
λ Calculus: Lecture 3

Madhavan Mukund

Chennai Mathematical Institute

madhavan@cmi.ac.in

PLC, 13 March 2017

madhavan@cmi.ac.in


Recursive functions

Recursive functions [Gödel]

Initial functions

I Zero: Z (n) = 0.

I Successor: S(n) = n+1.

I Projection: Πk
i (n1, n2, . . . , nk) = ni

Composition Given f : Nk → N and
g1, g2, . . . , gk : Nh → N,

f ◦ (g1, g2, . . . , gk)(n1, n2, . . . , nh) =

f (g1(n1, n2, . . . , nh), g2(n1, n2, . . . , nh), . . . , gk(n1, n2, . . . , nh))



Recursive functions . . .

Primitive recursion Given g : Nk → N and
h : Nk+2 → N

define f : Nk+1 → N by primitive recursion as follows:

f (0, n1, n2, . . . , nk) = g(n1, n2, . . . , nk)
f (n+1, n1, . . . , nk) = h(n, f (n, n1, n2, . . . , nk), n1, . . . , nk)

Minimalization
Given g : Nk+1 → N, define f : Nk → N by minimalization from g

f (n1, n2, . . . , nk) = µn.(g(n, n1, n2 . . . , nk) = 0)

where µn.P(n) returns the least natural number n such that P(n)
holds



Encoding recursive functions . . .

I 〈n〉 ≡ λfx .(f nx).

I Successor 〈succ〉 ≡ λnfx .(f (nfx)) such that
succ〈n〉 →∗ 〈n + 1〉.

I Zero 〈Z 〉 ≡ λx .(λgy .y).

I Projection 〈Πk
i 〉 ≡ λx1x2 . . . xk .xi .

Composition is easy



Recursive functions: Primitive recursion

I Evaluate t(n) bottom up

I Much like dynamic programming for recursive functions

I Define a function step that does the following

step(n, f (n)) = (n+1, f (n+1))
i.e.

step(t(n)) = t(n+1)

I So, t(n) = stepn(0, f (0)) = stepn(0, g) . . .

I . . . and f (n) = snd(t(n)) = snd(stepn(0, g))

I Requires constructions for building pairs and decomposing
them using fst and snd



Recursive functions: Minimalization

I To evaluate

f (n1, n2, . . . , nk) = µn.(g(n, n1, n2 . . . , nk) = 0)

we go back to the idea of computing a while loop

n := 0;

while (g(n,n1,n2,...,nk) != 0) {n := n+1};

return n;

I Implement the while loop using recursion

f(n1,n2,...,nk) = check(0,n1,n2...nk)

where

check(n,n1,n2...nk){

if (iszero(g(n,n1,n2,...,nk)) {return n;}

else {check(n+1,n1,n2,...,nk);}

}

I Need a mechanism to encode booleans, if-then-else in
λ-calculus. Also need a mechanism for recursion.



Recursive definitions

Suppose F = λx1x2 . . . xnE , where where E contains an occurrence
of F

I Choose a new variable f

I Convert E to E ∗ replacing every F in E by ff

I If E is of the form · · ·F · · ·F · · · then E∗ is · · · (ff ) · · · (ff ) · · ·.

Now write

G = λfx1x2 . . . xn.E
∗

= λfx1x2 . . . xn. · · · (ff ) · · · (ff ) · · ·

Then
GG = λx1x2 . . . xn. · · · (GG ) · · · (GG ) · · ·

I GG satisfies the equation defining F

I Write F = GG , where G = λfx1x2 . . . xn.E
∗.



Minimalization . . .

f(n1,n2,...,nk) = check(0,n1,n2...nk)

where

check(n,n1,n2...nk){

if (iszero(g(n,n1,n2,...,nk)) {return n;}

else {check(n+1,n1,n2,...,nk);}

}

Encoding Booleans

I 〈True〉 ≡ λxy .x

I 〈False〉 ≡ λxy .y

I 〈if − b − then − x − else − y〉 ≡ λbxy . bxy



Minimalization . . .

I 〈True〉 ≡ λxy .x

I 〈False〉 ≡ λxy .y

I 〈if − b − then − x − else − y〉 ≡ λbxy . bxy

(λbxy .bxy)〈True〉fg → λxy .((λxy .x)xy)fg
→ λy .((λxy .x)fy)g
→ (λxy .x)fg
→ (λy .f )g
→ f

(λbxy .bxy)〈False〉fg → λxy .((λxy .y)xy)fg
→ λy .((λxy .y)fy)g
→ (λxy .y)fg
→ (λy .y)g
→ g



Minimalization . . .

I Want to define f : Nk → N by minimalization from a
g : Nk+1 → N

I Already have an encoding 〈g〉 for g

Define F as follows:

F = λnx1x2 . . . xk . if 〈iszero〉(〈g〉 n x1 x2 . . . xk)
then n
else F (〈succ〉n) x1 x2 . . . xk

I F̃ : the lambda term for F after unravelling the recursive
definition

I 〈f 〉 is then F̃ 〈0〉.

