λ Calculus: Lecture 7

Madhavan Mukund

Chennai Mathematical Institute madhavan@cmi.ac.in

PLC, 27 March 2017

Type inference as equation solving

What is the type of twice $f x=f(f x)$?

- Generically, twice : : a -> b -> c
- We then reason as follows

$$
\begin{array}{lll}
a=d->e & \text { (because } f \text { is a function) } \\
b=d & & \text { (because } f \text { is applied to } x) \\
b=d & & \text { (because } f \text { is applied to }(f x)) \\
c=e & & \text { (because output of twice is } f(f x))
\end{array}
$$

- Thus $\mathrm{b}=\mathrm{c}=\mathrm{d}=\mathrm{e}$ and $\mathrm{a}=\mathrm{b} \rightarrow \mathrm{b}$
- Most general type is twice : $(\mathrm{b}->\mathrm{b})$-> b $->\mathrm{b}$

Unification

- Start with a system of equations over terms
- Find a substitution for variables that satisfies the equation
- Least constrained solution : most general unifier (mgu)

Unification algorithm

1. $t=X, t$ is not a variable $\leadsto X=t$.
2. Erase equations of form $X=X$.
3. Let $t=t^{\prime}$ where $t=f(\ldots), t^{\prime}=f^{\prime}(\ldots)$

- $f \neq f^{\prime} \leadsto$ terminate : unification not possible
- Otherwise, $f\left(t_{1}, t_{2}, \ldots, t_{k}\right)=f\left(t_{1}^{\prime}, t_{2}^{\prime}, \ldots, t_{k}^{\prime}\right)$

Replace by k new equations

$$
t_{1}=t_{1}^{\prime}, t_{2}=t_{2}^{\prime}, \ldots, t_{k}=t_{k}^{\prime}
$$

4. $X=t, X$ occurs in $t \leadsto$ terminate: unification not possible
5. $X=t, X$ does not occur in t, X occurs in other equations \leadsto Replace all occurrence of X in other equations by t.

Unification algorithm : Examples

$$
\begin{array}{ll}
f(X) & =f(f(a)) \\
g(Y) & =g(Z) \\
& \\
X & =f(a) \\
g(Y) & =g(Z) \\
& \\
X & =f(a) \\
Y & =Z
\end{array}
$$

mgu is $\{X \leftarrow f(a), Z \leftarrow Y\}$

Unification algorithm : Examples

$$
\begin{array}{ll}
g(Y) & =X \\
f(X, h(X), Y) & =f(g(Z), W, Z) \\
& =g(Y) \\
X & \\
f(X, h(X), Y) & =f(g(Z), W, Z) \\
X & \\
X & g(Y) \\
X & g(Z) \\
h(X) & =W \\
Y & \\
& =g(Y) \\
g(Z) & \\
X & =g(Z) \\
h(g(Z)) & =W \\
Y & =Z
\end{array}
$$

Unification algorithm : Examples

$$
\begin{array}{ll}
Z & =Y \\
X & =g(Z) \\
h(g(Z)) & =W \\
Y & =Z \\
Z & =Z \\
X & =g(Z) \\
h(g(Z)) & =W \\
Y & =Z \\
X & \\
X & g(Z) \\
W & =h(g(Z)) \\
Y & =Z
\end{array}
$$

Equations $: \quad g(Y)=X, f(X, h(X), Y)=f(g(Z), W, Z)$ mgu $\quad: \quad\{X \leftarrow g(Z), W \leftarrow h(g(Z)), Y \leftarrow Z\}$

Unification algorithm : Correctness

- The algorithm terminates
- Rules 1-4 can be used only a finite number of times without using Rule 5
- Rule 5 can be used at most once for each variable
- When the algorithm terminates, all equations are of the form $X_{i}=t_{i}$. This defines a substitution

$$
\left\{X_{1} \leftarrow t_{1}, X_{2} \leftarrow t_{2}, \ldots, X_{n} \leftarrow t_{n}\right\}
$$

- This substitution is a unifier
- Every transformation preserves the set of unifiers
- This substitution is an mgu
- More complicated, omit

