Lecture 25: 23 April, 2024

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning January–April 2024

Optimal policies and value functions

- Optimal policy π_* , $\pi_* \geq \pi$ for every π always exists, but may not be unique
- lacktriangle Optimal state value function, $v_*(s) \stackrel{\triangle}{=} \max_{\pi} v_{\pi}(s) = v_{\pi_*}(s)$
- lacksquare Optimal action value function, $q_*(s,a) \stackrel{\triangle}{=} \max_{\pi} q_{\pi}(s,a) = q_{\pi_*}(s,a)$
- Bellman optimality equation for *v**

$$v_*(s) = \max_a \sum_{s',r} p(s',r \mid s,a)[r + \gamma v_*(s')]$$

Likewise, for action value function

$$q_*(s, a) = \sum_{s', r} p(s', r \mid s, a) [r + \max_{a'} \gamma q_*(s', a')]$$

- For finite state MDPs, can solve explicitly for $v_* n$ equations in n unknowns,
- \blacksquare n large, computationally infeasible use iterative methods to approximate v_*

Policy evaluation

- Given a policy π , compute its state value function v_{π}
- Bellman equations: $v_{\pi}(s) = \sum_{a} \pi(a \mid s) \sum_{s'} \sum_{r} p(s', r \mid s, a) \left[r + \gamma v_{\pi}(s') \right]$
 - For MDP with n states, n equations in n unknowns
 - Can solve to get v_{π} , but computationally infeasible for large n
- Instead, use the Bellman equations as update rules
 - Initialize $v_{\pi}^{0}(s)$: set $v_{\pi}^{0}(\text{term}) = 0$ for terminal state term, arbitrary values for other s
 - Update v_{π}^{k} to v_{π}^{k+1} using: $v_{\pi}^{k+1}(s) = \sum_{a} \pi(a \mid s) \sum_{s'} \sum_{r} p(s', r \mid s, a) \left[r + \gamma v_{\pi}^{k}(s') \right]$
 - Stop when incremental change $\Delta = |v_{\pi}^{k+1} v_{\pi}^{k}|$ is below threshold θ

Iterative Policy Evaluation, for estimating $V \approx v_{\pi}$

Input π , the policy to be evaluated Algorithm parameter: a small threshold $\theta > 0$ determining accuracy of estimation Initialize V(s), for all $s \in \mathbb{S}^+$, arbitrarily except that V(terminal) = 0

Loop:

$$\begin{array}{l} \Delta \leftarrow 0 \\ \text{Loop for each } s \in \mathbb{S}: \\ v \leftarrow V(s) \\ V(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \big[r + \gamma V(s') \big] \\ \Delta \leftarrow \max(\Delta, |v - V(s)|) \\ \text{until } \Delta < \theta \end{array}$$

Policy evaluation example

 $R_t = -1$ on all transitions

v_k for the random policy

$\overline{}$		
0.0	0.0	0.0
0.0	0.0	0.0
0.0	0.0	0.0
0.0	0.0	0.0
	0.0	0.0 0.0 0.0 0.0

$$k = 1$$

k = 0

$$k = 10$$

$$k = \infty$$

Policy improvement

- Assume a deterministic policy π
- Using v_{π} , can we find a better policy π' ?
- Is there a state s where we can substitute $\pi(s)$ by a better choice a?

$$q_{\pi}(s, a) = \mathbb{E}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_t = s, A_t = a]$$

$$= \sum_{s', r} p(s', r \mid s, a) \left[r + \gamma v_{\pi}(s')\right]$$

- If $q_{\pi}(s, a) > v_{\pi}(s)$, modify π so that $\pi(s) = a$
- The new policy π' is strictly better

Policy improvement

Policy Improvement Theorem

For deterministic policies π , π' :

- If $q_{\pi}(s, \pi'(s)) \ge v_{\pi}(s)$ for all s, then $\pi' \ge \pi$,
- \blacksquare If $\pi' \geq \pi$ and $q_{\pi}(s, \pi'(s)) > v_{\pi}(s)$ for some s, then $v_{\pi'}(s) > v_{\pi}(s)$.

