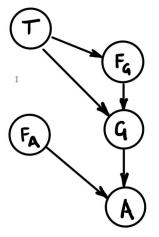
Data Mining and Machine Learning


Quiz 3, II Semester, 2023-2024

16 April, 2024

In a nuclear power station, an alarm is triggered when a temperature gauge exceeds a given threshold. The gauge measures the temperature of the core of the reactor. Consider the boolean variables A (alarm sounds), F_A (alarm is faulty), and F_G (gauge is faulty) along with multivalued variables G (gauge reading) and T (actual core temperature).

1. Draw a Bayesian network for this scenario, given that the gauge is more likely to fail when the core temperature gets too high. Explain the structure of your network.

Solution:

From the situation, it is clear that G depends on F_G and T and A depends on F_A and G. The additional fact that G is more is more likely to fail when the core temperature gets too high justifies the edge from T to F_G .

2. Suppose G and T each take just two values, normal and high. Assume that the gauge gives the correct temperature with probability x when it is working and with probability y when it is faulty. Describe the conditional probability table for G.

Solution: Last column is optional.

Т	F_G	G = High	G = Normal
High	Normal	x	1-x
High	Faulty	y	1-y
Normal	Normal	1-x	x
Normal	Faulty	1-y	y