A calculus: Lecture 4

Madhavan Mukund

Chennai Mathematical Institute

madhavan@cmi.ac.in

PLC, 17 March 2017

madhavan@cmi.ac.in

One step reduction

» Can have other reduction rules like 3

» Observe that Ax.(Mx) and M are equivalent with respect to
[-reduction

» New reduction rule n
Ax.(Mx) =, M
» Given basic rules 3, 7, ..., we are allowed to use them “in
any context”

» Define a one step reduction relation — inductively

M=, M’ M — M M — M N — N
M— M Ax.M = MM MN — M'N MN — MN’
xe{B,n,...}

Normal forms

» Computation — a maximal sequence of reduction steps

> “Values” are expressions that cannot be further reduced:
normal forms

» Allow reduction in any context = multiple expressions may
qualify for reduction in one step

Natural questions

» Does every term reduce to a normal form?

» Can a term reduce to more than one normal form, depending
on order reduction strategy?

» If a term has a normal form, can we always find it?

Normal forms ...

Does every term reduce to a normal form?

» Consider (Ax.xx)(Ax.xx)

> (Ax.xx)(Ax.xx) =5 (Ax.xx)(Ax.xx)

» Reduction never terminates

» Call this term

Normal forms ...

Can a term reduce to more than one normal form, depending on
order reduction strategy?

» Consider (False)Q) = (Ayz.z)((Ax.xx)(Ax.xx))

» Outermost reduction:
(Ayz.z)((Ax.xx)(Ax.xx)) = Az.z

» Innermost reduction:

(Ayz.z)((Ax.xx)(Ax.xx)) = (Ayz.z)((Ax.xx)(Ax.xx)) = - -

» Choice of reduction strategies may determine whether a
normal form is reached ...

> ... but the question is, can more than one normal form be
reached?

Normal forms ...

If a term has a normal form, can we always find it?

» We have seen how to encode recursive functions in A-calculus

» Given a recursive function f and an argument n, we cannot
determine, in general, if computation of f(n) terminates

» Computing f(n) is equivalent to asking if (f)(n) achieves a
normal form

Normal forms ...

Can a term reduce to more than one normal form, depending on
order reduction strategy?

> Define an equivalence relation <> on \-terms
M« N iff 3P. P =" M, P =* N

M <« N if both M and N can be obtained by reduction from a
common “ancestor” P

> <> is the symmetric transitive closure of —*

M—*N M N M NN P
M< N N M M+ P

» In general, for any reflexive, transitive relation R, can define

. . R
the symmetric, transitive closure <

Church-Rosser Theorem

Diamond property or Church-Rosser property

» Let R be any reflexive, transitive relation (such as —*)

» R has the diamond property if, whenever X R Y and X R Z
there is W such that Y R W and Z R W

Theorem [Church-Rosser]

Let R be Church-Rosser. Then M & N implies there
exists Z, M R Z and N R Z

Proof By induction on the definition of &

Church-Rosser Theorem

Corollary [Church-Rosser|

Let R be a reduction relation that is Church-Rosser.
Then a term can have at most one normal form with
respect to R

Proof By picture

Church-Rosser Theorem

Is —* Church-Rosser?
Consider (Ax.xx)((Ax.x)(Ax.x))

Two possible reductions

> (Axxx)((Ax.x)(Ax.x)) —
((Axx)(Ax.x)) ((Ax.x)(Ax.x)) (Outermost)

> (Axxx)((Ax.x)(Ax.x)) = ((Ax.xx)(Ax.x) (Innermost)

From second option, in one step we get
(Ax.xx)(Ax.x) = ((Ax.x)(Ax.x))

Can reach this term from the first option as well, but it requires
two steps!

Church-Rosser Theorem

Solution: Define a new notion of one step reduction — such that

» This new reduction is Church-Rosser.

> lts reflexive, transitive closure is equal to —*.

Define — as follows.

M — M
M — M _—
- MM — Ax. M’
M- M, N-— N M- M, N— N

MN = M'N" (Ax.M)N = M'{x < N'}

» —» combines nonoverlapping — reductions into one parallel
step

Normal forms and reduction strategies

» Qutermost reduction is also called lazy
» Arguments to a function are evaluated only when needed
» Normal order reduction — outermost, leftmost
» Among all possible top level reductions, choose the leftmost

» Lemma: If a normal form exists, normal order reduction is
guaranteed to find it

» Normal form is unique, by Church-Rosser property
» However, normal order reduction is “inefficient”

» If an argument is duplicated, it must be re-evaluated each time
it occurs

» 'Graph reduction”: maintain pointers to shared
subexpressions, avoid duplicated work

» Used in Haskell implementations
» Normal order graph reduction is close to optimal

Recursive definitions

Suppose F = Ax1x> ... x,E, where where E contains an occurrence
of F

» Choose a new variable f
» Convert E to E* replacing every F in E by ff
> If £ is of the form -~ F - F - then E* is -+ (ff)--- (ff)---.

Now write

G = Mxqgxo...xp.E*
= Mxyxa...Xp.o--(fF)---(ff)---

Then
GG =X xax2...%xp. - (GG)---(GG) - -

» GG satisfies the equation defining F
» Write F = GG, where G = \fxyxo ... x,.E*.

Fixed point combinator

» Consider recursive definition F = Ax.x(Fx)

v

Can use the GG trick to get a A-expression of F

F = GG,where G = Afx.x(ffx)
= Mxx(Afx.x(fBx) M x.x(ffx)x)

v

Note that FX = X(FX) for any term X

v

Fixed point : Given Z, M such that ZM = M.

v

F Z is a fixed point for Z

v

Due to Turing — ©

Another fixed point combinator

» Let Y = Mh.(Ax.h(xx))(Ax.h(xx))
» Consider YH for any term H

» YH
= (Ah.(Ax.h(xx))(Ax.h(xx)))H
~ (Ax.H(xx))(Ax.H(xx))
~ H(Ax.H(xx))(Ax.H(xx))
= H(YH)

» Due to Haskell Curry

Terms without normal forms

Are all terms without normal forms equally “meaningless”?

Can we define an equivalence ~ on A-terms such that:

> (AXM)N ~ M{x < N}—that is, ~ the equivalence induced
by the (reduction.

» If M and N do not have normal forms, then M = N.

» Functions that are equated by ~ yield equivalent results for
the same arguments. That is, if M ~ N then for all R,
MR ~ NR.

Terms without normal forms

Consider the function F defined by

Fxb = if b then x else (Fxb)

If we unravel FF, we get
F = GG, where G = Afxb.(if b then x else (ffxb))

Consider FX(true) and FX(false)
» FX(true) — if (T) then X else (FX(true)) — X.

» FX(false) — if (F) then X else (FX(false)) — FX(false).

Terms without normal forms

(Axb.(if b then x else (Fxb)))Z

Ab.(if b then Z else (FZb))

Ab.(if b then Z else G), where G = if b then Z else (fZB)
Ab.(if b then Z else (if b then Z else G))

Ll

v

FZ does not terminate for any Z = FX =~ FY for all X, Y
> X ~ FY implies FXM ~ FYM for all M

FX(true) =~ FY (true)

FZ(true) — Z for all Z, so X ~ Y for all X and Y'!

v

v

