λ Calculus: Lecture 3

Madhavan Mukund

Chennai Mathematical Institute
madhavan@cmi.ac.in

PLC, 13 March 2017

Recursive functions

Recursive functions [Gödel]

Initial functions

- Zero: $Z(n)=0$.
- Successor: $S(n)=n+1$.
- Projection: $\Pi_{i}^{k}\left(n_{1}, n_{2}, \ldots, n_{k}\right)=n_{i}$

Composition Given $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ and

$$
g_{1}, g_{2}, \ldots, g_{k}: \mathbb{N}^{h} \rightarrow \mathbb{N}
$$

$f \circ\left(g_{1}, g_{2}, \ldots, g_{k}\right)\left(n_{1}, n_{2}, \ldots, n_{h}\right)=$

$$
f\left(g_{1}\left(n_{1}, n_{2}, \ldots, n_{h}\right), g_{2}\left(n_{1}, n_{2}, \ldots, n_{h}\right), \ldots, g_{k}\left(n_{1}, n_{2}, \ldots, n_{h}\right)\right)
$$

Recursive functions

Primitive recursion Given $g: \mathbb{N}^{k} \rightarrow \mathbb{N}$ and

$$
h: \mathbb{N}^{k+2} \rightarrow \mathbb{N}
$$

define $f: \mathbb{N}^{k+1} \rightarrow \mathbb{N}$ by primitive recursion as follows:

$$
\begin{aligned}
f\left(0, n_{1}, n_{2}, \ldots, n_{k}\right) & =g\left(n_{1}, n_{2}, \ldots, n_{k}\right) \\
f\left(n+1, n_{1}, \ldots, n_{k}\right) & =h\left(n, f\left(n, n_{1}, n_{2}, \ldots, n_{k}\right), n_{1}, \ldots, n_{k}\right)
\end{aligned}
$$

Minimalization

Given $g: \mathbb{N}^{k+1} \rightarrow \mathbb{N}$, define $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ by minimalization from g

$$
f\left(n_{1}, n_{2}, \ldots, n_{k}\right)=\mu n \cdot\left(g\left(n, n_{1}, n_{2} \ldots, n_{k}\right)=0\right)
$$

where $\mu n . P(n)$ returns the least natural number n such that $P(n)$ holds

Encoding recursive functions ...

- $\langle n\rangle \equiv \lambda f x .\left(f^{n} x\right)$.
- Successor \langle succ $\rangle \equiv \lambda n f x .(f(n f x))$ such that $\operatorname{succ}\langle n\rangle \rightarrow^{*}\langle n+1\rangle$.
- Zero $\langle Z\rangle \equiv \lambda x$. λ ($g y \cdot y$).
- Projection $\left\langle\Pi_{i}^{k}\right\rangle \equiv \lambda x_{1} x_{2} \ldots x_{k} \cdot x_{i}$.

Composition is easy

Recursive functions: Primitive recursion

- Evaluate $t(n)$ bottom up
- Much like dynamic programming for recursive functions
- Define a function step that does the following

$$
\operatorname{step}(n, f(n))=(n+1, f(n+1))
$$

i.e.

$$
\operatorname{step}(t(n))=t(n+1)
$$

- So, $t(n)=\operatorname{step}^{n}(0, f(0))=\operatorname{step}^{n}(0, g) \ldots$
- \ldots and $f(n)=\operatorname{snd}(t(n))=\operatorname{snd}\left(\operatorname{step}^{n}(0, g)\right)$
- Requires constructions for building pairs and decomposing them using fst and snd

Recursive functions: Minimalization

- To evaluate

$$
f\left(n_{1}, n_{2}, \ldots, n_{k}\right)=\mu n \cdot\left(g\left(n, n_{1}, n_{2} \ldots, n_{k}\right)=0\right)
$$

we go back to the idea of computing a while loop

```
n := 0;
while (g(n,n1,n2,\ldots.,nk) != 0) {n := n+1};
return n;
```

- Implement the while loop using recursion

```
f(n1,n2,\ldots,nk) = check(0,n1,n2\ldots..nk)
where
check(n,n1,n2\ldots..nk){
    if (iszero(g(n,n1,n2,...,nk)) {return n;}
        else {check(n+1,n1,n2,\ldots..nk);}
    }
```

- Need a mechanism to encode booleans, if-then-else in λ-calculus. Also need a mechanism for recursion.

