
Programming Language Concepts: Lecture 11

Madhavan Mukund

Chennai Mathematical Institute

madhavan@cmi.ac.in

http://www.cmi.ac.in/~madhavan/courses/pl2009

PLC 2009, Lecture 11, 02 March 2009

madhavan@cmi.ac.in
http://www.cmi.ac.in/~madhavan/courses/pl2009


Concurrent programming

◮ Multiprocessing

◮ Single processor executes several computations “in parallel”
◮ Time-slicing to share access



Concurrent programming

◮ Multiprocessing

◮ Single processor executes several computations “in parallel”
◮ Time-slicing to share access

◮ Logically parallel actions within a single application

◮ Clicking Stop terminates a download in a browser
◮ User-interface is running in parallel with network access



Concurrent programming

◮ Multiprocessing

◮ Single processor executes several computations “in parallel”
◮ Time-slicing to share access

◮ Logically parallel actions within a single application

◮ Clicking Stop terminates a download in a browser
◮ User-interface is running in parallel with network access

◮ Process

◮ Private set of local variables
◮ Time-slicing involves saving the state of one process and

loading the suspended state of another



Concurrent programming

◮ Multiprocessing

◮ Single processor executes several computations “in parallel”
◮ Time-slicing to share access

◮ Logically parallel actions within a single application

◮ Clicking Stop terminates a download in a browser
◮ User-interface is running in parallel with network access

◮ Process

◮ Private set of local variables
◮ Time-slicing involves saving the state of one process and

loading the suspended state of another

◮ Threads

◮ Operated on same local variables
◮ Communicate via “shared memory”
◮ Context switches are easier



Concurrent programming

◮ Multiprocessing

◮ Single processor executes several computations “in parallel”
◮ Time-slicing to share access

◮ Logically parallel actions within a single application

◮ Clicking Stop terminates a download in a browser
◮ User-interface is running in parallel with network access

◮ Process

◮ Private set of local variables
◮ Time-slicing involves saving the state of one process and

loading the suspended state of another

◮ Threads

◮ Operated on same local variables
◮ Communicate via “shared memory”
◮ Context switches are easier

◮ Henceforth, we use process and thread interchangeably



Shared variables

◮ Browser example: download thread and user-interface thread

run in parallel

◮ Shared boolean variable terminate indicates whether

download should be interrupted
◮ terminate is initially false
◮ Clicking Stop sets it to true
◮ Download thread checks the value of this variable periodically

and aborts if it is set to true



Shared variables

◮ Browser example: download thread and user-interface thread

run in parallel

◮ Shared boolean variable terminate indicates whether

download should be interrupted
◮ terminate is initially false
◮ Clicking Stop sets it to true
◮ Download thread checks the value of this variable periodically

and aborts if it is set to true

◮ Watch out for race conditions

◮ Shared variables must be updated consistently



Race conditions

◮ Two threads increment a shared variable n

Thread 1 Thread 2

... ...

m = n; k = n;

m++; k++;

n = m; n = k;

... ...



Race conditions

◮ Two threads increment a shared variable n

Thread 1 Thread 2

... ...

m = n; k = n;

m++; k++;

n = m; n = k;

... ...

◮ Expect n to increase by 2 . . .



Race conditions

◮ Two threads increment a shared variable n

Thread 1 Thread 2

... ...

m = n; k = n;

m++; k++;

n = m; n = k;

... ...

◮ Expect n to increase by 2 . . .

◮ . . . but, time-slicing may order execution as follows

Thread 1: m = n;

Thread 1: m++;

Thread 2: k = n; // k gets the original value of n

Thread 2: k++;

Thread 1: n = m;

Thread 2: n = k; // Same value as that set by Thread 1



Race conditions . . .

◮ Array double accounts[100] describes 100 bank accounts

◮ Two functions that operate on accounts

boolean transfer (double amount, int source, int target){

// transfer amount accounts[source] -> accounts[target]

if (accounts[source] < amount){ return false; }

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

double audit(){

// compute the total balance across all accounts

double balance = 0.00;

for (int i = 0; i < 100; i++){ balance += accounts[i]; }

return balance;

}



Race conditions . . .

◮ What are the possibilities when we execute the following?

Thread 1 Thread 2

... ...

status = transfer(500.00,7,8); print (audit());

... ...



Race conditions . . .

◮ What are the possibilities when we execute the following?

Thread 1 Thread 2

... ...

status = transfer(500.00,7,8); print (audit());

... ...

◮ audit() can report an overall total that is 500 more or less

than the actual assets

◮ Depends on how actions of transfer are interleaved with

actions of audit



Race conditions . . .

◮ What are the possibilities when we execute the following?

