λ Calculus: Lecture 7

Madhavan Mukund

Chennai Mathematical Institute madhavan@cmi.ac.in

PLC, 27 March 2017

Type inference as equation solving

What is the type of twice f x = f (f x)?

- ► Generically, twice :: a -> b -> c
- ► We then reason as follows

a	=	d -> e	(because f is a function)
b	=	d	(because f is applied to x)
е	=	d	(because f is applied to $(f x)$)
с	=	е	(because output of twice is f (f x))

- Thus b = c = d = e and $a = b \rightarrow b$
- ▶ Most general type is twice :: (b -> b) -> b -> b

Unification

- Start with a system of equations over terms
- Find a substitution for variables that satisfies the equation
- Least constrained solution : most general unifier (mgu)

Unification algorithm

- 1. t = X, t is not a variable $\rightarrow X = t$.
- 2. Erase equations of form X = X.
- 3. Let t = t' where t = f(...), t' = f'(...)
 - $f \neq f' \rightarrow$ terminate : unification not possible
 - Otherwise, f(t₁, t₂,..., t_k) = f(t'₁, t'₂,..., t'_k) Replace by k new equations

$$t_1 = t'_1, t_2 = t'_2, \dots, t_k = t'_k$$

4. X = t, X occurs in $t \rightarrow$ terminate: unification not possible

5. X = t, X does not occur in t, X occurs in other equations \rightarrow Replace all occurrence of X in other equations by t.

Unification algorithm : Examples

$$\begin{array}{rcl} f(X) &=& f(f(a))\\ g(Y) &=& g(Z) \end{array}$$

$$\begin{array}{rcl} X & = & f(a) \\ g(Y) & = & g(Z) \end{array}$$

$$\begin{array}{rcl} X & = & f(a) \\ Y & = & Z \end{array}$$

mgu is $\{X \leftarrow f(a), Z \leftarrow Y\}$

Unification algorithm : Examples

g(Y) f(X, h(X), Y)	=	X f(g(Z), W, Z
X f(X, h(X), Y)	=	g(Y) f(g(Z), W, Z
X X h(X) Y	=	g(Y) g(Z) W Z
g(Z) X $h(g(Z))$ Y	=	g(Y) g(Z) W Z

Unification algorithm : Examples ...

$$Z = Y$$

$$X = g(Z)$$

$$h(g(Z)) = W$$

$$Y = Z$$

$$Z = Z$$

$$X = g(Z)$$

$$h(g(Z)) = W$$

$$Y = Z$$

$$X = g(Z)$$

$$W = h(g(Z))$$

$$Y = Z$$

mgu

Equations : g(Y) = X, f(X, h(X), Y) = f(g(Z), W, Z) $: \{X \leftarrow g(Z), W \leftarrow h(g(Z)), Y \leftarrow Z\}$

Unification algorithm : Correctness

- The algorithm terminates
 - Rules 1–4 can be used only a finite number of times without using Rule 5
 - Rule 5 can be used at most once for each variable
- ▶ When the algorithm terminates, all equations are of the form X_i = t_i. This defines a substitution

$$\{X_1 \leftarrow t_1, X_2 \leftarrow t_2, \ldots, X_n \leftarrow t_n\}$$

- This substitution is a unifier
 - Every transformation preserves the set of unifiers
- This substitution is an mgu
 - More complicated, omit

Syntax

• Built-in types i, j, k, \ldots

A set of constants C_i for each built-in type i

• e.g.,
$$i = \text{Char}, C_i = \{ \text{'a'}, \text{'b'}, ... \}$$

λ-terms

 $\Lambda = c \mid x \mid \lambda x.M \mid MN$

- $\blacktriangleright M = c \in C_i \rightsquigarrow M :: i$
- $M = x \rightsquigarrow M :: \alpha$ for a fresh type variable α
- $M = \lambda x.M' \rightsquigarrow M :: \alpha \rightarrow \beta$ for fresh type variables α, β .
 - Inductively, $x :: \gamma$ in M'
 - Add equation $\alpha = \gamma$
- $M = M'N' \rightsquigarrow M :: \beta$ for fresh type variables β .
 - Inductively, $M' :: \alpha \to \beta$, $N' :: \gamma$
 - Add equation $\alpha = \gamma$

Consider

```
applypair f x y = (f x, f y)
```

Is the following expression well typed, where id z = z?

applypair id 7 'c' = (id 7, id 'c') = (7, 'c')

We have to unify the following set of constraints

id	:: a -> a			
7	:: Int			
'c'	:: Char			
a =	Int	(from	id	7)
a =	Char	(from	id	'c')

Not possible! Haskell compiler says

applypair :: $(a \rightarrow b) \rightarrow a \rightarrow a \rightarrow (b,b)$

In the λ -calculus, we have

 $\lambda fxy.pair (fx)(fy)$, where $pair \equiv \lambda xyz.(zxy)$

When we pass a value for f, it has to unify with types of both x and y

Every argument must have the same type across all copies

Suppose, we write, instead

applypair x y = (f x, f y) where f z = z

Now, we have

applypair :: a -> b -> (a,b)

What's going on?

Extend λ -calculus with "local" definitions, like where

 $\Lambda = C_i \mid x \mid \lambda x.M \mid MN \mid \text{let } f = e \text{ in } M$

Here is the λ -term for the second version of applypair

let $f = \lambda z.z$ in $\lambda xy.pair(fx)(fy)$

In fact, Haskell allows both

let f z = z in applypair x y = (f x, f y)

and

applypair x y = (f x, f y) where f z = z

- ► let f = e in $\lambda x.M$ and $(\lambda f x.M)e$ are equivalent with respect to β -reduction
- ... but type inference works differently for the two
- One may be typeable while the other is not
 - $(\lambda I.(II))(\lambda x.x)$
 - let $I = \lambda x.x$ in (II)

Type inference for M = let f = e in M'

First attempt

- Assume f :: t where α, β, \ldots are type variables occurring in t
- Make a separate copy of type variables for each instance of f in M'

Example

- let $f = \lambda z.z$ in $\lambda xy.pair(fx)(fy)$
- First instance of f has type $\alpha_1 \rightarrow \beta_1$
- Second instance of f has type $\alpha_2 \rightarrow \beta_2$

A subtle problem

```
applypair2 w x y = ((tag x),(tag y))
where
   tag = pair w
   pair s t = (s,t)
```

- ▶ applypair2 w x y \rightarrow ((w,x),(w,y))
- Type should be applypair2 :: a -> b -> c -> ((a,b),(a,c))

```
applypair2 w x y = ((tag x),(tag y))
where
  tag = pair w
  pair s t = (s,t)
```

Type inference

applypair2 :: a -> b -> c -> (d,e) pair :: f -> g -> (f,g) tag :: h -> (i,h)

a = i because tag uses input w from applypair2

Using let rule, two instances of tag get different types

▶ d = h1 -> (i1,h1)

- ▶ e = h2 -> (i2,h2)
- End up with

applypair2 :: a -> b -> c -> ((i1,b),(i2,c))

The connection a = i = i1 = i2 is lost!

- ▶ In tag :: h -> (i,h)
 - h is local to tag
 - i is unified with type passed directly to main function
- h is called a generic variable
 - Should not make copies of non-generic variables!

Correct type inference rule for M = let f = e in M'

- Assume f :: t where α, β,... are generic type variables occurring in t
- Make a separate copy of these generic type variables for each instance of f in M'
- Non-generic variables retain their name across all copies of f