Lecture 23: 16 April, 2024

Madhavan Mukund https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning January–April 2024

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Supervised learning — use labelled examples to learn a classifier

< 3

э

- Supervised learning use labelled examples to learn a classifier
- Unsupervised learning search for patterns, structure in data

- Supervised learning use labelled examples to learn a classifier
- Unsupervised learning search for patterns, structure in data
- Reinforcement learning learning through interaction
 - Choose actions in an uncertain environment
 - Actions change state, yield rewards
 - Learn optimal strategies to maximize long term rewards

- Supervised learning use labelled examples to learn a classifier
- Unsupervised learning search for patterns, structure in data
- Reinforcement learning learning through interaction
 - Choose actions in an uncertain environment
 - Actions change state, yield rewards
 - Learn optimal strategies to maximize long term rewards

Examples

- Playing games AlphaGo, reward is result of the game
- Motion planning robot searching for an optimal path with obstacles
- Feedback control balancing an object

Policy What action to take in the current state

"Strategy", can be probabilistic

▶ < ∃ ▶</p>

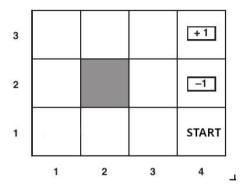
э

- Policy What action to take in the current state
 - "Strategy", can be probabilistic
- Reward In response to taking an action
 - Short-term outcome, may be negative or positive

- Policy What action to take in the current state
 - "Strategy", can be probabilistic
- Reward In response to taking an action
 - Short-term outcome, may be negative or positive
- Value Accumulation of rewards over future actions
 - Long-term outcome, goal is to maximize value

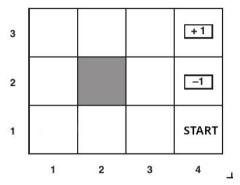
- Policy What action to take in the current state
 - "Strategy", can be probabilistic
- Reward In response to taking an action
 - Short-term outcome, may be negative or positive
- Value Accumulation of rewards over future actions
 - Long-term outcome, goal is to maximize value
- Environment Model How the environment will behave
 - Given a state and action, what is the next state, reward?
 - Probabilistic, in general
 - Use models for *planning*
 - Can also use RL without models, trial-and-error learners

- 4×3 grid
- Rewards are attached to states
 - Two terminal states with rewards +1, -1
 - All other states have reward -0.04
 - Move till you reach a terminal state
 - Maximize the sum of the rewards seen



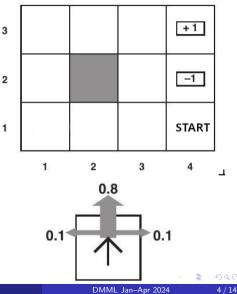
4/14

- 4×3 grid
- Rewards are attached to states
 - Two terminal states with rewards +1, -1
 - All other states have reward -0.04
 - Move till you reach a terminal state
 - Maximize the sum of the rewards seen
- Policy which direction to move from a given square in the grid

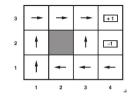


1/14

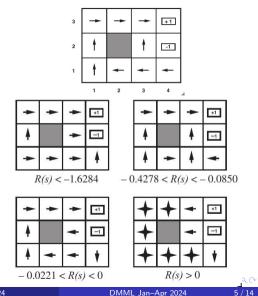
- 4×3 grid
- Rewards are attached to states
 - Two terminal states with rewards +1, -1
 - All other states have reward -0.04
 - Move till you reach a terminal state
 - Maximize the sum of the rewards seen
- Policy which direction to move from a given square in the grid
- Outcome of action is nondeterministic.
 - With probability 0.8, go in intended direction
 - With probability 0.2, deflect at right angles
 - Collision with boundary keeps you stationary



- Optimal policy learned by repeatedly moving on the board
 - From bottom right, conservatively follow the long route around the obstacle to avoid −1



- Optimal policy learned by repeatedly moving on the board
 - From bottom right, conservatively follow the long route around the obstacle to avoid -1
- Optimal policies for different value of R(s), reward for non-final states
 - If R(s) < -1.6284, terminate as fast as possible
 - If -0.4278 < R(s) < -0.0850, risk going past -1 to reach +1 quickly
 - If -0.0221 < R(s) < 0, take no risks, avoid -1 at all cost
 - If R(s) > 0 avoid terminating



Policy evolves by experience

▶ < ∃ ▶</p>

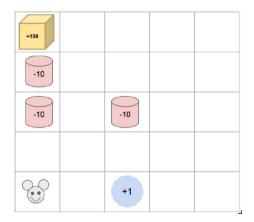
э

- Policy evolves by experience
- Greedy strategy is to always choose best known option

