Programming Language Concepts: Lecture 3

Madhavan Mukund

Chennai Mathematical Institute
madhavan@cmi.ac.in

http://www.cmi.ac.in/"madhavan/courses/pl12009

PLC 2009, Lecture 3, 21 January 2009


madhavan@cmi.ac.in
http://www.cmi.ac.in/~madhavan/courses/pl2009

Subclasses

» A class Employee for employee data
class Employee{

private String name;
private double salary;

// Some Constructors ...

// "mutator" methods
public boolean setName(String s){ ... }
public boolean setSalary(double x){ ... }

// "accessor" methods
public String getName(){ ... }
public double getSalary(O{ ... }

// other methods

double bonus(float percent){
return (percent/100.0)*salary;

} [m] = = =

DA



Subclasses

» Managers are special types of employees with extra features

class Manager extends Employee{
private String secretary;
public boolean setSecretary(name s){ ... }
public String getSecretary(){ ... }

b

> Manager objects inherit other fields and methods from
Employee

» Every Manager has a name, salary and methods to access
and manipulate these.

» Manager is a subclass of Employee
» Think of subset



Subclasses

» Manager objects do not automatically have access to private
data of parent class.

» Common to extend a parent class written by someone else



Subclasses

» Can use parent class’s constructor using super

class Employee{

public Employee(String n, double s){
name = n; salary = s;
}
public Employee(String n){
this(n,500.00);
}
}

» In Manager

public Manager(String n, double s, String sn){
super(n,s); /* super calls

Employee constructor */
secretary = sn;

o>



Subclasses

» Subclass can override methods of super class

double bonus(float percent){
return 1.5%super.bonus(percent);

}

In general, subclass has more features than parent class

v

v

Can use a subclass in place of a superclass

Employee e = new Manager(...)

v

Every Manager is an Employee, but not vice versa!

Recall

v

» int[] a = new int[100];
» Aside: Why the seemingly redundant reference to int in new?

» One can now presumably write

Employee[] e = new Manager(...) [100]



Employee e

new Manager(...)

» Can we invoke e.setSecretary?

«O>r «F»r <

i
v

DA



Subclasses

Employee e = new Manager(...)

» Can we invoke e.setSecretary?

> e is declared to be an Employee

» Static typechecking — e can only refer to methods in
Employee



Subclasses

Employee e = new Manager(...)

» Can we invoke e.setSecretary?
> e is declared to be an Employee
» Static typechecking — e can only refer to methods in
Employee
» What about e.bonus (p)? Which bonus do we use?

» Static: Use Employee.bonus

» Dynamic: Use Manager.bonus



Subclasses

Employee e = new Manager(...)

» Can we invoke e.setSecretary?

> e is declared to be an Employee

» Static typechecking — e can only refer to methods in
Employee

» What about e.bonus (p)? Which bonus do we use?

» Static: Use Employee.bonus

» Dynamic: Use Manager.bonus

» Dynamic dispatch (dynamic binding, late method binding,
...) turns out to be more useful

» Default in Java, optional in C++ (use virtual)



Dynamic dispatch

Employee[] emparray = new Employee[2];
Employee e = new Employee(...);
Manager e = new Manager(...);

emparray[0] = e;
emparray[1] = m;

for (i = 0; i < emparray.length; i++){
System.out.println(emparray[i] .bonus(5.0);
}

o 5 = = £ DA



Dynamic dispatch

Employee[] emparray = new Employee[2];
Employee e = new Employee(...);
Manager e = new Manager(...);

emparray[0] = e;
emparray[1]

m;

for (i = 0; i < emparray.length; i++){
System.out.println(emparray[i] .bonus(5.0);
+

» Every Employee in emparray “knows” how to calculate its
bonus correctly!

» Also referred to as runtime polymorphism or inheritance
polymorphism



Functions, signatures and overloading

» Signature of a function is its name and the list of argument
types

» Can have different functions with the same name and different
signatures

» For example, multiple constructors



Functions, signatures and overloading . ..

» Java class Arrays: method sort to sort arbitrary scalar arrays
double[] darr = new double[100];

int[] iarr = new int[500];

Arrays.sort(darr); // sorts contents of darr
Arrays.sort(iarr); // sorts contents of iarr



Functions, signatures and overloading . ..

» Java class Arrays: method sort to sort arbitrary scalar arrays
double[] darr = new double[100];

int[] iarr = new int[500];

Arrays.sort(darr); // sorts contents of darr
Arrays.sort(iarr); // sorts contents of iarr

» Methods defined in class Arrays

class Arrays{

public static void sort(double[] a){..}
// sorts arrays of doublel[]

public static void sort(int[] a){..}
// sorts arrays of int[]



Functions, signatures and overloading ...

