λ calculus: Lecture 4

Madhavan Mukund

Chennai Mathematical Institute madhavan@cmi.ac.in

PLC, 17 March 2017

One step reduction

- Can have other reduction rules like β
- Observe that λx.(Mx) and M are equivalent with respect to β-reduction
- New reduction rule η

 $\lambda x.(Mx) \rightarrow_{\eta} M$

- Given basic rules β , η , ..., we are allowed to use them "in any context"
- Define a one step reduction relation \rightarrow inductively

 $\frac{M \to_{x} M'}{M \to M} \qquad \frac{M \to M'}{\lambda x.M \to \lambda x.M'} \quad \frac{M \to M'}{MN \to M'N} \quad \frac{N \to N'}{MN \to MN'}$ $x \in \{\beta, \eta, \ldots\}$

Normal forms

- Computation a maximal sequence of reduction steps
- "Values" are expressions that cannot be further reduced: normal forms
- ► Allow reduction in any context ⇒ multiple expressions may qualify for reduction in one step

Natural questions

- Does every term reduce to a normal form?
- Can a term reduce to more than one normal form, depending on order reduction strategy?
- ► If a term has a normal form, can we always find it?

Does every term reduce to a normal form?

- Consider $(\lambda x.xx)(\lambda x.xx)$
- $\blacktriangleright (\lambda x.xx)(\lambda x.xx) \rightarrow_{\beta} (\lambda x.xx)(\lambda x.xx)$
 - Reduction never terminates
- Call this term Ω

Can a term reduce to more than one normal form, depending on order reduction strategy?

- Consider $\langle False \rangle \Omega = (\lambda yz.z)((\lambda x.xx)(\lambda x.xx))$
- Outermost reduction: $(\lambda yz.z)((\lambda x.xx)(\lambda x.xx)) \rightarrow \lambda z.z$
- ► Innermost reduction: $(\lambda yz.z)((\lambda x.xx)(\lambda x.xx)) \rightarrow (\lambda yz.z)((\lambda x.xx)(\lambda x.xx)) \rightarrow \cdots$
- Choice of reduction strategies may determine whether a normal form is reached ...
- ... but the question is, can more than one normal form be reached?

If a term has a normal form, can we always find it?

- \blacktriangleright We have seen how to encode recursive functions in $\lambda\text{-calculus}$
- ▶ Given a recursive function f and an argument n, we cannot determine, in general, if computation of f(n) terminates
- ► Computing f(n) is equivalent to asking if (f)(n) achieves a normal form

Can a term reduce to more than one normal form, depending on order reduction strategy?

• Define an equivalence relation \leftrightarrow on λ -terms

 $M \leftrightarrow N \text{ iff } \exists P. P \rightarrow^* M, P \rightarrow^* N$

 $M \leftrightarrow N$ if both M and N can be obtained by reduction from a common "ancestor" P

 \blacktriangleright \leftrightarrow is the symmetric transitive closure of \rightarrow^*

 $\frac{M \to^* N}{M \leftrightarrow N} \quad \frac{M \leftrightarrow N}{N \leftrightarrow M} \quad \frac{M \leftrightarrow N, N \leftrightarrow P}{M \leftrightarrow P}$

► In general, for any reflexive, transitive relation *R*, can define the symmetric, transitive closure ^{*R*}/_{*A*}

Diamond property or Church-Rosser property

- Let R be any reflexive, transitive relation (such as \rightarrow^*)
- ► R has the diamond property if, whenever X R Y and X R Z there is W such that Y R W and Z R W

Theorem [Church-Rosser]

Let R be Church-Rosser. Then $M \stackrel{R}{\leftrightarrow} N$ implies there exists Z, M R Z and N R Z

Proof By induction on the definition of $\stackrel{R}{\leftrightarrow}$

Corollary [Church-Rosser]

Let R be a reduction relation that is Church-Rosser. Then a term can have at most one normal form with respect to R

Proof By picture

Is \rightarrow^* Church-Rosser?

Consider $(\lambda x.xx)((\lambda x.x)(\lambda x.x))$

Two possible reductions

 $(\lambda x.xx)((\lambda x.x)(\lambda x.x)) \rightarrow \\ ((\lambda x.x)(\lambda x.x))((\lambda x.x)(\lambda x.x))$

► $(\lambda x.xx)((\lambda x.x)(\lambda x.x)) \rightarrow ((\lambda x.xx)(\lambda x.x))$

(Outermost) (Innermost)

From second option, in one step we get

 $(\lambda x.xx)(\lambda x.x) \rightarrow ((\lambda x.x)(\lambda x.x))$

Can reach this term from the first option as well, but it requires two steps!

- This new reduction is Church-Rosser.
- Its reflexive, transitive closure is equal to \rightarrow^* .

