A Calculus: Lecture 6

Madhavan Mukund

Chennai Mathematical Institute

madhavan@cmi.ac.in

PLC, 27 March 2017


madhavan@cmi.ac.in

“Simply typed” A-calculus

A separate set of variables Var; for each type s

Define Ag, expressions of type s, by mutual recursion
» For each type s, every variable x € Vars is in Ag
» If M € Ay and x € Vars then (Ax.M) € No_;.

» If M € Asyp and N € Ag then (MN) € A,.
» Note that application must be well typed

[ rule as usual
» (Ax.M)N =5 M{x < N}
» We must have \x.M € As_+ and N € A for some types s, t

» Moreover, if Ax.M € As_,+, then x € Vars, so x and N are
compatible



“Simply typed” A-calculus ...

» Extend — 3 to one-step reduction —, as usual
» The reduction relation —* is Church-Rosser
» In fact, —" is strongly normalizing
» M is normalizing : M has a normal form.
» M is strongly normalizing : every reduction sequence leads to a
normal form
» No infinite computations!



Type checking

» Syntax of simply typed A-calculus permits only well-typed

terms

» Converse question; Given an arbitrary term, is it well-typed?

Theorem
The type-checking problem for the simply typed

A-calculus is decidable

» Principal type scheme of a term M — unique type s such that
every other valid type is an “instance” of s

Theorem
We can always compute the principal type scheme for

any well-typed term in the simply typed \-calculus.



System F

> Add type variables, a, b, ...
» Use /, j, ...to denote concrete types

» Type schemes

su=al|i|s—s|Vas



System F

Syntax of second order polymorphic lambda calculus

» Every variable and (type) constant is a term.

» If M is a term, x is a variable and s is a type scheme, then
(Ax € s.M) is a term.

v

If M and N are terms, so is (MN).

» Function application does not enforce type check

v

If M is a term and a is a type variable, then (Aa.M) is a term.
» Type abstraction

v

If M is a term and s is a type scheme, (Ms) is a term.

» Type application



System F

Example A polymorphic identity function

Na.Ax € a.x

Two (3 rules, for two types of abstraction

» (Ax € s.M)N =5 M{x < N}

» (ANa.M)s —5 M{a + s}



System F

» System F is also strongly normalizing

> ...but type inference is undecidable!

» Given an arbitrary term, can it be assigned a sensible type?



Type inference in System F

» Type of a complex expression can be deduced from types
assigned to its parts

» To formalize this, define a relation A M : s
» Alis list {x; : t;} of type “assumptions” for variables
» Under the assumptions in A, the expression M has type s.

> Inference rules to derive type judgments of the form A+ M : s



Type inference in System F

Notation
If Ais a list of assumptions, A+ {x : s} is the list where

» Assumption for x in A (if any) is overridden by the new
assumption x : s.

» For any variable y # x, assumption does not change

A+{x:s}-M:t
AF(Ax€esM):s—t
AEM:s—t, AEN:s

At (MN) :t
AFM:s
At (Na.M) : Va.s

AFM :Vas
A Mt :s{a<+ t}




Type inference in System F

Example Deriving the type of polymorphic identity function

Na.Ax € a.x

x:abFx:a

F(Ax€ax):a—a

F(Aa.Xx € a.x) :Va.a— a



Type inference in System F

» Type inference is undecidable for System F

> ...but we have type-checking algorithms for Haskell, ML, ...!

v

Haskell etc use a restricted version of polymorphic types

> All types are universally quantified at the top level

» When we write map :: (a -> b) -> [a] -> [b], we
mean that the type is

map ::Va,b. (a — b) — [a] — [b]

v

Also called shallow typing

v

System F permits deep typing

Va. [(Vb. a — b) — a — 4]



Type inference as equation solving

What is the type of twice f x = £ (£ x)7

» Generically, twice :: a -> b -> ¢

» We then reason as follows

a = d ->e (because f is a function)

b = 4d (because f is applied to x)

e = d (because f is applied to (f x))

c = e (because output of twice is £ (f x))

» Thusb=c=d=eanda=b -> b

» Most general type is twice :: (b -> b) -> b -> b



Unification

» Start with a system of equations over terms
» Find a substitution for variables that satisfies the equation

» Least constrained solution : most general unifier (mgu)



Terms

» Fix a set of function symbols and constants : signature
» Each function symbol as an arity

» Constants are functions with arity 0

» Terms are well formed expressions, including variables

» Every variable is a term.