Recursive definitions

Suppose $F=\lambda x_{1} x_{2} \ldots x_{n} E$, where where E contains an occurrence of F

- Choose a new variable f
- Convert E to E^{*} replacing every F in E by ff
- If E is of the form $\cdots F \cdots F \cdots$ then E^{*} is $\cdots(f f) \cdots(f f) \cdots$.

Now write

$$
\begin{aligned}
G & =\lambda f x_{1} x_{2} \ldots x_{n} \cdot E^{*} \\
& =\lambda f x_{1} x_{2} \ldots x_{n} \cdot \cdots(f f) \cdots(f f) \cdots
\end{aligned}
$$

Then

$$
G G=\lambda x_{1} x_{2} \ldots x_{n} \cdots(G G) \cdots(G G) \cdots
$$

- $G G$ satisfies the equation defining F
- Write $F=G G$, where $G=\lambda f x_{1} x_{2} \ldots x_{n} \cdot E^{*}$.

Minimalization ...

```
f(n1,n2,\ldots,nk)= check(0,n1,n2\ldotsnk)
where
    check(n,n1,n2\ldotsnk){
        if (iszero(g(n,n1,n2,\ldots,nk)) {return n;}
        else {check(n+1,n1,n2,\ldots,nk);}
    }
```

Encoding Booleans

- \langle True $\rangle \equiv \lambda x y . x$
- \langle False $\rangle \equiv \lambda x y \cdot y$
- \langle if $-b-$ then $-x-e l s e-y\rangle \equiv \lambda b x y . b x y$

Minimalization ...

- \langle True $\rangle \equiv \lambda x y . x$
- \langle False $\rangle \equiv \lambda x y \cdot y$
- \langle if $-b-$ then $-x$ - else $-y\rangle \equiv \lambda b x y . b x y$

$$
\begin{aligned}
(\lambda b x y \cdot b x y)\langle\text { True }\rangle f g & \rightarrow \lambda x y \cdot((\lambda x y \cdot x) x y) f g \\
& \rightarrow \lambda y \cdot((\lambda x y \cdot x) f y) g \\
& \rightarrow(\lambda x y \cdot x) f g \\
& \rightarrow(\lambda y \cdot f) g
\end{aligned}
$$

$(\lambda b x y . b x y)\langle$ False $\rangle f g \rightarrow \lambda x y .((\lambda x y \cdot y) x y) f g$
$\rightarrow \lambda y \cdot((\lambda x y \cdot y) f y) g$
$\rightarrow \quad(\lambda x y \cdot y) f g$
$\rightarrow(\lambda y \cdot y) g$
$\rightarrow g$

Minimalization

- Want to define $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ by minimalization from a $g: \mathbb{N}^{k+1} \rightarrow \mathbb{N}$
- Already have an encoding $\langle g\rangle$ for g

Define F as follows:

$$
\begin{aligned}
& F=\lambda n x_{1} x_{2} \ldots x_{k} \text {. if }\langle\text { iszero }\rangle\left(\langle g\rangle n x_{1} x_{2} \ldots x_{k}\right) \\
& \text { then } n \\
& \\
& \text { else } F(\langle\text { succ }\rangle n) x_{1} x_{2} \ldots x_{k}
\end{aligned}
$$

- \tilde{F} : the lambda term for F after unravelling the recursive definition
- $\langle f\rangle$ is then $\tilde{F}\langle 0\rangle$.