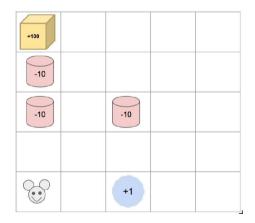
< ⊒ ▶

э

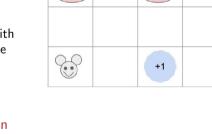
- Policy evolves by experience
- Greedy strategy is to always choose best known option
- Using this we may get stuck in a local optimum
 - Greedy strategy only allows the mouse to discover water with reward +1
 - Mouse never discovers a path to cheese with +100 because of negative rewards en route



- Policy evolves by experience
- Greedy strategy is to always choose best known option
- Using this we may get stuck in a local optimum
 - Greedy strategy only allows the mouse to discover water with reward +1
 - Mouse never discovers a path to cheese with +100 because of negative rewards en route
- How to balance exploitation (greedy) vs exploration?



- Policy evolves by experience
- Greedy strategy is to always choose best known option
- Using this we may get stuck in a local optimum
 - Greedy strategy only allows the mouse to discover water with reward +1
 - Mouse never discovers a path to cheese with +100 because of negative rewards en route
- How to balance exploitation (greedy) vs exploration?
- Formalize these ideas using Markov Decision Processes



-10

+100

-10

-10

- One-armed bandit slang for a slot machine in a casino
 - Put in a coin and pull a lever (the arm)
 - With high probability, lose your coin (the bandit steals your money)
 - With low probability, get varying reward, rewards follow some probability distribution

→

э

- One-armed bandit slang for a slot machine in a casino
 - Put in a coin and pull a lever (the arm)
 - With high probability, lose your coin (the bandit steals your money)
 - With low probability, get varying reward, rewards follow some probability distribution

- Each arm has a different reward probability
- Goal is to maximize total reward over a sequence of plays

- One-armed bandit slang for a slot machine in a casino
 - Put in a coin and pull a lever (the arm)
 - With high probability, lose your coin (the bandit steals your money)
 - With low probability, get varying reward, rewards follow some probability distribution

- Each arm has a different reward probability
- Goal is to maximize total reward over a sequence of plays
- Action corresponds to choosing the arm

- One-armed bandit slang for a slot machine in a casino
 - Put in a coin and pull a lever (the arm)
 - With high probability, lose your coin (the bandit steals your money)
 - With low probability, get varying reward, rewards follow some probability distribution

- Each arm has a different reward probability
- Goal is to maximize total reward over a sequence of plays
- Action corresponds to choosing the arm
 - For each action a, $q_*(a)$ is expected reward if we choose a

- One-armed bandit slang for a slot machine in a casino
 - Put in a coin and pull a lever (the arm)
 - With high probability, lose your coin (the bandit steals your money)
 - With low probability, get varying reward, rewards follow some probability distribution

- Each arm has a different reward probability
- Goal is to maximize total reward over a sequence of plays
- Action corresponds to choosing the arm
 - For each action a, $q_*(a)$ is expected reward if we choose a
 - A_t is action chosen at time t, with reward R_t

- One-armed bandit slang for a slot machine in a casino
 - Put in a coin and pull a lever (the arm)
 - With high probability, lose your coin (the bandit steals your money)
 - With low probability, get varying reward, rewards follow some probability distribution

k-armed bandit

- Each arm has a different reward probability
- Goal is to maximize total reward over a sequence of plays
- Action corresponds to choosing the arm
 - For each action a, $q_*(a)$ is expected reward if we choose a
 - A_t is action chosen at time t, with reward R_t
 - If we knew $q_*(a)$ we would always choose $A_t = \arg \max_a q_*(a)$

★ 3 → 3

- One-armed bandit slang for a slot machine in a casino
 - Put in a coin and pull a lever (the arm)
 - With high probability, lose your coin (the bandit steals your money)
 - With low probability, get varying reward, rewards follow some probability distribution

- Each arm has a different reward probability
- Goal is to maximize total reward over a sequence of plays
- Action corresponds to choosing the arm
 - For each action a, $q_*(a)$ is expected reward if we choose a
 - A_t is action chosen at time t, with reward R_t
 - If we knew $q_*(a)$ we would always choose $A_t = \arg \max_a q_*(a)$
 - Assume $q_*(a)$ is unknown build an estimate $Q_t(a)$ of $q_*(a)$ at time t

• Build $Q_t(a)$, estimate of $q_*(a)$ at time t, from past observations (sample average)

Build $Q_t(a)$, estimate of $q_*(a)$ at time t, from past observations (sample average)

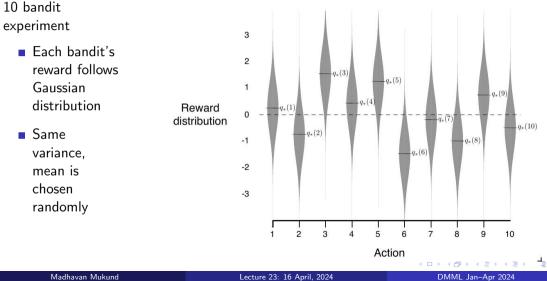
- Greedy policy chooses $\arg \max_a Q_t(a)$
- How will we learn about all actions?