» If f is a k-ary function symbol in the signature and ti, t, ...

tx are terms, then f(t1, to, ..., tx) is a term.
» Notation
» a,b,c,f,...,x,y,... are function symbols

» AB,C,F,....X,Y,...are variables



Unification

Example
f(X) = f(f(a))
g(Y) = g(2)
» Substitution: assigns a term to each variable X, Y, Z

v

Unifier: substitution that satisfies equations

v

For instance, {X < f(a),Y < g(a),Z «+ g(a)} =0

v

t0: apply substitution ¢ to term t (not 6(t)!)

v

Apply substitution in parallel
» t = g(p(X),q(f(Y)))
» y={X <« Y, Y+ f(a)}
» ty =g(p(Y),q(f(f(a))))
» g(p(Y)) does not become g(p(f(a)))!



Unification

v

Many solutions are possible:

» 0={X <+ f(a),Y « g(a),Z < g(a)}
» O ={X <« f(a),Y + a,Z <« a}
» 0" ={X<+f(a),Y + Z}

0" is the “least constrained”

v

v

Any solution 7 breaks up into two steps, first of which is 6"
» 0 is 0" followed by {Y + g(a)}

> Least constrained solution: most general unifier



Unification

Obstacles to unification

» Equations of the form p(...) =q(...)

» Outermost function symbols don't agree

» No substitution can make the terms equal

» Equations of the form X = f(... X ...)
» Any substitution for X also applies to X nested in f

» These are the only two reasons why unification can fail!



A unification algorithm

» Start with equations

th =
o= t
th = tr

» Perform a sequence of transformations on these equations till
no more transformations apply



Unification algorithm : transformations

1.
2.
3.

t = X, tis not a variable ~ X = t.
Erase equations of form X = X.

Let t =t where t = f(...), t' =f'(...)
» f = '~ terminate : unification not possible
» Otherwise, (t1, to, ..., tx) = F(t],th, ..., t})
Replace by k new equations

=t th=1th..., tk = t,

X =t, X occurs in t ~ terminate: unification not possible

X = t, X does not occur in t, X occurs in other equations
~ Replace all occurrence of X in other equations by t.



Unification algorithm : Examples

f(X) = f(f(a)
g(Y) = g(2)
X = f(a)
g(Y) = g(2)
X = f(a)
Y = Z

mgu is {X < f(a),Z < Y}



Unification algorithm : Examples ...

g(Y) = X
F(X,h(X),Y) = f(g(2),W,2)
X = g(Y)
FIX,h(X),Y) = f(g(2),W,2)
X = g(v)

X = g(2)

h(X) - W

Y - Z

<= X®
)
N
(1 [T
NI



Unification algorithm : Examples ...

z - v
X = g(2)
h(g(2)) = W

1% - Z

z - Z

X = &(2)
h(g(z)) = W

Y - Z

X = g(2)
w = h(g(2))
% - Z

Equations : g(Y) =X, f(X,h(X),Y)=1~(g(2),W,2)
mgu : {X <« g(Z2),W « h(g(2)),Y <+ Z}



Unification algorithm : Correctness

1.
2.
3.

t = X, tis not a variable ~ X = t.
Erase equations of form X = X.

Let t =t where t = f(...), t' =f'(...)
» f = '~ terminate : unification not possible
» Otherwise, f(t1, to, ..., tx) = F(t],th, ..., t})
Replace by k new equations

=t th=1th..., tk = t,

X =t, X occurs in t ~ terminate: unification not possible

X = t, X does not occur in t, X occurs in other equations
~ Replace all occurrence of X in other equations by t.



Unification algorithm : Correctness

> The algorithm terminates

» Rules 1-4 can be used only a finite number of times without
using Rule 5

» Rule 5 can be used at most once for each variable

> When the algorithm terminates, all equations are of the form
X; = t;. This defines a substitution

{X1% t1, Xo  to, ..., Xy l’n}

» This substitution is a unifier

» Every transformation preserves the set of unifiers

» This substitution is an mgu

» More complicated, omit



