λ Calculus: Lecture 5

Madhavan Mukund

Chennai Mathematical Institute madhavan@cmi.ac.in

PLC, 20 March 2017

Adding types to $\lambda\text{-calculus}$

- The basic λ-calculus is untyped
- The first functional programming language, LISP, was also untyped
- ► Modern languages such as Haskell, ML, ... are strongly typed
- What is the theoretical foundation for such languages?

Types in functional programming

The structure of types in Haskell

- Basic types—Int, Bool, Float, Char
- Structured types

- Function types
 - ▶ If a, b are types, so is a -> b
 - Function with input a, output b
- User defined types
 - ▶ Data day = Sun | Mon | Tue | Wed | Thu | Fri | Sat
 - ▶ Data BTree a = Nil | Node (BTree a) a (Btree a)

Adding types to λ -calculus . . .

• Set Λ of untyped lambda expressions is given by

 $\Lambda = x \mid \lambda x.M \mid MM'$

where $x \in Var$, $M, M' \in \Lambda$.

- Add a syntax for basic types
- When constructing expressions, build up the type from the types of the parts

Adding types to λ -calculus . . .

- \blacktriangleright Restrict our language to have just one basic type, written as τ
- No structured types (lists, tuples, ...)
- ▶ Function types arise naturally $(\tau \rightarrow \tau, (\tau \rightarrow \tau) \rightarrow \tau \rightarrow \tau, ...$

"Simply typed" λ -calculus

A separate set of variables Var_s for each type sDefine Λ_s , expressions of type s, by mutual recursion

- For each type s, every variable $x \in Var_s$ is in Λ_s
- If $M \in \Lambda_t$ and $x \in Var_s$ then $(\lambda x.M) \in \Lambda_{s \to t}$.
- If $M \in \Lambda_{s \to t}$ and $N \in \Lambda_s$ then $(MN) \in \Lambda_t$.

Note that application must be well typed

- β rule as usual
 - $\blacktriangleright (\lambda x.M) N \rightarrow_{\beta} M\{x \leftarrow N\}$
 - ▶ We must have $\lambda x.M \in \Lambda_{s \to t}$ and $N \in \Lambda_s$ for some types s, t
 - Moreover, if λx.M ∈ Λ_{s→t}, then x ∈ Var_s, so x and N are compatible

"Simply typed" λ -calculus ...

- Extend \rightarrow_{β} to one-step reduction \rightarrow , as usual
- The reduction relation \rightarrow^* is Church-Rosser
- In fact, \rightarrow^* satisifies a much strong property

Strong normalization

A λ -expression is

- normalizing if it has a normal form.
- strongly normalizing if every reduction sequence leads to a normal form

Examples

- $(\lambda x.xx)(\lambda x.xx)$ is not normalizing
- $(\lambda yz.z)((\lambda x.xx)(\lambda x.xx))$ is not strongly normalizing.

Strong normalization ...

A $\lambda\text{-calculus}$ is strongly normalizing if every term in the calculus is strongly normalizing

Theorem

The simply typed λ -calculus is strongly normalizing

Proof intuition

- Each β -reduction reduces the type complexity of the term
- Cannot have an infinite sequence of reductions

Type checking

- Syntax of simply typed λ-calculus permits only well-typed terms
- Converse question; Given an arbitrary term, is it well-typed?
 - For instance, we cannot assign a valid type to $f f \dots$
 - ... so f f is not a valid expression in this calculus

Theorem

The type-checking problem for the simply typed λ -calculus is decidable

Type checking ...

- A term may admit multiple types
 - $\lambda x.x$ can be of type au o au, (au o au) o (au o au), ...
- Principal type scheme of a term M unique type s such that every other valid type is an "instance" of s
 - Uniformly replace $\tau \in s$ by another type
 - $\tau \rightarrow \tau$ is principal type scheme of $\lambda x.x$

Theorem

We can always compute the principal type scheme for any well-typed term in the simply typed λ -calculus.

Computability with simple types

- Church numerals are well typed
- Translations of basic recursive functions (zero, successor, projection) are well-typed
- Translation of function composition is well typed
- Translation of primitive recursion is well typed
- Translation of minimalization requires elimination of recursive definitions
 - Uses untypable expressions of the form f f
- Minimalization introduces non terminating computations, but we have strong normalization!
- ► However, there do exist total recursive functions that are not primitive recursive — e.g. Ackermann's function

Polymorphism

- Simply typed λ -calculus has explicit types
- Languages like Haskell have polymorphic types
 - Compare id :: a -> a with $\lambda x.x : \tau \to \tau$
- Second-order polymorhpic typed lambda calculus (System F)
 - Jean-Yves Girard
 - John Reynolds

System F

- Add type variables, a, b, ...
- ▶ Use *i*, *j*, ... to denote concrete types
- Type schemes

 $s ::= a \mid i \mid s \to s \mid \forall a.s$

System F

Syntax of second order polymorphic lambda calculus

- Every variable and (type) constant is a term.
- If M is a term, x is a variable and s is a type scheme, then (λx ∈ s.M) is a term.
- ▶ If *M* and *N* are terms, so is (*MN*).
 - Function application does not enforce type check
- If *M* is a term and *a* is a type variable, then $(\Lambda a.M)$ is a term.
 - Type abstraction
- If M is a term and s is a type scheme, (Ms) is a term.
 - Type application

System F

Example A polymorphic identity function

$\Lambda a.\lambda x \in a.x$

Two β rules, for two types of abstraction

- $(\lambda x \in s.M)N \rightarrow_{\beta} M\{x \leftarrow N\}$
- $(\Lambda a.M)s \rightarrow_{\beta} M\{a \leftarrow s\}$