Build $Q_t(a)$, estimate of $q_*(a)$ at time t, from past observations (sample average)

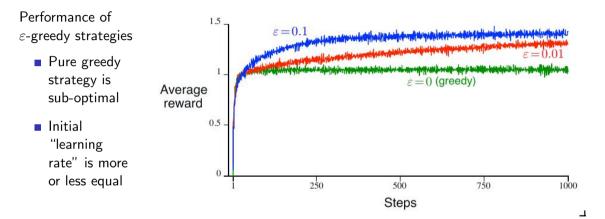
- Greedy policy chooses $\arg \max_a Q_t(a)$
- How will we learn about all actions?
- *ε*-greedy policy
 - With small probability ε , choose a random action (uniform distribution)
 - With probability 1ε , follow greedy

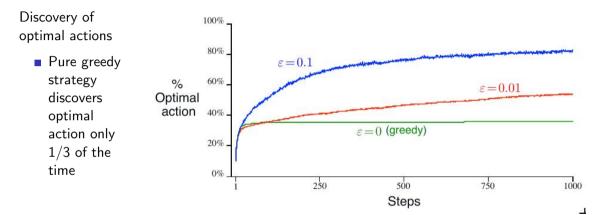
Build $Q_t(a)$, estimate of $q_*(a)$ at time t, from past observations (sample average)

- Greedy policy chooses $\arg \max_a Q_t(a)$
- How will we learn about all actions?
- *ε*-greedy policy
 - With small probability ε , choose a random action (uniform distribution)
 - With probability 1ε , follow greedy
- ε -greedy is a simple way to balance exploitation with exploration
 - Theoretically, explores all actions infinitely often
 - Practical effectiveness depends



9/14





11/14

Incremental calculation

• Focus on a single action *a*. Sample average is $\frac{\sum_{i=1}^{t-1} R_i \cdot \mathbb{1}_{A_t=a}}{\sum_{i=1}^{t-1} \mathbb{1}_{A_t=a}}$

Incremental calculation

• Focus on a single action *a*. Sample average is
$$\frac{\sum_{i=1}^{t-1} R_i \cdot \mathbb{1}_{A_t=a}}{\sum_{i=1}^{t-1} \mathbb{1}_{A_t=a}}$$

- R_i reward when *a* is selected for *i*th time
- Q_n estimate of action value after *a* has been selected n-1 times

э

Incremental calculation

- Focus on a single action *a*. Sample average is $\frac{\sum_{i=1}^{t-1} R_i \cdot \mathbb{1}_{A_t=a}}{\sum_{i=1}^{t-1} \mathbb{1}_{A_t=a}}$
- R_i reward when *a* is selected for *i*th time
- Q_n estimate of action value after a has been selected n − 1 times
 Q_n = R₁ + R₂ + · · · + R_{n-1}/n = 1

- Focus on a single action *a*. Sample average is $\frac{\sum_{i=1}^{t-1} R_i \cdot \mathbb{1}_{A_t=a}}{\sum_{i=1}^{t-1} \mathbb{1}_{A_t=a}}$
- **\square** R_i reward when *a* is selected for *i*th time
- Q_n estimate of action value after *a* has been selected n-1 times
- $Q_n = \frac{R_1 + R_2 + \dots + R_{n-1}}{n-1}$ • $Q_{n+1} = \frac{1}{n} \sum_{i=1}^n R_i$

- Focus on a single action *a*. Sample average is $\frac{\sum_{i=1}^{t-1} R_i \cdot \mathbb{1}_{A_t=a}}{\sum_{i=1}^{t-1} \mathbb{1}_{A_t=a}}$
- **\square** R_i reward when *a* is selected for *i*th time
- Q_n estimate of action value after *a* has been selected n-1 times

•
$$Q_n = \frac{R_1 + R_2 + \dots + R_{n-1}}{n-1}$$

• $Q_{n+1} = \frac{1}{n} \sum_{i=1}^n R_i = \frac{1}{n} \left(R_n + \sum_{i=1}^{n-1} R_i \right)$