Thread 1 Thread 2

... ...

status = transfer(500.00,7,8); print (audit());

... ...

◮ audit() can report an overall total that is 500 more or less

than the actual assets

◮ Depends on how actions of transfer are interleaved with

actions of audit

◮ Can avoid this by insisting that transfer and audit do not

interleave



Race conditions . . .

◮ What are the possibilities when we execute the following?

Thread 1 Thread 2

... ...

status = transfer(500.00,7,8); print (audit());

... ...

◮ audit() can report an overall total that is 500 more or less

than the actual assets

◮ Depends on how actions of transfer are interleaved with

actions of audit

◮ Can avoid this by insisting that transfer and audit do not

interleave

◮ Should never have simultaneously have current control point

of Thread 1 within transfer and Thread 2 within audit



Race conditions . . .

◮ What are the possibilities when we execute the following?

Thread 1 Thread 2

... ...

status = transfer(500.00,7,8); print (audit());

... ...

◮ audit() can report an overall total that is 500 more or less

than the actual assets

◮ Depends on how actions of transfer are interleaved with

actions of audit

◮ Can avoid this by insisting that transfer and audit do not

interleave

◮ Should never have simultaneously have current control point

of Thread 1 within transfer and Thread 2 within audit

◮ Mutually exclusive access to critical regions of code



Mutual exclusion for two processes

◮ First attempt

Thread 1 Thread 2

... ...

while (turn != 1){ while (turn != 2){

// "Busy" wait // "Busy" wait

} }

// Enter critical section // Enter critical section

... ...

// Leave critical section // Leave critical section

turn = 2; turn = 1;

... ...

◮ No assumption about initial value of turn!



Mutual exclusion for two processes

◮ First attempt

Thread 1 Thread 2

... ...

while (turn != 1){ while (turn != 2){

// "Busy" wait // "Busy" wait

} }

// Enter critical section // Enter critical section

... ...

// Leave critical section // Leave critical section

turn = 2; turn = 1;

... ...

◮ No assumption about initial value of turn!

◮ Mutually exclusive access is guaranteed . . .



Mutual exclusion for two processes

◮ First attempt

Thread 1 Thread 2

... ...

while (turn != 1){ while (turn != 2){

// "Busy" wait // "Busy" wait

} }

// Enter critical section // Enter critical section

... ...

// Leave critical section // Leave critical section

turn = 2; turn = 1;

... ...

◮ No assumption about initial value of turn!

◮ Mutually exclusive access is guaranteed . . .

◮ . . . but one thread is locked out permanently if other thread

shuts down

Starvation!



Mutual exclusion for two processes . . .

◮ Second attempt

Thread 1 Thread 2

... ...

request_1 = true; request_2 = true;

while (request_2){ while (request_1)

// "Busy" wait // "Busy" wait

} }

// Enter critical section // Enter critical section

... ...

// Leave critical section // Leave critical section

request_1 = false; request_2 = false;

... ...



Mutual exclusion for two processes . . .

◮ Second attempt

Thread 1 Thread 2

... ...

request_1 = true; request_2 = true;

while (request_2){ while (request_1)

// "Busy" wait // "Busy" wait

} }

// Enter critical section // Enter critical section

... ...

// Leave critical section // Leave critical section

request_1 = false; request_2 = false;

... ...

◮ Mutually exclusive access is guaranteed . . .



Mutual exclusion for two processes . . .

◮ Second attempt

Thread 1 Thread 2

... ...

request_1 = true; request_2 = true;

while (request_2){ while (request_1)

// "Busy" wait // "Busy" wait

} }

// Enter critical section // Enter critical section

... ...

// Leave critical section // Leave critical section

request_1 = false; request_2 = false;

... ...

◮ Mutually exclusive access is guaranteed . . .

◮ . . . but if both threads try simultaneously, they block each

other

Deadlock!



Peterson’s algorithm

Thread 1 Thread 2

... ...

request_1 = true; request_2 = true;

turn = 2; turn = 1;

while (request_2 && while (request_1 &&

turn != 1){ turn != 2){

// "Busy" wait // "Busy" wait

} }

// Enter critical section // Enter critical section

... ...

// Leave critical section // Leave critical section

request_1 = false; request_2 = false;

... ...



Peterson’s algorithm

Thread 1 Thread 2

... ...

request_1 = true; request_2 = true;

turn = 2; turn = 1;

while (request_2 && while (request_1 &&

turn != 1){ turn != 2){

// "Busy" wait // "Busy" wait

} }

// Enter critical section // Enter critical section

... ...

// Leave critical section // Leave critical section

request_1 = false; request_2 = false;

... ...