» Overloading: multiple methods, different signatures, choice is
static

» Overriding: multiple methods, same signature, choice is static

» Employee.bonus
» Manager.bonus

» Dynamic dispatch: multiple methods, same signature, choice
made at run-time



Employee e

new Manager(...)

» Can we force e.setSecretary to work?

«O>r «F»r <

i
v

DA



Inheritance

Employee e = new Manager(...)

» Can we force e.setSecretary to work?
» Type casting

((Manager) e).setSecretary(s)



Inheritance

Employee e = new Manager(...)

» Can we force e.setSecretary to work?
» Type casting

((Manager) e).setSecretary(s)

» Cast fails (error) if e is not a Manager



Inheritance

Employee e = new Manager(...)

» Can we force e.setSecretary to work?
» Type casting

((Manager) e).setSecretary(s)

» Cast fails (error) if e is not a Manager
» Can test if e is a Manager

if (e instanceof Manager){
((Manager) e).setSecretary(s);

}



Inheritance

Employee e = new Manager(...)

v

Can we force e.setSecretary to work?

v

Type casting

((Manager) e).setSecretary(s)

v

Cast fails (error) if e is not a Manager

v

Can test if e is a Manager

if (e instanceof Manager){
((Manager) e).setSecretary(s);
+

Reflection — “think about oneself”

v



Multiple inheritance
c1

c2

C3 extends C1,C2




Multiple inheritance
c1

public int £Q)

c2

public int £Q)

C3 extends C1,C2




Multiple inheritance
c1 Cc2

public int £Q) public int £()

C3 extends C1,C2

» Which £ do we use in C3 (assuming £ is not redefined)?

» Java does not allow multiple inheritance
» C+-+ allows this if C1 and C2 have no conflict



Java class hierarchy

» No multiple inheritance — tree-like
» In fact, there is a universal superclass Object
» Useful methods defined in Object
boolean equals(Object o) // defaults to pointer equality

String toString() // converts the values of the
// instance variable to String

» To print o, use System.out.println(o+"");



public int find (Object[] objarr, Object o){
int i;
for (i

0; i < objarr.length(); i++){
if (objarr[i] == o) {return i};
}
return (-1);
}

«O>r «F»r <

i
v

DA



Java class hierarchy

public int find (Object[] objarr, Object o){

int i;

for (i = 0; i < objarr.length(); i++){
if (objarr[i] == o) {return i};

}

return (-1);

» Recall that == is pointer equality



Java class hierarchy

public int find (Object[] objarr, Object o){

int i;
for (i = 0; i < objarr.length(); i++){
if (objarr[i] == o) {return i};
}
return (-1);
}

» Recall that == is pointer equality
» Redefine equals

boolean equals(Date d){
return ((this.day == d.day) &&
(this.month == d.month) &&
(this.year == d.year));



Java class hierarchy

» boolean equals(Date d) does not override boolean
equals(Object o)!



Java class hierarchy

» boolean equals(Date d) does not override boolean
equals(Object o)!

» Should write

boolean equals(Object d){
if (d instanceof Date){
return ((this.day == d.day) &&
(this.month == d.month) &&
(this.year == d.year));
}
return(false);

}



Java class hierarchy

» Overriding looks for “closest” match



Java class hierarchy

» Overriding looks for “closest” match

Suppose boolean equals(Employee e) but no equals in
Manager



Java class hierarchy

» Overriding looks for “closest” match

Suppose boolean equals(Employee e) but no equals in
Manager

Manager ml = new Manager(...);
Manager m2 = new Manager(...);

if.(ml.equals(mQ)){ ...}



Java class hierarchy

» Overriding looks for “closest” match

Suppose boolean equals(Employee e) but no equals in
Manager

Manager ml = new Manager(...);

new Manager(...);

Manager m2
if (ml.equals(m2)){ ... }

boolean equals(Manager m) compatible with both
boolean equals(Employee e) and
boolean equals(Object o)



Java class hierarchy

» Overriding looks for “closest” match

Suppose boolean equals(Employee e) but no equals in
Manager

Manager ml = new Manager(...);

new Manager(...);

Manager m2
if (ml.equals(m2)){ ... }

boolean equals(Manager m) compatible with both
boolean equals(Employee e) and
boolean equals(Object o)

Use boolean equals(Employee e)