- Focus on a single action *a*. Sample average is $\frac{\sum_{i=1}^{t-1} R_i \cdot \mathbb{1}_{A_t=a}}{\sum_{i=1}^{t-1} \mathbb{1}_{A_t=a}}$
- **\square** R_i reward when *a* is selected for *i*th time

•
$$Q_n = \frac{R_1 + R_2 + \dots + R_{n-1}}{n-1}$$

• $Q_{n+1} = \frac{1}{n} \sum_{i=1}^n R_i = \frac{1}{n} \left(R_n + \sum_{i=1}^{n-1} R_i \right) = \frac{1}{n} \left(R_n + (n-1) \frac{1}{n-1} \sum_{i=1}^{n-1} R_i \right)$

- Focus on a single action *a*. Sample average is $\frac{\sum_{i=1}^{t-1} R_i \cdot \mathbb{1}_{A_t=a}}{\sum_{i=1}^{t-1} \mathbb{1}_{A_t=a}}$
- **\square** R_i reward when *a* is selected for *i*th time

•
$$Q_n = \frac{R_1 + R_2 + \dots + R_{n-1}}{n-1}$$

• $Q_{n+1} = \frac{1}{n} \sum_{i=1}^n R_i = \frac{1}{n} \left(R_n + \sum_{i=1}^{n-1} R_i \right) = \frac{1}{n} \left(R_n + (n-1) \frac{1}{n-1} \sum_{i=1}^{n-1} R_i \right)$
 $= \frac{1}{n} \left(R_n + (n-1) Q_n \right)$

- Focus on a single action *a*. Sample average is $\frac{\sum_{i=1}^{t-1} R_i \cdot \mathbb{1}_{A_t=a}}{\sum_{i=1}^{t-1} \mathbb{1}_{A_t=a}}$
- **\square** R_i reward when *a* is selected for *i*th time

•
$$Q_n = \frac{R_1 + R_2 + \dots + R_{n-1}}{n-1}$$

• $Q_{n+1} = \frac{1}{n} \sum_{i=1}^n R_i = \frac{1}{n} \left(R_n + \sum_{i=1}^{n-1} R_i \right) = \frac{1}{n} \left(R_n + (n-1) \frac{1}{n-1} \sum_{i=1}^{n-1} R_i \right)$
 $= \frac{1}{n} \left(R_n + (n-1) Q_n \right) = \frac{1}{n} \left(R_n + n Q_n - Q_n \right)$

- Focus on a single action *a*. Sample average is $\frac{\sum_{i=1}^{t-1} R_i \cdot \mathbb{1}_{A_t=a}}{\sum_{i=1}^{t-1} \mathbb{1}_{A_t=a}}$
- **\square** R_i reward when *a* is selected for *i*th time

•
$$Q_n = \frac{R_1 + R_2 + \dots + R_{n-1}}{n-1}$$

• $Q_{n+1} = \frac{1}{n} \sum_{i=1}^n R_i = \frac{1}{n} \left(R_n + \sum_{i=1}^{n-1} R_i \right) = \frac{1}{n} \left(R_n + (n-1) \frac{1}{n-1} \sum_{i=1}^{n-1} R_i \right)$
 $= \frac{1}{n} \left(R_n + (n-1) Q_n \right) = \frac{1}{n} \left(R_n + n Q_n - Q_n \right) = Q_n + \frac{1}{n} \left[R_n - Q_n \right]$

- Focus on a single action *a*. Sample average is $\frac{\sum_{i=1}^{t-1} R_i \cdot \mathbb{1}_{A_t=a}}{\sum_{i=1}^{t-1} \mathbb{1}_{A_t=a}}$
- R_i reward when *a* is selected for *i*th time

• Q_n — estimate of action value after *a* has been selected n-1 times

$$Q_n = \frac{R_1 + R_2 + \dots + R_{n-1}}{n-1}$$

$$Q_{n+1} = \frac{1}{n} \sum_{i=1}^n R_i = \frac{1}{n} \left(R_n + \sum_{i=1}^{n-1} R_i \right) = \frac{1}{n} \left(R_n + (n-1) \frac{1}{n-1} \sum_{i=1}^{n-1} R_i \right)$$

$$= \frac{1}{n} \left(R_n + (n-1)Q_n \right) = \frac{1}{n} \left(R_n + nQ_n - Q_n \right) = Q_n + \frac{1}{n} \left[R_n - Q_n \right]$$

• We will see this pattern often:

NewEstimate = OldEstimate + Step [Target - OldEstimate]

