Model-Checking

 Idea of model-checking: establish that the system is a model of a formula (doing a search).

- CTL Model Checking
- SMV input language and its semantics
- SMV examples
- Model checking with fairness
- Binary Decision Diagrams.
- Symbolic model-checking and fixpoints.

38

CTL Model checking

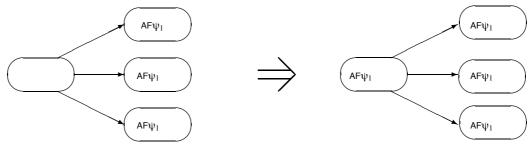
- Assumptions:
 - 1. finite number of processes, each having a finite number of finite-valued variables.
 - 2. finite length of CTL formula
- Problem:Determine whether formula f_0 is true in a finite structure M.
- Algorithm overview:
 - 1. $f_0 = \text{TRANSLATE}(f_0)$ (in terms of AF, EU, EX, \land , \lor , \bot)
 - 2. Label the states of M with the subformulas of f_0 that are satisfied there and work outwards towards f_0 . Ex: AF $(a \land E(b \cup c))$
 - 3. If starting state s_0 is labeled with f_0 , then f_0 is holds on M, i.e.

$$(s_0 \in \{s \mid M, s \models f_0\}) \Rightarrow (M \models f_0)$$

Labeling Algorithm

Suppose ψ is a subformula of f and states satisfying all the immediate subformulas of ψ have already been labeled. We want to determine which states to label with ψ . If ψ is:

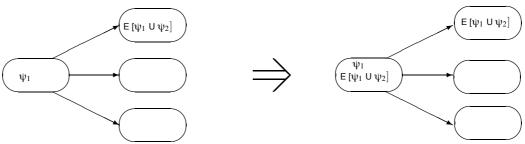
- \perp : then no states are labeled with \perp .
- *p* (prop. formula): label *s* with *p* if $p \in I(s)$.
- $\psi_1 \wedge \psi_2$: label *s* with $\psi_1 \wedge \psi_2$ if *s* is already labeled both with ψ_1 and with ψ_2 .
- $\neg \psi_1$: label *s* with $\neg \psi_1$ if *s* is not already labeled with ψ_1 .
- EX ψ_1 : label any state with EX ψ_1 if one of its successors is labeled with ψ_1 .


Labeling Algorithm (Cont'd)

- AF ψ₁:
 - If any state s is labeled with $\psi_1,$ label it with AF $\psi_1.$

- Repeat: label any state with AF ψ_1 if all successor states are labeled with

AF ψ_1 , until there is no change.


Labeling Algorithm (Cont'd)

• E [ψ₁ U ψ₂]:

- If any state s is labeled with ψ_2 , label it with E[$\psi_1 \cup \psi_2$].

- Repeat: label any state with E[$\psi_1 U \psi_2$] if it is labeled with ψ_1 and at least one of its successors is labeled with E[$\psi_1 U \psi_2$], until there is no change.

Ex:

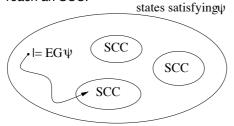
Output states labeled with f.

Complexity: $O(|f| \times S \times (S + |R|))$ (linear in the size of the formula and quadratic in the size of the model).

42

Handling EG ψ_1 directly

- EG ψ_1 :
- Label all the states with EG ψ_1 .
- If any state s is not labeled with ψ_1 , delete the label EG ψ_1 .

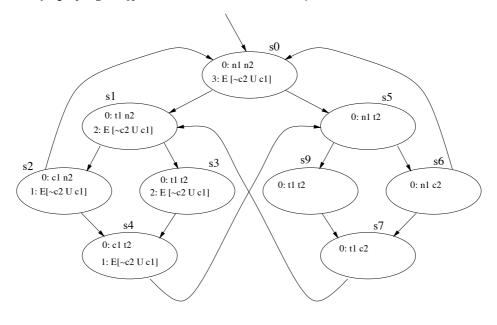

- Repeat: *delete* the label EG ψ_1 from any state if *none* of its successors is labeled with EG ψ_1 ; until there is no change.

Even Better Handling of EG

• restrict the graph to states satisfying ψ_1 , i.e., delete all other states and their transitions;

• find the maximal *strongly connected components* (SCCs); these are maximal regions of the state space in which every state is linked with every other one in that region.

• use breadth-first searching on the restricted graph to find any state that can reach an SCC.

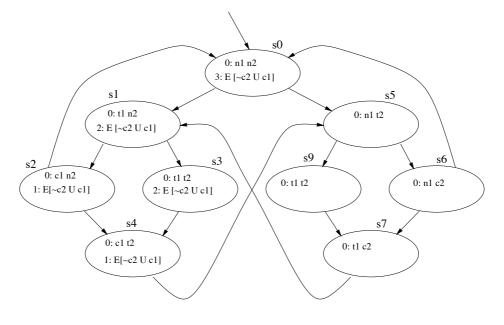


Complexity: $O(|f| \times (S + |R|))$ (linear in size of model and size of formula).

44

Example

Verifying $E[\neg c_2 \cup c_1]$ on the mutual exclusion example.


CTL Model-Checking

- Michael Browne, CMU, 1989.
- Usually for verifying concurrent synchronous systems (hardware, SCR specs...)
- Specify correctness criteria: safety, liveness...
- Instead of keeping track of labels for each state, keep track of a set of states in which a certain formula holds.

46

Example

Verifying $E[\neg c_2 \cup c_1]$ on the mutual exclusion example.