- Proof of the theorem is not difficult for deterministic policies
- The theorem extends to probabilistic policies also
- Provides a basis to iteratively improve the policy

Policy iteration

- Start with a random policy π_0
- Use policy evaluation to compute v_{π_0}
- Use policy improvement to construct a better policy π_1
- Policy iteration: Alternate between policy evaluation and policy improvement

$$\pi_0 \xrightarrow{\text{evaluate}} v_{\pi_0} \xrightarrow{\text{improve}} \pi_1 \xrightarrow{\text{evaluate}} v_{\pi_1} \xrightarrow{\text{improve}} \pi_2 \xrightarrow{\text{evaluate}} \cdots \xrightarrow{\text{improve}} \pi_* \xrightarrow{\text{evaluate}} v_{\pi_*}$$

- Finite MDPs can improve π only finitely many times,
 - Must converge to optimal policy
- Nested iteration each policy evaluation is itself an iteration
 - Speed up by using v_{π_i} as initial state to compute $v_{\pi_{i+1}}$

Policy Iteration (using iterative policy evaluation) for estimating $\pi \approx \pi_*$

1. Initialization

$$V(s) \in \mathbb{R}$$
 and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in \mathcal{S}$

2. Policy Evaluation

Loop:

$$\Delta \leftarrow 0$$

Loop for each $s \in S$:

$$v \leftarrow V(s) V(s) \leftarrow \sum_{s',r} p(s',r|s,\pi(s)) [r + \gamma V(s')] \Delta \leftarrow \max(\Delta,|v - V(s)|)$$

until $\Delta < \theta$ (a small positive number determining the accuracy of estimation)

3. Policy Improvement

 $policy\text{-}stable \leftarrow true$

For each $s \in S$:

$$old\text{-}action \leftarrow \pi(s)$$

$$\pi(s) \leftarrow \operatorname{arg\,max}_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$$

If $old\text{-}action \neq \pi(s)$, then $policy\text{-}stable \leftarrow false$

If policy-stable, then stop and return $V \approx v_*$ and $\pi \approx \pi_*$; else go to 2

Optimizing Policy Iteration

 v_k for the random policy

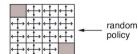
0.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 0.0

greedy policy w.r.t. v_k



0.0 -6.1 -8.4 -9.0

-6.1 -7.7 -8.4 -8.4

-8.4 -8.4 -7.7 -6.1

-9.0 -8.4 -6.1 0.0

0.0 -14, -20, -22,

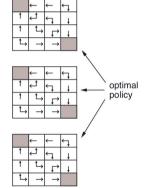
-14. -18. -20. -20.

-22. -20. -14. 0.0

. -20. -18. -14.

<i>k</i> =	10

k = 3



$$k = \infty$$

-20.

DMML Jan-Apr 2024

- Policy iteration policy evaluation requires a nested iteration
- A partial computation of v_{π_k} is sufficent to proceed towards π_* , v_*
- Even a single iteration in the computation of v_{π_k} will do
- Combine policy improvement and one step update at each state
- Value iteration

$$\begin{aligned} v_{\pi_{k+1}}(s, a) &= \max_{a} \mathbb{E}[R_{t+1} + \gamma v_{\pi_k}(S_{t+1}) \mid S_t = s, A_t = a] \\ &= \max_{a} \sum_{s', r} p(s', r \mid s, a) \left[r + \gamma v_{\pi_k}(s') \right] \end{aligned}$$

■ Again, stop when incremental change $\Delta = |v_{\pi_{k+1}} - v_{\pi_k}|$ is below threshold θ

Dynamic programming

- In the literature, policy iteration and value iteration are referred to as dynamic programming methods
- Requires knowledge of the model $p(s', r \mid s, a)$
- How to combine policy evaluation and policy improvement is flexible
 - Value iteration is policy iteration with policy evaluation truncated to a single step
 - Generalized policy iteration simultaneously maintain and update approximations of π_* and v_*
- Asynchronous dynamic programming for large state spaces