Programming Language Concepts, January–April 2017 $$\lambda$-calculus$

Assignment, 2 April, 2017 **Due:** 10 April, 2017

Note: Only electronic submissions accepted, via Moodle.

Notation:

- In the untyped lambda calculus, let $\langle n \rangle$ be the Church numeral encoding of the number n—that is, $\langle n \rangle = \lambda f x.(f^n x)$.
- Also, let
 - $-\langle \text{true} \rangle = \lambda x y. x.$
 - $\langle \text{false} \rangle = \lambda x y. y.$
 - $\langle \text{if } b \text{ then } x \text{ else } y \rangle = \lambda bxy.bxy.$
- 1. Verify that $\lambda pq.(pq)$ encodes the exponentiation function for Church numerals.
- 2. Find an encoding for the predecessor function given by:
 - (a) pred(0) = 0.
 - (b) pred(n) = n 1, for n > 0.
- 3. Write an expression in the second order polymorphic typed λ -calculus (System F) corresponding to the Haskell function.

twice f x = f (f x)

Derive its type using the type inference rules for the 2nd order polymorphic typed lambda calculus.

- 4. Unify the following pairs of formulas, if possible. Explain your answer in terms of the unification algorithm discussed in class.
 - (a) p(x, g(f(a)), f(x)) and p(f(y), z, y).
 - (b) p(a, x, f(g(y))) and p(z, h(z, u), f(u)).