 $\begin{array}{ccc} M \twoheadrightarrow M & \frac{M \twoheadrightarrow M'}{\lambda x.M \twoheadrightarrow \lambda x.M'} \\ \\ \frac{M \twoheadrightarrow M', N \twoheadrightarrow N'}{MN \twoheadrightarrow M'N'} & \frac{M \twoheadrightarrow M', N \twoheadrightarrow N'}{(\lambda x.M)N \twoheadrightarrow M'\{x \leftarrow N'\}} \end{array}$

 $\blacktriangleright \twoheadrightarrow$ combines nonoverlapping \rightarrow reductions into one parallel step

Normal forms and reduction strategies

- Outermost reduction is also called lazy
 - Arguments to a function are evaluated only when needed
- Normal order reduction outermost, leftmost
 - Among all possible top level reductions, choose the leftmost
- Lemma: If a normal form exists, normal order reduction is guaranteed to find it
 - Normal form is unique, by Church-Rosser property
- However, normal order reduction is "inefficient"
 - If an argument is duplicated, it must be re-evaluated each time it occurs
- 'Graph reduction'': maintain pointers to shared subexpressions, avoid duplicated work
 - Used in Haskell implementations
 - Normal order graph reduction is close to optimal

Recursive definitions

Suppose $F = \lambda x_1 x_2 \dots x_n E$, where where E contains an occurrence of F

- Choose a new variable f
- Convert E to E* replacing every F in E by ff

• If *E* is of the form $\cdots F \cdots F \cdots$ then E^* is $\cdots (ff) \cdots (ff) \cdots$

Now write

$$G = \lambda f x_1 x_2 \dots x_n . E^*$$

= $\lambda f x_1 x_2 \dots x_n \cdots (ff) \cdots (ff) \cdots$

Then

$$GG = \lambda x_1 x_2 \dots x_n \dots (GG) \dots (GG) \dots$$

- ► GG satisfies the equation defining F
- Write F = GG, where $G = \lambda f x_1 x_2 \dots x_n \cdot E^*$.

Fixed point combinator

- Consider recursive definition $F = \lambda x.x(Fx)$
- Can use the GG trick to get a λ -expression of F

$$F = GG, \text{ where } G = \lambda fx.x(ffx)$$

= $\lambda fx.x(\lambda fx.x(ffx)\lambda fx.x(ffx)x)$

- Note that FX = X(FX) for any term X
- Fixed point : Given Z, M such that ZM = M.
- ▶ F Z is a fixed point for Z
- ▶ Due to Turing ⊖

Another fixed point combinator

- Let $Y = \lambda h.(\lambda x.h(xx))(\lambda x.h(xx))$
- Consider YH for any term H
- ► YH
 - $\equiv (\lambda h.(\lambda x.h(xx))(\lambda x.h(xx)))H$ $\sim (\lambda x.H(xx))(\lambda x.H(xx))$ $\sim H(\lambda x.H(xx))(\lambda x.H(xx))$ $\equiv H(YH)$
- Due to Haskell Curry

Terms without normal forms

Are all terms without normal forms equally "meaningless"?

Can we define an equivalence \approx on λ -terms such that:

- (λxM)N ≈ M{x ← N}—that is, ≈ the equivalence induced by the β reduction.
- If *M* and *N* do not have normal forms, then $M \equiv N$.
- ► Functions that are equated by ≈ yield equivalent results for the same arguments. That is, if M ≈ N then for all R, MR ≈ NR.

Terms without normal forms

Consider the function F defined by

Fxb = if b then x else (Fxb)

If we unravel *FF*, we get

F = GG, where $G = \lambda f x b$.(if b then x else (ff x b))

Consider $FX\langle true \rangle$ and $FX\langle false \rangle$

- ► $FX\langle true \rangle \rightarrow \text{if } \langle T \rangle \text{ then } X \text{ else } (FX\langle true \rangle) \rightarrow X.$
- ► $FX\langle false \rangle \rightarrow if \langle F \rangle$ then X else $(FX\langle false \rangle) \rightarrow FX\langle false \rangle$.

Terms without normal forms

- $\begin{array}{rcl} FZ & \rightarrow & (\lambda x b. (\mathrm{if} \ b \ \mathrm{then} \ x \ \mathrm{else} \ (Fxb)))Z \\ & \rightarrow & \lambda b. (\mathrm{if} \ b \ \mathrm{then} \ Z \ \mathrm{else} \ (FZb)) \\ & \rightarrow & \lambda b. (\mathrm{if} \ b \ \mathrm{then} \ Z \ \mathrm{else} \ G), \ \mathrm{where} \ G = \mathrm{if} \ b \ \mathrm{then} \ Z \ \mathrm{else} \ (fZB) \\ & \rightarrow & \lambda b. (\mathrm{if} \ b \ \mathrm{then} \ Z \ \mathrm{else} \ (\mathrm{if} \ b \ \mathrm{then} \ Z \ \mathrm{else} \ G)) \\ & \rightarrow & \ldots \end{array}$
 - FZ does not terminate for any $Z \Rightarrow FX \approx FY$ for all X, Y
 - $FX \approx FY$ implies $FXM \approx FYM$ for all M
 - $FX\langle true \rangle \approx FY\langle true \rangle$
 - ► $FZ\langle true \rangle \rightarrow Z$ for all Z, so $X \approx Y$ for all X and Y!