
λ calculus: Lecture 4

Madhavan Mukund

Chennai Mathematical Institute

madhavan@cmi.ac.in

PLC, 17 March 2017

madhavan@cmi.ac.in


One step reduction

I Can have other reduction rules like β

I Observe that λx .(Mx) and M are equivalent with respect to
β-reduction

I New reduction rule η

λx .(Mx)→η M

I Given basic rules β, η, . . . , we are allowed to use them “in
any context”

I Define a one step reduction relation → inductively

M →x M ′

M → M

′

x ∈ {β, η, . . .}

M → M ′

λx .M → λx .M ′
M → M ′

MN → M ′N

N → N ′

MN → MN ′



Normal forms

I Computation — a maximal sequence of reduction steps

I “Values” are expressions that cannot be further reduced:
normal forms

I Allow reduction in any context ⇒ multiple expressions may
qualify for reduction in one step

Natural questions

I Does every term reduce to a normal form?

I Can a term reduce to more than one normal form, depending
on order reduction strategy?

I If a term has a normal form, can we always find it?



Normal forms . . .

Does every term reduce to a normal form?

I Consider (λx .xx)(λx .xx)

I (λx .xx)(λx .xx)→β (λx .xx)(λx .xx)

I Reduction never terminates

I Call this term Ω



Normal forms . . .

Can a term reduce to more than one normal form, depending on
order reduction strategy?

I Consider 〈False〉Ω = (λyz .z)((λx .xx)(λx .xx))

I Outermost reduction:
(λyz .z)((λx .xx)(λx .xx))→ λz .z

I Innermost reduction:
(λyz .z)((λx .xx)(λx .xx))→ (λyz .z)((λx .xx)(λx .xx))→ · · ·

I Choice of reduction strategies may determine whether a
normal form is reached . . .

I . . . but the question is, can more than one normal form be
reached?



Normal forms . . .

If a term has a normal form, can we always find it?

I We have seen how to encode recursive functions in λ-calculus

I Given a recursive function f and an argument n, we cannot
determine, in general, if computation of f (n) terminates

I Computing f (n) is equivalent to asking if 〈f 〉〈n〉 achieves a
normal form



Normal forms . . .

Can a term reduce to more than one normal form, depending on
order reduction strategy?

I Define an equivalence relation ↔ on λ-terms

M ↔ N iff ∃P. P →∗ M,P →∗ N

M ↔ N if both M and N can be obtained by reduction from a
common “ancestor” P

I ↔ is the symmetric transitive closure of →∗

M →∗ N

M ↔ N

M ↔ N

N ↔ M

M ↔ N,N ↔ P

M ↔ P

I In general, for any reflexive, transitive relation R, can define

the symmetric, transitive closure
R↔



Church-Rosser Theorem

Diamond property or Church-Rosser property

I Let R be any reflexive, transitive relation (such as →∗)
I R has the diamond property if, whenever X R Y and X R Z

there is W such that Y R W and Z R W

Theorem [Church-Rosser]

Let R be Church-Rosser. Then M
R↔ N implies there

exists Z , M R Z and N R Z

Proof By induction on the definition of
R↔



Church-Rosser Theorem

Corollary [Church-Rosser]

Let R be a reduction relation that is Church-Rosser.
Then a term can have at most one normal form with
respect to R

Proof By picture



Church-Rosser Theorem

Is →∗ Church-Rosser?

Consider (λx .xx)((λx .x)(λx .x))

Two possible reductions

I (λx .xx)((λx .x)(λx .x))→
((λx .x)(λx .x))((λx .x)(λx .x)) (Outermost)

I (λx .xx)((λx .x)(λx .x))→ ((λx .xx)(λx .x) (Innermost)

From second option, in one step we get

(λx .xx)(λx .x)→ ((λx .x)(λx .x))

Can reach this term from the first option as well, but it requires
two steps!



