λ Calculus: Lecture 6

Madhavan Mukund

Chennai Mathematical Institute madhavan@cmi.ac.in

PLC, 27 March 2017

"Simply typed" λ-calculus

A separate set of variables $V a r_{s}$ for each type s
Define Λ_{s}, expressions of type s, by mutual recursion

- For each type s, every variable $x \in V a r_{s}$ is in Λ_{s}
- If $M \in \Lambda_{t}$ and $x \in \operatorname{Var}_{s}$ then $(\lambda x . M) \in \Lambda_{s \rightarrow t}$.
- If $M \in \Lambda_{s \rightarrow t}$ and $N \in \Lambda_{s}$ then $(M N) \in \Lambda_{t}$.
- Note that application must be well typed
β rule as usual
- $(\lambda x . M) N \rightarrow_{\beta} M\{x \leftarrow N\}$
- We must have $\lambda x \cdot M \in \Lambda_{s \rightarrow t}$ and $N \in \Lambda_{s}$ for some types s, t
- Moreover, if $\lambda x \cdot M \in \Lambda_{s \rightarrow t}$, then $x \in V a r_{s}$, so x and N are compatible

"Simply typed" λ-calculus

- Extend \rightarrow_{β} to one-step reduction \rightarrow, as usual
- The reduction relation \rightarrow^{*} is Church-Rosser
- In fact, \rightarrow^{*} is strongly normalizing
- M is normalizing: M has a normal form.
- M is strongly normalizing : every reduction sequence leads to a normal form
- No infinite computations!

Type checking

- Syntax of simply typed λ-calculus permits only well-typed terms
- Converse question; Given an arbitrary term, is it well-typed?

Theorem
The type-checking problem for the simply typed
λ-calculus is decidable

- Principal type scheme of a term M - unique type s such that every other valid type is an "instance" of s

Theorem

We can always compute the principal type scheme for any well-typed term in the simply typed λ-calculus.

System F

- Add type variables, a, b, \ldots
- Use i, j, \ldots to denote concrete types
- Type schemes

$$
s::=a|i| s \rightarrow s \mid \forall a . s
$$

System F

Syntax of second order polymorphic lambda calculus

- Every variable and (type) constant is a term.
- If M is a term, x is a variable and s is a type scheme, then $(\lambda x \in s . M)$ is a term.
- If M and N are terms, so is (MN).
- Function application does not enforce type check
- If M is a term and a is a type variable, then ($(a . M)$ is a term.
- Type abstraction
- If M is a term and s is a type scheme, ($M s$) is a term.
- Type application

System F

Example A polymorphic identity function

$$
\Lambda a . \lambda x \in a \cdot x
$$

Two β rules, for two types of abstraction

- $(\lambda x \in s . M) N \rightarrow_{\beta} M\{x \leftarrow N\}$
- ($\Lambda a . M) s \rightarrow_{\beta} M\{a \leftarrow s\}$

System F

- System F is also strongly normalizing
- ... but type inference is undecidable!
- Given an arbitrary term, can it be assigned a sensible type?

Type inference in System F

- Type of a complex expression can be deduced from types assigned to its parts
- To formalize this, define a relation $A \vdash M: s$
- A is list $\left\{x_{i}: t_{i}\right\}$ of type "assumptions" for variables
- Under the assumptions in A, the expression M has type s.
- Inference rules to derive type judgments of the form $A \vdash M$: s

Type inference in System F

Notation

If A is a list of assumptions, $A+\{x: s\}$ is the list where

- Assumption for x in A (if any) is overridden by the new assumption x : s.
- For any variable $y \neq x$, assumption does not change

$$
\begin{gathered}
\frac{A+\{x: s\} \vdash M: t}{A \vdash(\lambda x \in s . M): s \rightarrow t} \\
\frac{A \vdash M: s \rightarrow t, A \vdash N: s}{A \vdash(M N): t} \\
\frac{A \vdash M: s}{A \vdash(\Lambda a . M): \forall a . s} \\
\frac{A \vdash M: \forall a . s}{A \vdash M t: s\{a \leftarrow t\}}
\end{gathered}
$$

