MN) :t
A+x:sEM:t
A (A.M):s—t

Reversing the computation . ..

» Encoding A-calculus and types in Prolog

var (x) for variable x (Note: x is a constant!)
lambda(x,m) for Ax.M

apply(m,n) for MN

arrow(s,t) fors — t

vV vy vy

» Type inference in Prolog

% type(A, S, T):- lambda term S has type T in the environment A.
type(A, var(X), T):- member([X, T, A).

type (A, apply(M, N), T):- type(A, M, arrow(S,T)), type(A, N, S).
type(A, lambda(X, M), arrow(S,T)):- type([[X, S] | A]l, M, T).

» 7- type([],t,T). asks if term t is typable.
7- type([], lambda(x, apply(var(x), var(x))), T).
type([[x, S]], apply(var(x), var(x)), U)
type([[x, S]], var(x), arrow(S,U)).
member ([x, arrow(S,U)], [[x, S11)
» Unification fails

Example: special sequence ...

Arrange three 1s, three 2s, ..., three 9s in sequence so that for all
i € [1..9] there are exactly / numbers between successive
occurrences of |

1,9,1,2,1,8,2,4,6,2,7,9,4,5,8,6,3,4,7,5,3,9,6,8,3,5,7.

% sequence(Xs) :- Xs is a list of 27 variables.

solution(Ss) :-

sequence(Ss),

sublist ([9, _,_, 4 sy sses—3s9y s ysss_s_s_»_»9]1, Ss),
sublist ([8, _,_, s sy ss—s8ss_s_s_s_s_s_s_»8], S8),
sublist ([7, _, 4y ss—ssTs—s—s—s—s_r_s_sT71, Ss),
sublist([6, _,_,_,_y_5_46,_s_s_s_s_5_,61, Ss),
sublist([5,_,_,_,_,_,5,_,_s_5_,_,5], Ss),
sublist([4,_,_,_,_,4,_,_,_,_,4], Ss),
sublist([3,_,_,_,3,_,_,_,3], Ss),
sublist([2,_,_,2,_,_,2], Ss),

sublist([1,_,1,_,1], Ss).

Arithmetic

Computing length of a list

length([],0).
length([_IT],N) :- length(T,M), N = M+1.

What does the following query yield?

?- length([1,2,3,4],N).

N=0+1+1+1+1

» X = Y is unification

» X is Y captures arithmetic equality

length([],0).
length([_|T],N) :- length(T,M), N is M+1.

