λ Calculus: Lecture 6

Madhavan Mukund

Chennai Mathematical Institute madhavan@cmi.ac.in

PLC, 27 March 2017

"Simply typed" λ -calculus

A separate set of variables Var_s for each type sDefine Λ_s , expressions of type s, by mutual recursion

- ► For each type s, every variable $x \in Var_s$ is in Λ_s
- ▶ If $M \in \Lambda_t$ and $x \in Var_s$ then $(\lambda x.M) \in \Lambda_{s \to t}$.
- ▶ If $M \in \Lambda_{s \to t}$ and $N \in \Lambda_s$ then $(MN) \in \Lambda_t$.
 - Note that application must be well typed

β rule as usual

- ▶ We must have $\lambda x.M \in \Lambda_{s \to t}$ and $N \in \Lambda_s$ for some types s, t
- ▶ Moreover, if $\lambda x.M \in \Lambda_{s \to t}$, then $x \in Var_s$, so x and N are compatible

"Simply typed" λ -calculus . . .

- ▶ Extend \rightarrow_{β} to one-step reduction \rightarrow , as usual
- ▶ The reduction relation \rightarrow^* is Church-Rosser
- ▶ In fact, \rightarrow^* is strongly normalizing
 - ▶ *M* is normalizing : *M* has a normal form.
 - M is strongly normalizing: every reduction sequence leads to a normal form
- No infinite computations!

Type checking

- Syntax of simply typed λ -calculus permits only well-typed terms
- ► Converse question; Given an arbitrary term, is it well-typed?

Theorem

The type-checking problem for the simply typed λ -calculus is decidable

▶ Principal type scheme of a term M — unique type s such that every other valid type is an "instance" of s

Theorem

We can always compute the principal type scheme for any well-typed term in the simply typed λ -calculus.

- ► Add type variables, *a*, *b*, . . .
- ▶ Use i, j, . . . to denote concrete types
- Type schemes

$$s ::= a \mid i \mid s \rightarrow s \mid \forall a.s$$

Syntax of second order polymorphic lambda calculus

- Every variable and (type) constant is a term.
- ▶ If M is a term, x is a variable and s is a type scheme, then $(\lambda x \in s.M)$ is a term.
- ▶ If M and N are terms, so is (MN).
 - Function application does not enforce type check
- ▶ If M is a term and a is a type variable, then $(\Lambda a.M)$ is a term.
 - ► Type abstraction
- ▶ If M is a term and s is a type scheme, (Ms) is a term.
 - ► Type application

Example A polymorphic identity function

$$\Lambda a.\lambda x \in a.x$$

Two β rules, for two types of abstraction

- $(\lambda x \in s.M) N \to_{\beta} M\{x \leftarrow N\}$

- System F is also strongly normalizing
- ▶ ... but type inference is undecidable!
 - ▶ Given an arbitrary term, can it be assigned a sensible type?

- ► Type of a complex expression can be deduced from types assigned to its parts
- ▶ To formalize this, define a relation $A \vdash M : s$
 - ▶ A is list $\{x_i : t_i\}$ of type "assumptions" for variables
 - ▶ Under the assumptions in *A*, the expression *M* has type *s*.
- Inference rules to derive type judgments of the form A ⊢ M : s

Notation

If A is a list of assumptions, $A + \{x : s\}$ is the list where

- ► Assumption for x in A (if any) is overridden by the new assumption x : s.
- ▶ For any variable $y \neq x$, assumption does not change

$$\frac{A + \{x : s\} \vdash M : t}{A \vdash (\lambda x \in s.M) : s \to t}$$

$$\frac{A \vdash M : s \to t, \quad A \vdash N : s}{A \vdash (MN) : t}$$

$$\frac{A \vdash M : s}{A \vdash (\Lambda a.M) : \forall a.s}$$

$$\frac{A \vdash M : \forall a.s}{A \vdash Mt : s\{a \leftarrow t\}}$$

Example Deriving the type of polymorphic identity function

$$\Lambda a.\lambda x \in a.x$$

$$\frac{x: a \vdash x: a}{\vdash (\lambda x \in a.x): a \to a}$$
$$\vdash (\Lambda a.\lambda x \in a.x): \forall a.a \to a$$

- Type inference is undecidable for System F
- but we have type-checking algorithms for Haskell, ML, ...!
- Haskell etc use a restricted version of polymorphic types
 - All types are universally quantified at the top level
- When we write map :: (a → b) → [a] → [b], we mean that the type is

map ::
$$\forall a, b. (a \rightarrow b) \rightarrow [a] \rightarrow [b]$$

- Also called shallow typing
- System F permits deep typing

$$\forall a. \ [(\forall b. \ a \rightarrow b) \rightarrow a \rightarrow a]$$

Type inference as equation solving

What is the type of twice f x = f (f x)?

