
λ Calculus: Lecture 5

Madhavan Mukund

Chennai Mathematical Institute

madhavan@cmi.ac.in

PLC, 20 March 2017

madhavan@cmi.ac.in

Adding types to λ-calculus

I The basic λ-calculus is untyped

I The first functional programming language, LISP, was also
untyped

I Modern languages such as Haskell, ML, . . . are strongly typed

I What is the theoretical foundation for such languages?

Types in functional programming

The structure of types in Haskell

I Basic types—Int, Bool, Float, Char

I Structured types

[Lists] If a is a type, so is [a]

[Tuples] If a1, a2, . . . , ak are types, so is
(a1,a2,...,ak)

I Function types

I If a, b are types, so is a -> b
I Function with input a, output b

I User defined types

I Data day = Sun | Mon | Tue | Wed | Thu | Fri | Sat
I Data BTree a = Nil | Node (BTree a) a (Btree a)

Adding types to λ-calculus . . .

I Set Λ of untyped lambda expressions is given by

Λ = x | λx .M | MM ′

where x ∈ Var , M,M ′ ∈ Λ.

I Add a syntax for basic types

I When constructing expressions, build up the type from the
types of the parts

Adding types to λ-calculus . . .

I Restrict our language to have just one basic type, written as τ

I No structured types (lists, tuples, . . .)

I Function types arise naturally (τ → τ , (τ → τ)→ τ → τ , . . .

“Simply typed” λ-calculus

A separate set of variables Vars for each type s

Define Λs , expressions of type s, by mutual recursion

I For each type s, every variable x ∈ Vars is in Λs

I If M ∈ Λt and x ∈ Vars then (λx .M) ∈ Λs→t .

I If M ∈ Λs→t and N ∈ Λs then (MN) ∈ Λt .

I Note that application must be well typed

β rule as usual

I (λx .M)N →β M{x ← N}

I We must have λx .M ∈ Λs→t and N ∈ Λs for some types s, t

I Moreover, if λx .M ∈ Λs→t , then x ∈ Vars , so x and N are
compatible

“Simply typed” λ-calculus . . .

I Extend →β to one-step reduction →, as usual

I The reduction relation →∗ is Church-Rosser

I In fact, →∗ satisifies a much strong property

Strong normalization

A λ-expression is

I normalizing if it has a normal form.

I strongly normalizing if every reduction sequence leads to a
normal form

Examples

I (λx .xx)(λx .xx) is not normalizing

I (λyz .z)((λx .xx)(λx .xx)) is not strongly normalizing.

Strong normalization . . .

A λ-calculus is strongly normalizing if every term in the calculus is
strongly normalizing

Theorem

The simply typed λ-calculus is strongly normalizing

Proof intuition

I Each β-reduction reduces the type complexity of the term

I Cannot have an infinite sequence of reductions

Type checking

I Syntax of simply typed λ-calculus permits only well-typed
terms

I Converse question; Given an arbitrary term, is it well-typed?

I For instance, we cannot assign a valid type to f f . . .

I . . . so f f is not a valid expression in this calculus

Theorem

The type-checking problem for the simply typed
λ-calculus is decidable

Type checking . . .

I A term may admit multiple types

I λx .x can be of type τ → τ , (τ → τ)→ (τ → τ), . . .

I Principal type scheme of a term M — unique type s such that
every other valid type is an “instance” of s

I Uniformly replace τ ∈ s by another type

I τ → τ is principal type scheme of λx .x

Theorem

We can always compute the principal type scheme for
any well-typed term in the simply typed λ-calculus.

Computability with simple types

I Church numerals are well typed

I Translations of basic recursive functions (zero, successor,
projection) are well-typed

I Translation of function composition is well typed

I Translation of primitive recursion is well typed

I Translation of minimalization requires elimination of recursive
definitions

I Uses untypable expressions of the form f f

I Minimalization introduces non terminating computations, but
we have strong normalization!

I However, there do exist total recursive functions that are not
primitive recursive — e.g. Ackermann’s function

Polymorphism

I Simply typed λ-calculus has explicit types

I Languages like Haskell have polymorphic types

I Compare id :: a -> a

with λx .x : τ → τ

I Second-order polymorhpic typed lambda calculus (System F)

I Jean-Yves Girard
I John Reynolds

System F

I Add type variables, a, b, . . .

I Use i , j , . . . to denote concrete types

I Type schemes

s ::= a | i | s → s | ∀a.s

System F

Syntax of second order polymorphic lambda calculus

I Every variable and (type) constant is a term.

I If M is a term, x is a variable and s is a type scheme, then
(λx ∈ s.M) is a term.

I If M and N are terms, so is (MN).

I Function application does not enforce type check

I If M is a term and a is a type variable, then (Λa.M) is a term.

I Type abstraction

I If M is a term and s is a type scheme, (Ms) is a term.

I Type application

System F

Example A polymorphic identity function

Λa.λx ∈ a.x

Two β rules, for two types of abstraction

I (λx ∈ s.M)N →β M{x ← N}

I (Λa.M)s →β M{a← s}