Still need to define 〈iszero〉

Minimalization ...

$$
\begin{aligned}
& \langle\text { iszero }\rangle=\lambda n . n(\lambda z .\langle\text { false }\rangle)\langle\text { true }\rangle \\
& \langle\text { iszero }\rangle\langle 0\rangle=(\lambda n . n(\lambda z .\langle\text { false }\rangle)\langle\text { true }\rangle)(\lambda f x . x) \\
& \rightarrow_{\beta} \quad(\lambda f x . x)(\lambda z .\langle\text { false }\rangle)\langle\text { true }\rangle \\
& \rightarrow_{\beta} \quad(\lambda x . x)\langle\text { true }\rangle \\
& \rightarrow_{\beta} \quad\langle\text { true }\rangle \\
& \langle\text { iszero }\rangle\langle 1\rangle=(\lambda n . n(\lambda z .\langle\text { false }\rangle)\langle\text { true }\rangle)(\lambda f x . f x) \\
& \rightarrow_{\beta} \quad(\lambda f x . f x)(\lambda z .\langle f a l s e\rangle)\langle\text { true }\rangle \\
& \rightarrow_{\beta} \quad(\lambda x .(\lambda z .\langle\text { false }\rangle) x)\langle\text { true }\rangle \\
& \rightarrow_{\beta} \quad(\lambda z .\langle\text { false }\rangle)\langle\text { true }\rangle \\
& \rightarrow_{\beta} \quad\langle\text { false }\rangle
\end{aligned}
$$

By induction, for $n>0 \ldots$

$$
\langle\text { iszero }\rangle\langle n\rangle \rightarrow_{\beta}^{*}(\lambda z .\langle\text { false }\rangle)^{n}\langle\text { true }\rangle \rightarrow_{\beta}^{*}\langle\text { false }\rangle
$$

One step reduction

- Can have other reduction rules like β
- Observe that $\lambda x .(M x)$ and M are equivalent with respect to β-reduction, provided x is not free in M.
- New reduction rule η

$$
\lambda x .(M x) \rightarrow_{\eta} M
$$

- Given basic rules β, η, \ldots, we are allowed to use them "in any context"
- Define a one step reduction relation \rightarrow inductively

$$
\begin{aligned}
& \sum_{x \rightarrow M^{\prime}}^{M \rightarrow M} \\
& x \in\{\beta, \eta, \ldots\}
\end{aligned} \quad \frac{M \rightarrow M^{\prime}}{\lambda x \cdot M \rightarrow \lambda x \cdot M^{\prime}} \quad \frac{M \rightarrow M^{\prime}}{M N \rightarrow M^{\prime} N} \quad \frac{N \rightarrow N^{\prime}}{M N \rightarrow M N^{\prime}}
$$

Normal forms

- Computation - a maximal sequence of reduction steps
- "Values" are expressions that cannot be further reduced: normal forms
- Allow reduction in any context \Rightarrow multiple expressions may qualify for reduction in one step

Natural questions

- Does every term reduce to a normal form?
- Can a term reduce to more than one normal form, depending on order reduction strategy?
- If a term has a normal form, can we always find it?

Normal forms ...

Does every term reduce to a normal form?

- Consider $(\lambda x . x x)(\lambda x . x x)$
- $(\lambda x . x x)(\lambda x . x x) \rightarrow_{\beta}(\lambda x . x x)(\lambda x . x x)$
- Reduction never terminates
- Call this term Ω

Normal forms

Can a term reduce to more than one normal form, depending on order reduction strategy?

- Consider \langle False $\rangle \Omega=(\lambda y z . z)((\lambda x . x x)(\lambda x . x x))$
- Outermost reduction: $(\lambda y z . z)((\lambda x . x x)(\lambda x . x x)) \rightarrow \lambda z . z$
- Innermost reduction: $(\lambda y z . z)((\lambda x . x x)(\lambda x . x x)) \rightarrow(\lambda y z . z)((\lambda x . x x)(\lambda x . x x)) \rightarrow \cdots$
- Choice of reduction strategies may determine whether a normal form is reached...
- ... but the question is, can more than one normal form be reached?

