λ calculus: Lecture 4

Madhavan Mukund

Chennai Mathematical Institute madhavan@cmi.ac.in

PLC, 17 March 2017

One step reduction

- Can have other reduction rules like β
- Observe that λx. ($M x$) and M are equivalent with respect to β-reduction
- New reduction rule η

$$
\lambda x .(M x) \rightarrow_{\eta} M
$$

- Given basic rules β, η, \ldots, we are allowed to use them "in any context"
- Define a one step reduction relation \rightarrow inductively

$$
\begin{aligned}
& \sum_{x \rightarrow M^{\prime}}^{M \rightarrow M} \\
& x \in\{\beta, \eta, \ldots\}
\end{aligned} \quad \frac{M \rightarrow M^{\prime}}{\lambda x \cdot M \rightarrow \lambda x \cdot M^{\prime}} \quad \frac{M \rightarrow M^{\prime}}{M N \rightarrow M^{\prime} N} \quad \frac{N \rightarrow N^{\prime}}{M N \rightarrow M N^{\prime}}
$$

Normal forms

- Computation - a maximal sequence of reduction steps
- "Values" are expressions that cannot be further reduced: normal forms
- Allow reduction in any context \Rightarrow multiple expressions may qualify for reduction in one step

Natural questions

- Does every term reduce to a normal form?
- Can a term reduce to more than one normal form, depending on order reduction strategy?
- If a term has a normal form, can we always find it?

Normal forms ...

Does every term reduce to a normal form?

- Consider $(\lambda x . x x)(\lambda x . x x)$
- $(\lambda x . x x)(\lambda x . x x) \rightarrow_{\beta}(\lambda x . x x)(\lambda x . x x)$
- Reduction never terminates
- Call this term Ω

Normal forms

Can a term reduce to more than one normal form, depending on order reduction strategy?

- Consider \langle False $\rangle \Omega=(\lambda y z . z)((\lambda x . x x)(\lambda x . x x))$
- Outermost reduction: $(\lambda y z . z)((\lambda x . x x)(\lambda x . x x)) \rightarrow \lambda z . z$
- Innermost reduction: $(\lambda y z . z)((\lambda x . x x)(\lambda x . x x)) \rightarrow(\lambda y z . z)((\lambda x . x x)(\lambda x . x x)) \rightarrow \cdots$
- Choice of reduction strategies may determine whether a normal form is reached...
- ... but the question is, can more than one normal form be reached?

Normal forms

If a term has a normal form, can we always find it?

- We have seen how to encode recursive functions in λ-calculus
- Given a recursive function f and an argument n, we cannot determine, in general, if computation of $f(n)$ terminates
- Computing $f(n)$ is equivalent to asking if $\langle f\rangle\langle n\rangle$ achieves a normal form

Normal forms

Can a term reduce to more than one normal form, depending on order reduction strategy?

- Define an equivalence relation \leftrightarrow on λ-terms

$$
M \leftrightarrow N \text { iff } \exists P . P \rightarrow^{*} M, P \rightarrow^{*} N
$$

$M \leftrightarrow N$ if both M and N can be obtained by reduction from a common "ancestor" P

- \leftrightarrow is the symmetric transitive closure of \rightarrow^{*}

$$
\frac{M \rightarrow^{*} N}{M \leftrightarrow N} \quad \frac{M \leftrightarrow N}{N \leftrightarrow M} \quad \frac{M \leftrightarrow N, N \leftrightarrow P}{M \leftrightarrow P}
$$

- In general, for any reflexive, transitive relation R, can define the symmetric, transitive closure $\stackrel{R}{\leftrightarrow}$

Church-Rosser Theorem

Diamond property or Church-Rosser property

- Let R be any reflexive, transitive relation (such as \rightarrow^{*})
- R has the diamond property if, whenever $X R Y$ and $X R Z$ there is W such that $Y R W$ and $Z R W$

Theorem [Church-Rosser]
Let R be Church-Rosser. Then $M \stackrel{R}{\leftrightarrow} N$ implies there exists $Z, M R Z$ and $N R Z$
Proof By induction on the definition of $\stackrel{R}{\hookrightarrow}$

Church-Rosser Theorem

Corollary [Church-Rosser]

Let R be a reduction relation that is Church-Rosser. Then a term can have at most one normal form with respect to R

Proof By picture

Church-Rosser Theorem

Is \rightarrow^{*} Church-Rosser?
Consider $(\lambda x . x x)((\lambda x . x)(\lambda x . x))$
Two possible reductions

- $(\lambda x \cdot x x)((\lambda x . x)(\lambda x . x)) \rightarrow$

$$
((\lambda x \cdot x)(\lambda x \cdot x))((\lambda x \cdot x)(\lambda x \cdot x))
$$

- $(\lambda x \cdot x x)((\lambda x \cdot x)(\lambda x \cdot x)) \rightarrow((\lambda x \cdot x x)(\lambda x \cdot x)$

From second option, in one step we get

$$
(\lambda x \cdot x x)(\lambda x \cdot x) \rightarrow((\lambda x \cdot x)(\lambda x \cdot x))
$$

Can reach this term from the first option as well, but it requires two steps!

Church-Rosser Theorem

Solution: Define a new notion of one step reduction \rightarrow such that

- This new reduction is Church-Rosser.
- Its reflexive, transitive closure is equal to \rightarrow^{*}.