Still need to define 〈iszero〉



Minimalization . . .

〈iszero〉 = λn.n(λz .〈false〉)〈true〉

〈iszero〉 〈0〉 = (λn.n(λz .〈false〉)〈true〉) (λfx .x)
→β (λfx .x)(λz .〈false〉)〈true〉
→β (λx .x)〈true〉
→β 〈true〉

〈iszero〉 〈1〉 = (λn.n(λz .〈false〉)〈true〉) (λfx .fx)
→β (λfx .fx)(λz .〈false〉)〈true〉
→β (λx .(λz .〈false〉) x)〈true〉
→β (λz .〈false〉) 〈true〉
→β 〈false〉

By induction, for n > 0 . . .

〈iszero〉 〈n〉 →∗β (λz .〈false〉)n 〈true〉 →∗β 〈false〉



One step reduction

I Can have other reduction rules like β

I Observe that λx .(Mx) and M are equivalent with respect to
β-reduction, provided x is not free in M.

I New reduction rule η

λx .(Mx)→η M

I Given basic rules β, η, . . . , we are allowed to use them “in
any context”

I Define a one step reduction relation → inductively

M →x M ′

M → M

′

x ∈ {β, η, . . .}

M → M ′

λx .M → λx .M ′
M → M ′

MN → M ′N

N → N ′

MN → MN ′



Normal forms

I Computation — a maximal sequence of reduction steps

I “Values” are expressions that cannot be further reduced:
normal forms

I Allow reduction in any context ⇒ multiple expressions may
qualify for reduction in one step

Natural questions

I Does every term reduce to a normal form?

I Can a term reduce to more than one normal form, depending
on order reduction strategy?

I If a term has a normal form, can we always find it?



Normal forms . . .

Does every term reduce to a normal form?

I Consider (λx .xx)(λx .xx)

I (λx .xx)(λx .xx)→β (λx .xx)(λx .xx)

I Reduction never terminates

I Call this term Ω



Normal forms . . .

Can a term reduce to more than one normal form, depending on
order reduction strategy?

I Consider 〈False〉Ω = (λyz .z)((λx .xx)(λx .xx))

I Outermost reduction:
(λyz .z)((λx .xx)(λx .xx))→ λz .z

I Innermost reduction:
(λyz .z)((λx .xx)(λx .xx))→ (λyz .z)((λx .xx)(λx .xx))→ · · ·

I Choice of reduction strategies may determine whether a
normal form is reached . . .

I . . . but the question is, can more than one normal form be
reached?



Normal forms . . .

If a term has a normal form, can we always find it?

I We have seen how to encode recursive functions in λ-calculus

I Given a recursive function f and an argument n, we cannot
determine, in general, if computation of f (n) terminates

I Computing f (n) is equivalent to asking if 〈f 〉〈n〉 achieves a
normal form



Normal forms . . .

Can a term reduce to more than one normal form, depending on
order reduction strategy?

I Define an equivalence relation ↔ on λ-terms

M ↔ N iff ∃P. P →∗ M,P →∗ N

M ↔ N if both M and N can be obtained by reduction from a
common “ancestor” P

I ↔ is the symmetric transitive closure of →∗

M →∗ N

M ↔ N

M ↔ N

N ↔ M

M ↔ N,N ↔ P

M ↔ P

I In general, for any reflexive, transitive relation R, can define

the symmetric, transitive closure
R↔



Church-Rosser Theorem

Diamond property or Church-Rosser property

I Let R be any reflexive, transitive relation (such as →∗)
I R has the diamond property if, whenever X R Y and X R Z

there is W such that Y R W and Z R W

Theorem [Church-Rosser]

Let R be Church-Rosser. Then M
R↔ N implies there

exists Z , M R Z and N R Z

Proof By induction on the definition of
R↔



Church-Rosser Theorem

Corollary [Church-Rosser]

Let R be a reduction relation that is Church-Rosser.
Then a term can have at most one normal form with
respect to R

Proof By picture



Church-Rosser Theorem

Is →∗ Church-Rosser?

Consider (λx .xx)((λx .x)(λx .x))

Two possible reductions

I (λx .xx)((λx .x)(λx .x))→
((λx .x)(λx .x))((λx .x)(λx .x)) (Outermost)

I (λx .xx)((λx .x)(λx .x))→ ((λx .xx)(λx .x) (Innermost)

From second option, in one step we get

(λx .xx)(λx .x)→ ((λx .x)(λx .x))

Can reach this term from the first option as well, but it requires
two steps!



Church-Rosser Theorem

Solution: Define a new notion of one step reduction � such that

I This new reduction is Church-Rosser.

I Its reflexive, transitive closure is equal to →∗.

Define � as follows.

M � M
M � M ′

λx .M � λx .M ′

M � M ′,N � N ′

MN � M ′N ′
M � M ′,N � N ′

(λx .M)N � M ′{x ← N ′}

I � combines nonoverlapping → reductions into one parallel
step


