A Calculus: Lecture 3

Madhavan Mukund

Chennai Mathematical Institute

madhavan@cmi.ac.in

PLC, 13 March 2017

madhavan@cmi.ac.in

Recursive functions

Recursive functions [Godel]

Initial functions
» Zero: Z(n) =0.
» Successor: S(n) = n+1.

» Projection: MK(ny, np,...,nk) = n;

Composition Given f : N¥ — N and
g1, 8, ..., 8 N =5 N,

fol(gl, &, - ,8k)(n,n2,....,np) =

f(gl(nl, np,..., nh),gz(nl, np,..., nh), . ,gk(nl, np,...

;M)

Recursive functions . ..

Primitive recursion Given g : Nk = N and
h:Nkt2 5 N

define f : N¥*1 — N by primitive recursion as follows:

£(0,n1,n,....nK) = g(ni,my,...,ng)
f(n+1,nm,...,nc) = h(n,f(n,ny,na, ... 0K),N1,...,0gK)

Minimalization
Given g : N1 5 N define f : N¥ — N by minimalization from g

f(ni,no,...,nk) = pun.(g(n,ni,na... ng)=0)

where 1in.P(n) returns the least natural number n such that P(n)
holds

Encoding recursive functions . ..

> (n) = AMx.(f"x).

» Successor (succ) = Anfx.(f(nfx)) such that
succ{n) —* (n+1).

» Zero (Z) = Ax.(A\gy.y).
» Projection <I—Ilk> = AX1X2 . .. Xk.Xi.

Composition is easy

Recursive functions: Primitive recursion

» Evaluate t(n) bottom up

» Much like dynamic programming for recursive functions

v

Define a function step that does the following
step(n, f(n)) = (n+1, f(n+1))

step(t(n)) = t(n+1)
So, t(n) = step”(0, f(0)) = step”(0, g) ...

v

» ...and f(n) = snd(t(n)) = snd(step"(0, g))

v

Requires constructions for building pairs and decomposing
them using fst and snd

Recursive functions: Minimalization

» To evaluate
f(ni,no,...,nk) = un.(g(n,ni,na...,ng)=0)

we go back to the idea of computing a while loop
n := 0;
while (g(n,n1,n2,...,nk) !'= 0) {n := n+1};
return n;

» Implement the while loop using recursion

f(ni,n2,...,nk) = check(0,n1,n2...nk)
where
check(n,nl1,n2...nk){
if (iszero(g(n,n1,n2,...,nk)) {return n;}
else {check(n+1,n1,n2,...,nk);}
}

» Need a mechanism to encode booleans, if-then-else in
A-calculus. Also need a mechanism for recursion.

Recursive definitions

Suppose F = Ax1x> ... x,E, where where E contains an occurrence
of F

» Choose a new variable f
» Convert E to E* replacing every F in E by ff
> If £ is of the form -~ F--- F - then E* is -+ (ff)--- (ff)---.

Now write

G = Mxqxo...xp.E*
= Mxyxa...Xp.o--(fF)---(ff)---

Then
GG =X xax2...%xp. - (GG)---(GG) - -

» GG satisfies the equation defining F
» Write F = GG, where G = \fxyxo ... x,.E*.

Minimalization . ..

f(nl,n2,...,nk) = check(0,n1,n2...nk)
where
check(n,nl,n2...nk){
if (iszero(g(n,n1,n2,...,nk)) {return n;}
else {check(n+1,n1,n2,...,nk);}
}

Encoding Booleans
» (True) = Axy.x
» (False) = Axy.y
» (if — b — then — x — else — y) = \bxy. bxy

Minimalization . ..

» (True) = Axy.x

» (False) = Axy.y

» (if — b— then — x — else — y) = Abxy. bxy
(Abxy.bxy)(True)fg Axy.((Axy.x)xy)fg

Ay (A x)fy)g

(Axy.x)fg

(\y.fg
f

AN

(Abxy.bxy)(False)fg Axy.((Axy.y)xy)fg
Ay (Axy.y)fy)g
(Axy.y)fg

(\y.y)g

g

L1l Ll

Minimalization . ..

» Want to define f : N¥ — N by minimalization from a
g N1 4 N
» Already have an encoding (g) for g

Define F as follows:

F = Xnxixp...xg. if (iszero)({g) n x1 xp ... Xx)
then n
else F((succyn) x1 xo ... Xk

» F : the lambda term for F after unravelling the recursive
definition
> (f) is then F (0).

Still need to define (iszero)

Minimalization . ..

