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Type inference as equation solving

What is the type of twice f x = f (f x)?

I Generically, twice :: a -> b -> c

I We then reason as follows

a = d -> e (because f is a function)
b = d (because f is applied to x)
e = d (because f is applied to (f x))
c = e (because output of twice is f (f x))

I Thus b = c = d = e and a = b -> b

I Most general type is twice :: (b -> b) -> b -> b



Unification

I Start with a system of equations over terms

I Find a substitution for variables that satisfies the equation

I Least constrained solution : most general unifier (mgu)



Unification algorithm

1. t = X , t is not a variable ; X = t.

2. Erase equations of form X = X .

3. Let t = t ′ where t = f (. . .), t ′ = f ′(. . .)

I f 6= f ′ ; terminate : unification not possible

I Otherwise, f (t1, t2, . . . , tk) = f (t ′1, t
′
2, . . . , t

′
k)

Replace by k new equations

t1 = t ′1, t2 = t ′2, . . . , tk = t ′k

4. X = t, X occurs in t ; terminate: unification not possible

5. X = t, X does not occur in t, X occurs in other equations
; Replace all occurrence of X in other equations by t.



Unification algorithm : Examples

f (X ) = f (f (a))
g(Y ) = g(Z )

X = f (a)
g(Y ) = g(Z )

X = f (a)
Y = Z

mgu is {X ← f (a),Z ← Y }



Unification algorithm : Examples . . .

g(Y ) = X
f (X , h(X ),Y ) = f (g(Z ),W ,Z )

X = g(Y )
f (X , h(X ),Y ) = f (g(Z ),W ,Z )

X = g(Y )
X = g(Z )
h(X ) = W
Y = Z

g(Z ) = g(Y )
X = g(Z )
h(g(Z )) = W
Y = Z



Unification algorithm : Examples . . .

Z = Y
X = g(Z )
h(g(Z )) = W
Y = Z

Z = Z
X = g(Z )
h(g(Z )) = W
Y = Z

X = g(Z )
W = h(g(Z ))
Y = Z

Equations : g(Y ) = X , f (X , h(X ),Y ) = f (g(Z ),W ,Z )
mgu : {X ← g(Z ),W ← h(g(Z )),Y ← Z}



Unification algorithm : Correctness

I The algorithm terminates

I Rules 1–4 can be used only a finite number of times without
using Rule 5

I Rule 5 can be used at most once for each variable

I When the algorithm terminates, all equations are of the form
Xi = ti . This defines a substitution

{X1 ← t1,X2 ← t2, . . . ,Xn ← tn}

I This substitution is a unifier

I Every transformation preserves the set of unifiers

I This substitution is an mgu

I More complicated, omit



Type inference with shallow types

Syntax

I Built-in types i , j , k , . . .

I A set of constants Ci for each built-in type i

I e.g., i = Char, Ci = {’a’,’b’,. . . }

I λ-terms

Λ = c | x | λx .M | MN



Type inference with shallow types

I M = c ∈ Ci ; M :: i

I M = x ; M :: α for a fresh type variable α

I M = λx .M ′ ; M :: α→ β for fresh type variables α, β.

I Inductively, x :: γ in M ′

I Add equation α = γ

I M = M ′N ′ ; M :: β for fresh type variables β.

I Inductively, M ′ :: α→ β, N ′ :: γ

I Add equation α = γ



Type inference with shallow types

Consider

applypair f x y = (f x,f y)

Is the following expression well typed, where id z = z?

applypair id 7 ’c’ = (id 7, id ’c’) = (7,’c’)

We have to unify the following set of constraints

id :: a -> a

7 :: Int

’c’ :: Char

a = Int (from id 7)

a = Char (from id ’c’)

Not possible! Haskell compiler says

applypair :: (a -> b) -> a -> a -> (b,b)}



Type inference with shallow types

In the λ-calculus, we have

λfxy .pair (fx)(fy), where pair ≡ λxyz .(zxy)

When we pass a value for f , it has to unify with types of both x
and y

I Every argument must have the same type across all copies

Suppose, we write, instead

applypair x y = (f x,f y) where f z = z

Now, we have

applypair :: a -> b -> (a,b)

What’s going on?



Type inference with shallow types

Extend λ-calculus with “local” definitions, like where

Λ = Ci | x | λx .M | MN | let f = e in M

Here is the λ-term for the second version of applypair

let f = λz .z in λxy .pair (fx)(fy)

In fact, Haskell allows both

let f z = z in applypair x y = (f x,f y)

and

applypair x y = (f x,f y) where f z = z



Type inference with shallow types

I let f = e in λx .M and (λfx .M)e are equivalent with respect
to β-reduction

I . . . but type inference works differently for the two

I One may be typeable while the other is not

I (λI .(II ))(λx .x)

I let I = λx .x in (II )



Type inference with shallow types

Type inference for M = let f = e in M ′

First attempt

I Assume f :: t where α, β, . . . are type variables occurring in t

I Make a separate copy of type variables for each instance of f
in M ′

Example

I let f = λz .z in λxy .pair (fx)(fy)

I First instance of f has type α1 → β1

I Second instance of f has type α2 → β2



Type inference with shallow types

A subtle problem

applypair2 w x y = ((tag x),(tag y))

where

tag = pair w

pair s t = (s,t)

I applypair2 w x y ; ((w,x),(w,y))

I Type should be
applypair2 :: a -> b -> c -> ((a,b),(a,c))



Type inference with shallow types

applypair2 w x y = ((tag x),(tag y))

where

tag = pair w

pair s t = (s,t)

Type inference

applypair2 :: a -> b -> c -> (d,e)

pair :: f -> g -> (f,g)

tag :: h -> (i,h)

I a = i because tag uses input w from applypair2

I Using let rule, two instances of tag get different types

I d = h1 -> (i1,h1)
I e = h2 -> (i2,h2)

I End up with
applypair2 :: a -> b -> c -> ((i1,b),(i2,c))

I The connection a = i = i1 = i2 is lost!



Type inference with shallow types

I In tag :: h -> (i,h)

I h is local to tag

I i is unified with type passed directly to main function

I h is called a generic variable

I Should not make copies of non-generic variables!

Correct type inference rule for M = let f = e in M ′

I Assume f :: t where α, β, . . . are generic type variables
occurring in t

I Make a separate copy of these generic type variables for each
instance of f in M ′

I Non-generic variables retain their name across all copies of f