Type inference with shallow types

Syntax

- Built-in types i, j, k, \ldots
- A set of constants C_{i} for each built-in type i
- e.g., $i=$ Char, $C_{i}=\{$ 'a','b',... $\}$
- λ-terms

$$
\Lambda=c|x| \lambda x \cdot M \mid M N
$$

Type inference with shallow types

- $M=c \in C_{i} \leadsto M:: i$
- $M=x \sim M:: \alpha$ for a fresh type variable α
- $M=\lambda x \cdot M^{\prime} \leadsto M:: \alpha \rightarrow \beta$ for fresh type variables α, β.
- Inductively, $x:: \gamma$ in M^{\prime}
- Add equation $\alpha=\gamma$
- $M=M^{\prime} N^{\prime} \leadsto M:: \beta$ for fresh type variables β.
- Inductively, $M^{\prime}:: \alpha \rightarrow \beta, N^{\prime}:: \gamma$
- Add equation $\alpha=\gamma$

Type inference with shallow types

Consider

```
applypair f x y = (f x,f y)
```

Is the following expression well typed, where id $z=z$?

```
applypair id 7 'c' = (id 7, id 'c') = (7,'c')
```

We have to unify the following set of constraints

```
id :: a -> a
7 :: Int
'c' :: Char
a Int (from id 7)
a Char (from id 'c')
```

Not possible! Haskell compiler says

```
applypair :: (a -> b) -> a -> a -> (b,b)}
```


Type inference with shallow types

In the λ-calculus, we have

$$
\lambda f x y . \text { pair }(f x)(f y), \text { where pair } \equiv \lambda x y z .(z x y)
$$

When we pass a value for f, it has to unify with types of both x and y

- Every argument must have the same type across all copies

Suppose, we write, instead

```
applypair x y = (f x,f y) where f z = z
```

Now, we have
applypair :: a -> b -> (a,b)

What's going on?

Type inference with shallow types

Extend λ-calculus with "local" definitions, like where

$$
\Lambda=C_{i}|x| \lambda x . M|M N| \text { let } f=e \text { in } M
$$

Here is the λ-term for the second version of applypair

$$
\text { let } f=\lambda z . z \text { in } \lambda x y . \text { pair }(f x)(f y)
$$

In fact, Haskell allows both

$$
\text { let } f z=z \text { in applypair } x y=(f x, f y)
$$

and

$$
\text { applypair x y }=(f \mathrm{x}, \mathrm{f} \mathrm{y}) \text { where } \mathrm{f} \mathrm{z}=\mathrm{z}
$$

Type inference with shallow types

- let $f=e$ in $\lambda x . M$ and $(\lambda f x . M) e$ are equivalent with respect to β-reduction
- ... but type inference works differently for the two
- One may be typeable while the other is not
- $(\lambda I .(I I))(\lambda x . x)$
- let $I=\lambda x \cdot x$ in (II)

Type inference with shallow types

Type inference for $M=$ let $f=e$ in M^{\prime}
First attempt

- Assume $f:: t$ where α, β, \ldots are type variables occurring in t
- Make a separate copy of type variables for each instance of f in M^{\prime}

Example

- let $f=\lambda z . z$ in $\lambda x y$.pair $(f x)(f y)$
- First instance of f has type $\alpha_{1} \rightarrow \beta_{1}$
- Second instance of f has type $\alpha_{2} \rightarrow \beta_{2}$

Type inference with shallow types

A subtle problem

```
applypair2 w x y = ((tag x),(tag y))
    where
        tag = pair w
        pair s t = (s,t)
```

- applypair2 w x y $\rightarrow((\mathrm{w}, \mathrm{x}),(\mathrm{w}, \mathrm{y}))$
- Type should be applypair2 :: a -> b -> c -> ($(\mathrm{a}, \mathrm{b}),(\mathrm{a}, \mathrm{c}))$

Type inference with shallow types

```
applypair2 w x y = ((tag x),(tag y))
    where
        tag = pair w
        pair s t = (s,t)
```

Type inference

```
applypair2 :: a -> b -> c -> (d,e)
pair :: f -> g >> (f,g)
tag :: h -> (i,h)
```

- a = i because tag uses input w from applypair2
- Using let rule, two instances of tag get different types
- d = h1 -> (i1,h1)
- e = h2 -> (i2,h2)
- End up with
applypair2 :: a -> b -> c -> ((i1,b),(i2, c))
- The connection a $=\mathrm{i}=\mathrm{i} 1=\mathrm{i} 2$ is lost!

Type inference with shallow types

- In tag : : h $->$ (i,h)
- h is local to tag
- i is unified with type passed directly to main function
- h is called a generic variable
- Should not make copies of non-generic variables!

Correct type inference rule for $M=\operatorname{let} f=e$ in M^{\prime}

- Assume $f:: t$ where α, β, \ldots are generic type variables occurring in t
- Make a separate copy of these generic type variables for each instance of f in M^{\prime}
- Non-generic variables retain their name across all copies of f