◮ If both try simultaneously, turn decides who goes through

◮ If only one is alive, request for that process is stuck at false

and turn is irrelevant



Beyond two processes

◮ Generalizing Peterson’s solution to more than two processes is

not trivial

◮ For n process mutual exclusion other solutions exist

◮ e.g., Lamport’s Bakery Algorithm

◮ Need specific clever solutions for different situations

◮ Need to argue correctness in each case



Programming language support

◮ Add programming language support for mutual exclusion



Programming language support

◮ Add programming language support for mutual exclusion

◮ Dijkstra’s semaphores

◮ Integer variable with atomic test-and-set operation



Programming language support

◮ Add programming language support for mutual exclusion

◮ Dijkstra’s semaphores

◮ Integer variable with atomic test-and-set operation

◮ A semaphore S supports two atomic operations

◮ P(s) — from Dutch passeren, to pass
◮ V(s) — from Dutch vrygeven, to release



Programming language support

◮ Add programming language support for mutual exclusion

◮ Dijkstra’s semaphores

◮ Integer variable with atomic test-and-set operation

◮ A semaphore S supports two atomic operations

◮ P(s) — from Dutch passeren, to pass
◮ V(s) — from Dutch vrygeven, to release

◮ P(S) atomically executes the following

if (S > 0)

decrement S;

else

wait for S to become positive;



Programming language support

◮ Add programming language support for mutual exclusion

◮ Dijkstra’s semaphores

◮ Integer variable with atomic test-and-set operation

◮ A semaphore S supports two atomic operations

◮ P(s) — from Dutch passeren, to pass
◮ V(s) — from Dutch vrygeven, to release

◮ P(S) atomically executes the following

if (S > 0)

decrement S;

else

wait for S to become positive;

◮ V(S) atomically executes the following

if (there are threads waiting for S to become positive)

wake one of them up; //choice is nondeterministic

else

increment S;



Using semaphores

◮ Mutual exclusion using semaphores

Thread 1 Thread 2

... ...

P(S); P(S);

// Enter critical section // Enter critical section

... ...

// Leave critical section // Leave critical section

V(S); V(S);

... ...



Using semaphores

◮ Mutual exclusion using semaphores

Thread 1 Thread 2

... ...

P(S); P(S);

// Enter critical section // Enter critical section

... ...

// Leave critical section // Leave critical section

V(S); V(S);

... ...

◮ Semaphores guarantee

◮ Mutual exclusion
◮ Freedom from starvation
◮ Freedom from deadlock



Problem with semaphores

◮ Too low level

◮ No clear relationship between a semaphore and the critical

region that it protects



Problem with semaphores

◮ Too low level

◮ No clear relationship between a semaphore and the critical

region that it protects

◮ All threads must cooperate to correctly reset semaphore



Problem with semaphores

◮ Too low level

◮ No clear relationship between a semaphore and the critical

region that it protects

◮ All threads must cooperate to correctly reset semaphore

◮ Cannot enforce that each P(S) has a matching V(S)



Problem with semaphores

◮ Too low level

◮ No clear relationship between a semaphore and the critical

region that it protects

◮ All threads must cooperate to correctly reset semaphore

◮ Cannot enforce that each P(S) has a matching V(S)

◮ Can even execute V(S) without having done P(S)



Monitors

◮ Attach synchronization control to the data that is being

protected

◮ Monitors — Per Brinch Hansen and CAR Hoare



Monitors

◮ Attach synchronization control to the data that is being

protected

◮ Monitors — Per Brinch Hansen and CAR Hoare

◮ Monitor is like a class in an OO language

◮ Data definition — to which access is restricted across threads
◮ Collections of functions operating on this data — all are

implicitly mutually exclusive



Monitors

◮ Attach synchronization control to the data that is being

protected

◮ Monitors — Per Brinch Hansen and CAR Hoare

◮ Monitor is like a class in an OO language

◮ Data definition — to which access is restricted across threads
◮ Collections of functions operating on this data — all are

implicitly mutually exclusive

◮ Monitor guarantees mutual exclusion — if one function is

active, any other function will have to wait for it to finish



Monitors . . .

monitor bank_account{

double accounts[100];

boolean transfer (double amount, int source, int target){

// transfer amount accounts[source] -> accounts[target]

if (accounts[source] < amount){ return false; }

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

double audit(){

// compute the total balance across all accounts

double balance = 0.00;

for (int i = 0; i < 100; i++){ balance += accounts[i]; }

return balance;

}

}



Monitors . . .

◮ Monitor ensures transfer and audit are mutually exclusive

◮ If Thread 1 is executing transfer and Thread 2 invokes

audit, it must wait

◮ Implicit “queue” associated with each monitor

◮ Contains all processes waiting for access
◮ In practice, this may be just a set, not a queue



Monitors . . .