Type inference in System F

Example Deriving the type of polymorphic identity function

$$
\begin{gathered}
\wedge a \cdot \lambda x \in a \cdot x \\
\frac{x: a \vdash x: a}{\vdash(\lambda x \in a \cdot x): a \rightarrow a} \\
\vdash(\Lambda a \cdot \lambda x \in a \cdot x): \forall a \cdot a \rightarrow a
\end{gathered}
$$

Type inference in System F

- Type inference is undecidable for System F
- ... but we have type-checking algorithms for Haskell, ML,!
- Haskell etc use a restricted version of polymorphic types
- All types are universally quantified at the top level
- When we write map :: (a -> b) -> [a] -> [b], we mean that the type is

$$
\text { map }:: \forall a, b .(a \rightarrow b) \rightarrow[a] \rightarrow[b]
$$

- Also called shallow typing
- System F permits deep typing

$$
\forall a .[(\forall b . a \rightarrow b) \rightarrow a \rightarrow a]
$$

Type inference as equation solving

What is the type of twice $f x=f(f x)$?

- Generically, twice : : a -> b -> c
- We then reason as follows

$$
\begin{array}{lll}
a=d->e & \text { (because } f \text { is a function) } \\
b=d & & \text { (because } f \text { is applied to } x) \\
b=d & & \text { (because } f \text { is applied to }(f x)) \\
c=e & & \text { (because output of twice is } f(f x))
\end{array}
$$

- Thus $\mathrm{b}=\mathrm{c}=\mathrm{d}=\mathrm{e}$ and $\mathrm{a}=\mathrm{b} \rightarrow \mathrm{b}$
- Most general type is twice : $(\mathrm{b}->\mathrm{b})$-> b $->\mathrm{b}$

Unification

- Start with a system of equations over terms
- Find a substitution for variables that satisfies the equation
- Least constrained solution : most general unifier (mgu)

Terms

- Fix a set of function symbols and constants : signature
- Each function symbol as an arity
- Constants are functions with arity 0
- Terms are well formed expressions, including variables
- Every variable is a term.
- If f is a k-ary function symbol in the signature and t_{1}, t_{2}, \ldots, t_{k} are terms, then $f\left(t_{1}, t_{2}, \ldots, t_{k}\right)$ is a term.
- Notation
- $a, b, c, f, \ldots, x, y, \ldots$ are function symbols
- $A, B, C, F, \ldots, X, Y, \ldots$ are variables

Unification

Example

$$
\begin{aligned}
& f(X)=f(f(a)) \\
& g(Y)=g(Z)
\end{aligned}
$$

- Substitution: assigns a term to each variable X, Y, Z
- Unifier: substitution that satisfies equations
- For instance, $\{X \leftarrow f(a), Y \leftarrow g(a), Z \leftarrow g(a)\}=\theta$
- $t \theta$: apply substitution θ to term t (not $\theta(t)!$)
- Apply substitution in parallel
- $t=g(p(X), q(f(Y)))$
- $\gamma=\{X \leftarrow Y, Y \leftarrow f(a)\}$
- $t \gamma=g(p(Y), q(f(f(a))))$
- $g(p(Y))$ does not become $g(p(f(a)))$!

Unification

$$
\begin{aligned}
& f(X)=f(f(a)) \\
& g(Y)=g(Z)
\end{aligned}
$$

- Many solutions are possible:
- $\theta=\{X \leftarrow f(a), Y \leftarrow g(a), Z \leftarrow g(a)\}$
- $\theta^{\prime}=\{X \leftarrow f(a), Y \leftarrow a, Z \leftarrow a\}$
- $\theta^{\prime \prime}=\{X \leftarrow f(a), Y \leftarrow Z\}$
- $\theta^{\prime \prime}$ is the "least constrained"
- Any solution γ breaks up into two steps, first of which is $\theta^{\prime \prime}$
- θ is $\theta^{\prime \prime}$ followed by $\{Y \leftarrow g(a)\}$
- Least constrained solution: most general unifier

Unification

Obstacles to unification

- Equations of the form $p(\ldots)=q(\ldots)$
- Outermost function symbols don't agree
- No substitution can make the terms equal
- Equations of the form $X=f(\ldots X \ldots)$
- Any substitution for X also applies to X nested in f
- These are the only two reasons why unification can fail!

