Programming Language Concepts, January-April 2017
 λ-calculus

Assignment, 2 April, 2017
Due: 10 April, 2017
Note: Only electronic submissions accepted, via Moodle.

Notation:

- In the untyped lambda calculus, let $\langle n\rangle$ be the Church numeral encoding of the number n-that is, $\langle n\rangle=\lambda f x .\left(f^{n} x\right)$.
- Also, let
$-\langle$ true $\rangle=\lambda x y . x$.
$-\langle$ false $\rangle=\lambda x y . y$.
$-\langle$ if b then x else $y\rangle=\lambda b x y . b x y$.

1. Verify that $\lambda p q \cdot(p q)$ encodes the exponentiation function for Church numerals.
2. Find an encoding for the predecessor function given by:
(a) $\operatorname{pred}(0)=0$.
(b) $\operatorname{pred}(n)=n-1$, for $n>0$.
3. Write an expression in the second order polymorphic typed λ-calculus (System F) corresponding to the Haskell function.
```
twice f x = f (f x)
```

Derive its type using the type inference rules for the 2 nd order polymorphic typed lambda calculus.
4. Unify the following pairs of formulas, if possible. Explain your answer in terms of the unification algorithm discussed in class.
(a) $p(x, g(f(a)), f(x))$ and $p(f(y), z, y)$.
(b) $p(a, x, f(g(y)))$ and $p(z, h(z, u), f(u))$.