Define \rightarrow as follows.

$$
\begin{array}{cc}
M \rightarrow M & \frac{M \rightarrow M^{\prime}}{\lambda x \cdot M \rightarrow \lambda x \cdot M^{\prime}} \\
{, N \rightarrow N^{\prime}} } \\
M N \rightarrow M^{\prime} N^{\prime} & M \rightarrow M^{\prime}, N \rightarrow N^{\prime} \\
(\lambda x \cdot M) N \rightarrow M^{\prime}\left\{x \leftarrow N^{\prime}\right\}
\end{array}
$$

$-\rightarrow$ combines nonoverlapping \rightarrow reductions into one parallel step

Normal forms and reduction strategies

- Outermost reduction is also called lazy
- Arguments to a function are evaluated only when needed
- Normal order reduction - outermost, leftmost
- Among all possible top level reductions, choose the leftmost
- Lemma: If a normal form exists, normal order reduction is guaranteed to find it
- Normal form is unique, by Church-Rosser property
- However, normal order reduction is "inefficient"
- If an argument is duplicated, it must be re-evaluated each time it occurs
- 'Graph reduction": maintain pointers to shared subexpressions, avoid duplicated work
- Used in Haskell implementations
- Normal order graph reduction is close to optimal

Recursive definitions

Suppose $F=\lambda x_{1} x_{2} \ldots x_{n} E$, where where E contains an occurrence of F

- Choose a new variable f
- Convert E to E^{*} replacing every F in E by ff
- If E is of the form $\cdots F \cdots F \cdots$ then E^{*} is $\cdots(f f) \cdots(f f) \cdots$.

Now write

$$
\begin{aligned}
G & =\lambda f x_{1} x_{2} \ldots x_{n} \cdot E^{*} \\
& =\lambda f x_{1} x_{2} \ldots x_{n} \cdot \cdots(f f) \cdots(f f) \cdots
\end{aligned}
$$

Then

$$
G G=\lambda x_{1} x_{2} \ldots x_{n} \cdots(G G) \cdots(G G) \cdots
$$

- $G G$ satisfies the equation defining F
- Write $F=G G$, where $G=\lambda f x_{1} x_{2} \ldots x_{n} \cdot E^{*}$.

Fixed point combinator

- Consider recursive definition $F=\lambda x \cdot x(F x)$
- Can use the GG trick to get a λ-expression of F

$$
\begin{aligned}
F & =G G, \text { where } G=\lambda f x \cdot x(f f x) \\
& =\lambda f x \cdot x(\lambda f x \cdot x(f f x) \lambda f x \cdot x(f f x) x)
\end{aligned}
$$

- Note that $F X=X(F X)$ for any term X
- Fixed point: Given Z, M such that $Z M=M$.
- $F Z$ is a fixed point for Z
- Due to Turing - Θ

Another fixed point combinator

- Let $Y=\lambda h .(\lambda x \cdot h(x x))(\lambda x \cdot h(x x))$
- Consider YH for any term H
- YH

$$
\begin{aligned}
& \equiv(\lambda h \cdot(\lambda x \cdot h(x x))(\lambda x \cdot h(x x))) H \\
& \leadsto(\lambda x \cdot H(x x))(\lambda x \cdot H(x x)) \\
& \leadsto H(\lambda x \cdot H(x x))(\lambda x \cdot H(x x)) \\
& \equiv H(Y H)
\end{aligned}
$$

- Due to Haskell Curry

Terms without normal forms

Are all terms without normal forms equally "meaningless"?
Can we define an equivalence \approx on λ-terms such that:

- $(\lambda x M) N \approx M\{x \leftarrow N\}$-that is, \approx the equivalence induced by the β reduction.
- If M and N do not have normal forms, then $M \equiv N$.
- Functions that are equated by \approx yield equivalent results for the same arguments. That is, if $M \approx N$ then for all R, $M R \approx N R$.

Terms without normal forms

Consider the function F defined by

$$
F x b=\text { if } b \text { then } x \text { else }(F x b)
$$

If we unravel $F F$, we get

$$
F=G G, \text { where } G=\lambda f x b .(\text { if } b \text { then } x \text { else }(f f x b))
$$

Consider $F X\langle$ true \rangle and $F X\langle$ false \rangle

- FX \langle true $\rangle \rightarrow$ if $\langle T\rangle$ then X else $(F X\langle$ true $\rangle) \rightarrow X$.
- FX \langle false $\rangle \rightarrow$ if $\langle F\rangle$ then X else $(F X\langle$ false $\rangle) \rightarrow F X\langle$ false \rangle.

Terms without normal forms

$F Z \rightarrow(\lambda x b$.(if b then x else $(F x b))) Z$
$\rightarrow \quad \lambda b$.(if b then Z else $(F Z b)$)
$\rightarrow \quad \lambda b$. (if b then Z else G), where $G=$ if b then Z else $(f Z B)$
$\rightarrow \quad \lambda b$.(if b then Z else (if b then Z else $G)$)
$\rightarrow \quad \ldots$

- $F Z$ does not terminate for any $Z \Rightarrow F X \approx F Y$ for all X, Y
- $F X \approx F Y$ implies $F X M \approx F Y M$ for all M
- $F X\langle$ true $\rangle \approx F Y\langle$ true \rangle
- $F Z\langle$ true $\rangle \rightarrow Z$ for all Z, so $X \approx Y$ for all X and Y !

