A Calculus: Lecture 7

Madhavan Mukund

Chennai Mathematical Institute

madhavan@cmi.ac.in

PLC, 27 March 2017

madhavan@cmi.ac.in

Type inference as equation solving

What is the type of twice f x = £ (£ x)7

» Generically, twice :: a -> b -> ¢

» We then reason as follows

a = d ->e (because f is a function)

b = d (because f is applied to x)

e = d (because f is applied to (f x))

c = e (because output of twice is £ (f x))

» Thusb=c=d=eanda=b -> b

» Most general type is twice :: (b -> b) -> b -> b

Unification

» Start with a system of equations over terms
» Find a substitution for variables that satisfies the equation

» Least constrained solution : most general unifier (mgu)

Unification algorithm

1.
2.
3.

t = X, tis not a variable ~ X = t.
Erase equations of form X = X.

Let t =t where t = f(...), t' =f'(...)
» f = '~ terminate : unification not possible
» Otherwise, f(t1, to, ..., tx) = F(t],th, ..., t})
Replace by k new equations

=t th=1th..., tk = t,

X =t, X occurs in t ~ terminate: unification not possible

X = t, X does not occur in t, X occurs in other equations
~ Replace all occurrence of X in other equations by t.

Unification algorithm : Examples

f(X) = f(f(a)
g(Y) = g(2)
X = f(a)
g(Y) = g(2)
X = f(a)
Y = 7

mgu is {X < f(a),Z < Y}

Unification algorithm : Examples ...

g(Y) = X
F(X,h(X),Y) = f(g(2),W,2)
X = g(Y)
FIX,h(X),Y) = f(g(2),W,2)
X = g(v)

X = g(2)

h(X) - W

Y - Z

<= X®
)
N
1 [T
NI

Unification algorithm : Examples ...

z - v
X = g(2)
h(g(2)) = W

1% - Z

z - Z

X = &(2)
h(g(z)) = W

Y - Z

X = g(2)
w = h(g(2))
% - Z

Equations : g(Y) =X, f(X,h(X),Y)="~(g(2),W,2)
mgu {X <« g(Z2),W « h(g(2)),Y < Z}

Unification algorithm : Correctness

> The algorithm terminates

» Rules 1-4 can be used only a finite number of times without
using Rule 5

» Rule 5 can be used at most once for each variable

> When the algorithm terminates, all equations are of the form
X; = t;. This defines a substitution

{X1% t1, Xo < to, ..., Xy l’n}

» This substitution is a unifier

» Every transformation preserves the set of unifiers

» This substitution is an mgu

» More complicated, omit

Type inference with shallow types
Syntax
» Built-in types /,/, k, . ..

> A set of constants C; for each built-in type /
» eg., /= Char, GG={’2’,’b’,...}

> \-terms

AN=c|x|xM|MN

Type inference with shallow types

M=ceC~M:i

v

» M =x~» M :: « for a fresh type variable «

» M = Ax.M" ~ M :: o« — j3 for fresh type variables o, 3.

» Inductively, x :: v in M’

» Add equation oo =~y

M = M'N" ~ M :: 3 for fresh type variables /3.

v

» Inductively, M' :: a0 — 3, N" :: v
» Add equation o = v

Type inference with shallow types

Consider
applypair £ x y = (£ x,f y)

Is the following expression well typed, where id z = z?
applypair id 7 ’c’ = (id 7, id ’c’) = (7,’c?)

We have to unify the following set of constraints

id :: a -> a

7 :: Int

’c’ :: Char

a = Int (from id 7)

a = Char (from id ’c’)

Not possible! Haskell compiler says

applypair :: (a -> b) -> a -> a -> (b,b)}

Type inference with shallow types
In the A-calculus, we have

Mxy.pair (fx)(fy), where pair = Axyz.(zxy)

When we pass a value for f, it has to unify with types of both x
and y

» Every argument must have the same type across all copies
Suppose, we write, instead

applypair x y = (f x,f y) where f z = z
Now, we have

applypair :: a -> b -> (a,b)

What's going on?

Type inference with shallow types

Extend A-calculus with “local” definitions, like where

A=GC | x| \x.M|MN|letf=einM

Here is the A-term for the second version of applypair

let f = Az.z in Axy.pair (£)(y)

In fact, Haskell allows both

let £ z = z in applypair x y = (f x,f y)
and

applypair x y = (f x,f y) where f z = z

Type inference with shallow types

> let f = ein Ax.M and (A fx.M)e are equivalent with respect
to [J-reduction

> ...but type inference works differently for the two

» One may be typeable while the other is not

> (M.(1)(Ax.x)
> let | = Ax.x in (/)

Type inference with shallow types

Type inference for M = let f = e in M’

First attempt

> Assume f :: t where «, (3, ... are type variables occurring in t
» Make a separate copy of type variables for each instance of f
in M
Example

> let f = Az.z in \xy.pair (x)(fy)
» First instance of f has type oy — (1

» Second instance of f has type asx — (2

Type inference with shallow types

A subtle problem

applypair2 w x y = ((tag x),(tag y))

where
tag = pair w
pair s t = (s,t)

» applypair2 w x y~ ((w,x), (w,y))

> Type should be
applypair2 :: a -> b -> ¢ > ((a,b),(a,c))

Type inference with shallow types

applypair2 w x y = ((tag x),(tag y))
where
tag = pair w
pair s t = (s,t)

Type inference

applypair2 :: a -> b -> ¢ -> (d,e)
pair i f > g > (£f,g)
tag it h > (i,h)

> a = i because tag uses input w from applypair?2

» Using let rule, two instances of tag get different types

» d = h1 -> (i1,h1)
» e = h2 > (i2,h2)

» End up with

applypair2 :: a ->b -> ¢ -> ((i1,b),(i2,c))

» The connectiona = i = il =

Type inference with shallow types

» Intag :: h -> (i,h)

» his local to tag
» i is unified with type passed directly to main function

» h is called a generic variable
» Should not make copies of non-generic variables!
Correct type inference rule for M = let f = e in M’
> Assume f :: t where «, (3, ... are generic type variables
occurring in t

» Make a separate copy of these generic type variables for each
instance of f in M’

> Non-generic variables retain their name across all copies of f