Church-Rosser Theorem

Solution: Define a new notion of one step reduction � such that

I This new reduction is Church-Rosser.

I Its reflexive, transitive closure is equal to →∗.

Define � as follows.

M � M
M � M ′

λx .M � λx .M ′

M � M ′,N � N ′

MN � M ′N ′
M � M ′,N � N ′

(λx .M)N � M ′{x ← N ′}

I � combines nonoverlapping → reductions into one parallel
step



Normal forms and reduction strategies

I Outermost reduction is also called lazy

I Arguments to a function are evaluated only when needed

I Normal order reduction — outermost, leftmost

I Among all possible top level reductions, choose the leftmost

I Lemma: If a normal form exists, normal order reduction is
guaranteed to find it

I Normal form is unique, by Church-Rosser property

I However, normal order reduction is “inefficient”

I If an argument is duplicated, it must be re-evaluated each time
it occurs

I ‘Graph reduction”: maintain pointers to shared
subexpressions, avoid duplicated work

I Used in Haskell implementations
I Normal order graph reduction is close to optimal



Recursive definitions

Suppose F = λx1x2 . . . xnE , where where E contains an occurrence
of F

I Choose a new variable f

I Convert E to E ∗ replacing every F in E by ff

I If E is of the form · · ·F · · ·F · · · then E∗ is · · · (ff ) · · · (ff ) · · ·.

Now write

G = λfx1x2 . . . xn.E
∗

= λfx1x2 . . . xn. · · · (ff ) · · · (ff ) · · ·

Then
GG = λx1x2 . . . xn. · · · (GG ) · · · (GG ) · · ·

I GG satisfies the equation defining F

I Write F = GG , where G = λfx1x2 . . . xn.E
∗.



Fixed point combinator

I Consider recursive definition F = λx .x(Fx)

I Can use the GG trick to get a λ-expression of F

F = GG ,where G = λfx .x(ffx)
= λfx .x(λfx .x(ffx)λfx .x(ffx)x)

I Note that FX = X (FX ) for any term X

I Fixed point : Given Z , M such that ZM = M.

I F Z is a fixed point for Z

I Due to Turing — Θ



Another fixed point combinator

I Let Y = λh.(λx .h(xx))(λx .h(xx))

I Consider YH for any term H

I YH

≡ (λh.(λx .h(xx))(λx .h(xx)))H

; (λx .H(xx))(λx .H(xx))

; H(λx .H(xx))(λx .H(xx))

≡ H(YH)

I Due to Haskell Curry



Terms without normal forms

Are all terms without normal forms equally “meaningless”?

Can we define an equivalence ≈ on λ-terms such that:

I (λxM)N ≈ M{x ← N}—that is, ≈ the equivalence induced
by the β reduction.

I If M and N do not have normal forms, then M ≡ N.

I Functions that are equated by ≈ yield equivalent results for
the same arguments. That is, if M ≈ N then for all R,
MR ≈ NR.



Terms without normal forms

Consider the function F defined by

Fxb = if b then x else (Fxb)

If we unravel FF , we get

F = GG , where G = λfxb.( if b then x else (ffxb))

Consider FX 〈true〉 and FX 〈false〉
I FX 〈true〉 → if 〈T 〉 then X else (FX 〈true〉)→ X .

I FX 〈false〉 → if 〈F 〉 then X else (FX 〈false〉)→ FX 〈false〉.



Terms without normal forms

FZ → (λxb.(if b then x else (Fxb)))Z
→ λb.(if b then Z else (FZb))
→ λb.(if b then Z else G ),where G = if b then Z else (fZB)
→ λb.(if b then Z else (if b then Z else G ))
→ . . .

I FZ does not terminate for any Z ⇒ FX ≈ FY for all X ,Y

I FX ≈ FY implies FXM ≈ FYM for all M

I FX 〈true〉 ≈ FY 〈true〉
I FZ 〈true〉 → Z for all Z , so X ≈ Y for all X and Y !