A unification algorithm

- Start with equations

$$
\begin{aligned}
t_{1}^{\prime} & =t_{1}^{r} \\
t_{2}^{l} & =t_{2}^{r} \\
& \vdots \\
t_{n}^{\prime} & =t_{n}^{r}
\end{aligned}
$$

- Perform a sequence of transformations on these equations till no more transformations apply

Unification algorithm : transformations

1. $t=X, t$ is not a variable $\leadsto X=t$.
2. Erase equations of form $X=X$.
3. Let $t=t^{\prime}$ where $t=f(\ldots), t^{\prime}=f^{\prime}(\ldots)$

- $f \neq f^{\prime} \leadsto$ terminate : unification not possible
- Otherwise, $f\left(t_{1}, t_{2}, \ldots, t_{k}\right)=f\left(t_{1}^{\prime}, t_{2}^{\prime}, \ldots, t_{k}^{\prime}\right)$

Replace by k new equations

$$
t_{1}=t_{1}^{\prime}, t_{2}=t_{2}^{\prime}, \ldots, t_{k}=t_{k}^{\prime}
$$

4. $X=t, X$ occurs in $t \leadsto$ terminate: unification not possible
5. $X=t, X$ does not occur in t, X occurs in other equations \leadsto Replace all occurrence of X in other equations by t.

Unification algorithm : Examples

$$
\begin{array}{ll}
f(X) & =f(f(a)) \\
g(Y) & =g(Z) \\
& \\
X & =f(a) \\
g(Y) & =g(Z) \\
& \\
X & =f(a) \\
Y & =Z
\end{array}
$$

mgu is $\{X \leftarrow f(a), Z \leftarrow Y\}$

Unification algorithm : Examples

$$
\begin{array}{ll}
g(Y) & =X \\
f(X, h(X), Y) & =f(g(Z), W, Z) \\
& =g(Y) \\
X & \\
f(X, h(X), Y) & =f(g(Z), W, Z) \\
X & \\
X & g(Y) \\
X & g(Z) \\
h(X) & =W \\
Y & \\
& =g(Y) \\
g(Z) & \\
X & =g(Z) \\
h(g(Z)) & =W \\
Y & =Z
\end{array}
$$

Unification algorithm : Examples

$$
\begin{array}{ll}
Z & =Y \\
X & =g(Z) \\
h(g(Z)) & =W \\
Y & =Z \\
Z & =Z \\
X & =g(Z) \\
h(g(Z)) & =W \\
Y & =Z \\
X & \\
X & \\
X & =h(Z) \\
Y & =Z
\end{array}
$$

Equations $: \quad g(Y)=X, f(X, h(X), Y)=f(g(Z), W, Z)$
mgu $\quad: \quad\{X \leftarrow g(Z), W \leftarrow h(g(Z)), Y \leftarrow Z\}$

Unification algorithm : Correctness

1. $t=X, t$ is not a variable $\leadsto X=t$.
2. Erase equations of form $X=X$.
3. Let $t=t^{\prime}$ where $t=f(\ldots), t^{\prime}=f^{\prime}(\ldots)$

- $f \neq f^{\prime} \leadsto$ terminate : unification not possible
- Otherwise, $f\left(t_{1}, t_{2}, \ldots, t_{k}\right)=f\left(t_{1}^{\prime}, t_{2}^{\prime}, \ldots, t_{k}^{\prime}\right)$

Replace by k new equations

$$
t_{1}=t_{1}^{\prime}, t_{2}=t_{2}^{\prime}, \ldots, t_{k}=t_{k}^{\prime}
$$

4. $X=t, X$ occurs in $t \leadsto$ terminate: unification not possible
5. $X=t, X$ does not occur in t, X occurs in other equations \leadsto Replace all occurrence of X in other equations by t.

Unification algorithm : Correctness

- The algorithm terminates
- Rules 1-4 can be used only a finite number of times without using Rule 5
- Rule 5 can be used at most once for each variable
- When the algorithm terminates, all equations are of the form $X_{i}=t_{i}$. This defines a substitution

$$
\left\{X_{1} \leftarrow t_{1}, X_{2} \leftarrow t_{2}, \ldots, X_{n} \leftarrow t_{n}\right\}
$$

- This substitution is a unifier
- Every transformation preserves the set of unifiers
- This substitution is an mgu
- More complicated, omit