Normal forms

If a term has a normal form, can we always find it?

- We have seen how to encode recursive functions in λ-calculus
- Given a recursive function f and an argument n, we cannot determine, in general, if computation of $f(n)$ terminates
- Computing $f(n)$ is equivalent to asking if $\langle f\rangle\langle n\rangle$ achieves a normal form

Normal forms

Can a term reduce to more than one normal form, depending on order reduction strategy?

- Define an equivalence relation \leftrightarrow on λ-terms

$$
M \leftrightarrow N \text { iff } \exists P . P \rightarrow^{*} M, P \rightarrow^{*} N
$$

$M \leftrightarrow N$ if both M and N can be obtained by reduction from a common "ancestor" P

- \leftrightarrow is the symmetric transitive closure of \rightarrow^{*}

$$
\frac{M \rightarrow^{*} N}{M \leftrightarrow N} \quad \frac{M \leftrightarrow N}{N \leftrightarrow M} \quad \frac{M \leftrightarrow N, N \leftrightarrow P}{M \leftrightarrow P}
$$

- In general, for any reflexive, transitive relation R, can define the symmetric, transitive closure $\stackrel{R}{\leftrightarrow}$

Church-Rosser Theorem

Diamond property or Church-Rosser property

- Let R be any reflexive, transitive relation (such as \rightarrow^{*})
- R has the diamond property if, whenever $X R Y$ and $X R Z$ there is W such that $Y R W$ and $Z R W$

Theorem [Church-Rosser]
Let R be Church-Rosser. Then $M \stackrel{R}{\leftrightarrow} N$ implies there exists $Z, M R Z$ and $N R Z$
Proof By induction on the definition of $\stackrel{R}{\hookrightarrow}$

Church-Rosser Theorem

Corollary [Church-Rosser]

Let R be a reduction relation that is Church-Rosser. Then a term can have at most one normal form with respect to R

Proof By picture

Church-Rosser Theorem

Is \rightarrow^{*} Church-Rosser?
Consider $(\lambda x . x x)((\lambda x . x)(\lambda x . x))$
Two possible reductions

- $(\lambda x \cdot x x)((\lambda x . x)(\lambda x . x)) \rightarrow$

$$
((\lambda x \cdot x)(\lambda x \cdot x))((\lambda x \cdot x)(\lambda x \cdot x))
$$

- $(\lambda x \cdot x x)((\lambda x \cdot x)(\lambda x \cdot x)) \rightarrow((\lambda x \cdot x x)(\lambda x \cdot x)$

From second option, in one step we get

$$
(\lambda x \cdot x x)(\lambda x \cdot x) \rightarrow((\lambda x \cdot x)(\lambda x \cdot x))
$$

Can reach this term from the first option as well, but it requires two steps!

Church-Rosser Theorem

Solution: Define a new notion of one step reduction \rightarrow such that

- This new reduction is Church-Rosser.
- Its reflexive, transitive closure is equal to \rightarrow^{*}.

Define \rightarrow as follows.

$$
\begin{array}{cc}
M \rightarrow M & \frac{M \rightarrow M^{\prime}}{\lambda x \cdot M \rightarrow \lambda x \cdot M^{\prime}} \\
{, N \rightarrow N^{\prime}} } \\
M N \rightarrow M^{\prime} N^{\prime} & M \rightarrow M^{\prime}, N \rightarrow N^{\prime} \\
(\lambda x \cdot M) N \rightarrow M^{\prime}\left\{x \leftarrow N^{\prime}\right\}
\end{array}
$$

$-\rightarrow$ combines nonoverlapping \rightarrow reductions into one parallel step