- ► Generically, twice :: a -> b -> c
- We then reason as follows

```
a = d -> e (because f is a function)
b = d (because f is applied to x)
e = d (because f is applied to (f x))
c = e (because output of twice is f (f x))
```

- ▶ Thus b = c = d = e and a = b → b
- ► Most general type is twice :: (b -> b) -> b -> b

- Start with a system of equations over terms
- ► Find a substitution for variables that satisfies the equation
- ► Least constrained solution : most general unifier (mgu)

Terms

- ► Fix a set of function symbols and constants : signature
 - Each function symbol as an arity
 - Constants are functions with arity 0
- ► Terms are well formed expressions, including variables
 - Every variable is a term.
 - If f is a k-ary function symbol in the signature and t_1, t_2, \ldots, t_k are terms, then $f(t_1, t_2, \ldots, t_k)$ is a term.
- Notation
 - $ightharpoonup a, b, c, f, \dots, x, y, \dots$ are function symbols
 - \blacktriangleright A, B, C, F, ..., X, Y, ... are variables

Example

$$f(X) = f(f(a))$$

$$g(Y) = g(Z)$$

- ► Substitution: assigns a term to each variable X, Y, Z
- Unifier: substitution that satisfies equations
- ▶ For instance, $\{X \leftarrow f(a), Y \leftarrow g(a), Z \leftarrow g(a)\} = \theta$
- ▶ $t\theta$: apply substitution θ to term t (not $\theta(t)$!)
- Apply substitution in parallel
 - ▶ t = g(p(X), q(f(Y)))

 - $t\gamma = g(p(Y), q(f(f(a))))$
 - g(p(Y)) does not become g(p(f(a)))!

$$f(X) = f(f(a))$$

$$g(Y) = g(Z)$$

Many solutions are possible:

$$\bullet \ \theta = \{X \leftarrow f(a), Y \leftarrow g(a), Z \leftarrow g(a)\}$$

$$\bullet \ \theta' = \{X \leftarrow f(a), Y \leftarrow a, Z \leftarrow a\}$$

$$\bullet \ \theta'' = \{X \leftarrow f(a), Y \leftarrow Z\}$$

- \triangleright θ'' is the "least constrained"
- Any solution γ breaks up into two steps, first of which is θ''
 - ▶ θ is θ'' followed by $\{Y \leftarrow g(a)\}$
- Least constrained solution: most general unifier

Obstacles to unification

- ▶ Equations of the form p(...) = q(...)
 - Outermost function symbols don't agree
 - No substitution can make the terms equal
- ▶ Equations of the form X = f(...X...)
 - Any substitution for X also applies to X nested in f
- These are the only two reasons why unification can fail!

A unification algorithm

Start with equations

$$\begin{array}{cccc} t_1^I & = & t_1^r \\ t_2^I & = & t_2^r \\ & \vdots & \\ t_n^I & = & t_n^r \end{array}$$

▶ Perform a sequence of transformations on these equations till no more transformations apply

Unification algorithm: transformations

- 1. t = X, t is not a variable $\rightsquigarrow X = t$.
- 2. Erase equations of form X = X.
- 3. Let t = t' where $t = f(\ldots)$, $t' = f'(\ldots)$
 - $f \neq f' \sim$ terminate : unification not possible
 - ▶ Otherwise, $f(t_1, t_2, ..., t_k) = f(t'_1, t'_2, ..., t'_k)$

Replace by k new equations

$$t_1 = t_1', t_2 = t_2', \dots, t_k = t_k'$$

- 4. X = t, X occurs in $t \rightarrow$ terminate: unification not possible
- 5. X = t, X does not occur in t, X occurs in other equations \rightarrow Replace all occurrence of X in other equations by t.

Unification algorithm: Examples

$$f(X) = f(f(a))$$

$$g(Y) = g(Z)$$

$$X = f(a)$$

$$g(Y) = g(Z)$$

$$X = f(a)$$

$$Y = Z$$

$$mgu is \{X \leftarrow f(a), Z \leftarrow Y\}$$

Unification algorithm : Examples . . .

$$g(Y) = X$$

$$f(X, h(X), Y) = f(g(Z), W, Z)$$

$$X = g(Y)$$

$$f(X, h(X), Y) = f(g(Z), W, Z)$$

$$X = g(Y)$$

$$X = g(Z)$$

$$h(X) = W$$

$$Y = Z$$

$$g(Z) = g(Y)$$

$$X = g(Z)$$

$$h(g(Z)) = W$$

$$Y = Z$$

Unification algorithm : Examples . . .

$$Z = Y$$

$$X = g(Z)$$

$$h(g(Z)) = W$$

$$Y = Z$$

$$Z = Z$$

$$X = g(Z)$$

$$h(g(Z)) = W$$

$$Y = Z$$

$$X = g(Z)$$

$$W = h(g(Z))$$

$$Y = Z$$

$$X = g(Z)$$

$$W = Z$$

Equations :
$$g(Y) = X$$
, $f(X, h(X), Y) = f(g(Z), W, Z)$
mgu : $\{X \leftarrow g(Z), W \leftarrow h(g(Z)), Y \leftarrow Z\}$

Unification algorithm : Correctness

- 1. t = X, t is not a variable $\rightsquigarrow X = t$.
- 2. Erase equations of form X = X.
- 3. Let t = t' where t = f(...), t' = f'(...)
 - $f \neq f' \sim$ terminate : unification not possible
 - ▶ Otherwise, $f(t_1, t_2, ..., t_k) = f(t'_1, t'_2, ..., t'_k)$ Replace by k new equations

$$t_1 = t'_1, t_2 = t'_2, \dots, t_k = t'_k$$

- 4. X = t, X occurs in $t \sim$ terminate: unification not possible
- 5. X = t, X does not occur in t, X occurs in other equations \rightarrow Replace all occurrence of X in other equations by t.

Unification algorithm : Correctness

- The algorithm terminates
 - ► Rules 1–4 can be used only a finite number of times without using Rule 5
 - ▶ Rule 5 can be used at most once for each variable
- ▶ When the algorithm terminates, all equations are of the form $X_i = t_i$. This defines a substitution

$$\{X_1 \leftarrow t_1, X_2 \leftarrow t_2, \dots, X_n \leftarrow t_n\}$$

- ▶ This substitution is a unifier
 - Every transformation preserves the set of unifiers
- ► This substitution is an mgu
 - More complicated, omit