(iszero) = An.n(Az.(false))(true)

{
(iszero) (0) = (An.n(Az.(false))(true)) (Afx.x)
—g (Mx.x)(Az.(false))(true)
—5 (Ax.x)(true)
—g (true)

(iszeroy (1) = (An.n(Az.(false))(true)) (Afx.fx)
—g (Mx.fx)(Az.(false))(true)
—3 (Ax.(Az.(false)) x)(true)
—g (Az.(false)) (true)
—g (false)

By induction, for n > 0 ...

(iszero) (n) —j (A\z.(false))" (true) —j (false)

One step reduction

» Can have other reduction rules like 3

» Observe that Ax.(Mx) and M are equivalent with respect to
[-reduction, provided x is not free in M.

» New reduction rule n
Ax.(Mx) =, M
» Given basic rules 3, 7, ..., we are allowed to use them “in
any context”

» Define a one step reduction relation — inductively

M=, M’ M — M M — M N — N
M— M Ax.M = MM MN — M'N MN — MN’
xe{B,n,...}

Normal forms

» Computation — a maximal sequence of reduction steps

> “Values” are expressions that cannot be further reduced:
normal forms

» Allow reduction in any context = multiple expressions may
qualify for reduction in one step

Natural questions

» Does every term reduce to a normal form?

» Can a term reduce to more than one normal form, depending
on order reduction strategy?

» If a term has a normal form, can we always find it?

Normal forms ...

Does every term reduce to a normal form?

» Consider (Ax.xx)(Ax.xx)

> (Ax.xx)(Ax.xx) =5 (Ax.xx)(Ax.xx)

» Reduction never terminates

» Call this term

Normal forms ...

Can a term reduce to more than one normal form, depending on
order reduction strategy?

» Consider (False)Q) = (Ayz.z)((Ax.xx)(Ax.xx))

» Outermost reduction:
(Ayz.z)((Ax.xx)(Ax.xx)) = Az.z

» Innermost reduction:

(Ayz.z)((Ax.xx)(Ax.xx)) = (Ayz.z)((Ax.xx)(Ax.xx)) = - -

» Choice of reduction strategies may determine whether a
normal form is reached ...

> ... but the question is, can more than one normal form be
reached?

Normal forms ...

If a term has a normal form, can we always find it?

» We have seen how to encode recursive functions in A-calculus

» Given a recursive function f and an argument n, we cannot
determine, in general, if computation of f(n) terminates

» Computing f(n) is equivalent to asking if (f)(n) achieves a
normal form

Normal forms ...

Can a term reduce to more than one normal form, depending on
order reduction strategy?

> Define an equivalence relation <> on \-terms
M« N iff 3P. P =" M, P =* N

M <« N if both M and N can be obtained by reduction from a
common “ancestor” P

> <> is the symmetric transitive closure of —*

M—*N M N M NN P
M< N N M M+ P

» In general, for any reflexive, transitive relation R, can define

. . R
the symmetric, transitive closure <

Church-Rosser Theorem

Diamond property or Church-Rosser property

» Let R be any reflexive, transitive relation (such as —*)

» R has the diamond property if, whenever X R Y and X R Z
there is W such that Y R W and Z R W

Theorem [Church-Rosser]

Let R be Church-Rosser. Then M & N implies there
exists Z, M R Z and N R Z

Proof By induction on the definition of &

Church-Rosser Theorem

Corollary [Church-Rosser|

Let R be a reduction relation that is Church-Rosser.
Then a term can have at most one normal form with
respect to R

Proof By picture

Church-Rosser Theorem

Is —* Church-Rosser?
Consider (Ax.xx)((Ax.x)(Ax.x))

Two possible reductions

> (Axxx)((Ax.x)(Ax.x)) —
((Axx)(Ax.x)) ((Ax.x)(Ax.x)) (Outermost)

> (Axxx)((Ax.x)(Ax.x)) = ((Ax.xx)(Ax.x) (Innermost)

From second option, in one step we get
(Ax.xx)(Ax.x) = ((Ax.x)(Ax.x))

Can reach this term from the first option as well, but it requires
two steps!

Church-Rosser Theorem

Solution: Define a new notion of one step reduction — such that

» This new reduction is Church-Rosser.

> lts reflexive, transitive closure is equal to —*.

Define — as follows.

M — M
M — M _—
- MM — Ax. M’
M- M, N-— N M- M, N— N

MN = M'N" (Ax.M)N = M'{x < N'}

» —» combines nonoverlapping — reductions into one parallel
step