◮ Our definition of monitors may be too restrictive

transfer(500.00,i,j);

transfer(400.00,j,k);

◮ This should always succeed if accounts[i] > 500

◮ If these calls are reordered and accounts[j] < 400 initially,

this will fail



Monitors . . .

◮ Our definition of monitors may be too restrictive

transfer(500.00,i,j);

transfer(400.00,j,k);

◮ This should always succeed if accounts[i] > 500

◮ If these calls are reordered and accounts[j] < 400 initially,

this will fail

◮ A possible fix

boolean transfer (double amount, int source, int target){

if (accounts[source] < amount){

// wait for another transaction to transfer money

// into accounts[source]

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}



Monitors . . .

boolean transfer (double amount, int source, int target){

if (accounts[source] < amount){

// wait for another transaction to transfer money

// into accounts[source]

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}



Monitors . . .

boolean transfer (double amount, int source, int target){

if (accounts[source] < amount){

// wait for another transaction to transfer money

// into accounts[source]

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

◮ All other processes are blocked out while this process waits!

◮ Need a mechanism for a thread to suspend itself and give up

the monitor



Monitors . . .

boolean transfer (double amount, int source, int target){

if (accounts[source] < amount){

// wait for another transaction to transfer money

// into accounts[source]

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

◮ All other processes are blocked out while this process waits!

◮ Need a mechanism for a thread to suspend itself and give up

the monitor

◮ A suspended process is waiting for monitor to change its state

◮ Have a separate internal queue, as opposed to external queue

where initially blocked threads wait



Monitors . . .

boolean transfer (double amount, int source, int target){

if (accounts[source] < amount){

// wait for another transaction to transfer money

// into accounts[source]

}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

◮ All other processes are blocked out while this process waits!

◮ Need a mechanism for a thread to suspend itself and give up

the monitor

◮ A suspended process is waiting for monitor to change its state

◮ Have a separate internal queue, as opposed to external queue

where initially blocked threads wait

◮ Dual operation to wake up suspended processes



Monitors . . .

boolean transfer (double amount, int source, int target){

if (accounts[source] < amount){ wait(); }

accounts[source] -= amount;

accounts[target] += amount;

notify();

return true;

}



Monitors . . .

boolean transfer (double amount, int source, int target){

if (accounts[source] < amount){ wait(); }

accounts[source] -= amount;

accounts[target] += amount;

notify();

return true;

}

What happens when a process executes notify()?



Monitors . . .

boolean transfer (double amount, int source, int target){

if (accounts[source] < amount){ wait(); }

accounts[source] -= amount;

accounts[target] += amount;

notify();

return true;

}

What happens when a process executes notify()?

◮ Signal and exit — notifying process immediately exits the

monitor

◮ notify() must be the last instruction



Monitors . . .

boolean transfer (double amount, int source, int target){

if (accounts[source] < amount){ wait(); }

accounts[source] -= amount;

accounts[target] += amount;

notify();

return true;

}

What happens when a process executes notify()?

◮ Signal and exit — notifying process immediately exits the

monitor

◮ notify() must be the last instruction

◮ Signal and wait — notifying process swaps roles and goes into

the internal queue of the monitor



Monitors . . .

boolean transfer (double amount, int source, int target){

if (accounts[source] < amount){ wait(); }

accounts[source] -= amount;

accounts[target] += amount;

notify();

return true;

}

What happens when a process executes notify()?

◮ Signal and exit — notifying process immediately exits the

monitor

◮ notify() must be the last instruction

◮ Signal and wait — notifying process swaps roles and goes into

the internal queue of the monitor

◮ Signal and continue — notifying process keeps control till it

completes and then one of the notified processes steps in



Monitors . . .

◮ A thread can be again interleaved between notification and

running



Monitors . . .

◮ A thread can be again interleaved between notification and

running

◮ Should check the wait() condition again on wake up

boolean transfer (double amount, int source, int target){

while (accounts[source] < amount){ wait(); }

accounts[source] -= amount;

accounts[target] += amount;

notify();

return true;

}

◮ Note: wait() is in a while, not in an if



Monitors . . .

◮ After transfer, notify() is only useful for threads waiting

for target account of transfer to change state

◮ Makes sense to have more than one internal queue

◮ Monitor can have condition variables to describe internal

queues



Monitors . . .

monitor bank_account{

double accounts[100];

queue q[100]; // one internal queue for each account

boolean transfer (double amount, int source, int target){

while (accounts[source] < amount){

q[source].wait(); // wait in the queue associated with source

}

accounts[source] -= amount;

accounts[target] += amount;

q[target].notify(); // notify the queue associated with target

return true;

}

// compute the total balance across all accounts

double audit(){ ...}

}