Madhavan Mukund

Lecture 23: 16 April, 2024

Non-stationary: Reward probabilities change over time

< E

- Non-stationary: Reward probabilities change over time
- Use a constant step $\alpha \in (0,1]$ $Q_{n+1} = Q_n + \alpha [R_n Q_n]$

< ⊒ ▶

э

13/14

- Non-stationary: Reward probabilities change over time
- Use a constant step $\alpha \in (0,1]$ $Q_{n+1} = Q_n + \alpha [R_n Q_n]$
- $Q_{n+1} = Q_n + \alpha [R_n Q_n]$

< ⊒ ▶

- Non-stationary: Reward probabilities change over time
- Use a constant step $\alpha \in (0,1]$ $Q_{n+1} = Q_n + \alpha [R_n Q_n]$
- $Q_{n+1} = Q_n + \alpha [R_n Q_n] = \alpha R_n + (1 \alpha)Q_n$

▶ < ∃ ▶</p>

- Non-stationary: Reward probabilities change over time
- Use a constant step $\alpha \in (0,1]$ $Q_{n+1} = Q_n + \alpha [R_n Q_n]$

•
$$Q_{n+1} = Q_n + \alpha [R_n - Q_n] = \alpha R_n + (1 - \alpha)Q_n$$

= $\alpha R_n + (1 - \alpha)[\alpha R_{n-1} + (1 - \alpha)Q_{n-1}]$

< ⊒ ▶

- Non-stationary: Reward probabilities change over time
- Use a constant step $\alpha \in (0,1]$ $Q_{n+1} = Q_n + \alpha [R_n Q_n]$

•
$$Q_{n+1} = Q_n + \alpha [R_n - Q_n] = \alpha R_n + (1 - \alpha)Q_n$$

= $\alpha R_n + (1 - \alpha)[\alpha R_{n-1} + (1 - \alpha)Q_{n-1}]$
= $\alpha R_n + \alpha (1 - \alpha)R_{n-1} + (1 - \alpha)^2Q_{n-1}$

< ⊒ ▶

- Non-stationary: Reward probabilities change over time
- Use a constant step $\alpha \in (0,1]$ $Q_{n+1} = Q_n + \alpha [R_n Q_n]$

•
$$Q_{n+1} = Q_n + \alpha [R_n - Q_n] = \alpha R_n + (1 - \alpha)Q_n$$

 $= \alpha R_n + (1 - \alpha)[\alpha R_{n-1} + (1 - \alpha)Q_{n-1}]$
 $= \alpha R_n + \alpha (1 - \alpha)R_{n-1} + (1 - \alpha)^2 Q_{n-1}$
 $= \alpha R_n + \alpha (1 - \alpha)R_{n-1} + \alpha (1 - \alpha)^2 R_{n-2} + \dots + \alpha (1 - \alpha)^{n-1} R_1 + (1 - \alpha)^n Q_1$

< ∃ ▶

э

13/14

- Non-stationary: Reward probabilities change over time
- Use a constant step $\alpha \in (0,1]$ $Q_{n+1} = Q_n + \alpha [R_n Q_n]$

•
$$Q_{n+1} = Q_n + \alpha [R_n - Q_n] = \alpha R_n + (1 - \alpha)Q_n$$

 $= \alpha R_n + (1 - \alpha)[\alpha R_{n-1} + (1 - \alpha)Q_{n-1}]$
 $= \alpha R_n + \alpha (1 - \alpha)R_{n-1} + (1 - \alpha)^2 Q_{n-1}$
 $= \alpha R_n + \alpha (1 - \alpha)R_{n-1} + \alpha (1 - \alpha)^2 R_{n-2} + \dots + \alpha (1 - \alpha)^{n-1} R_1 + (1 - \alpha)^n Q_1$

$$= (1-\alpha)^n Q_1 + \sum_{i=1}^n \alpha (1-\alpha)^{n-i} R_i$$

< ∃ ▶

- Non-stationary: Reward probabilities change over time
- Use a constant step $\alpha \in (0,1]$ $Q_{n+1} = Q_n + \alpha [R_n Q_n]$

•
$$Q_{n+1} = Q_n + \alpha [R_n - Q_n] = \alpha R_n + (1 - \alpha)Q_n$$

 $= \alpha R_n + (1 - \alpha)[\alpha R_{n-1} + (1 - \alpha)Q_{n-1}]$
 $= \alpha R_n + \alpha (1 - \alpha)R_{n-1} + (1 - \alpha)^2 Q_{n-1}$
 $= \alpha R_n + \alpha (1 - \alpha)R_{n-1} + \alpha (1 - \alpha)^2 R_{n-2} + \dots + \alpha (1 - \alpha)^{n-1} R_1 + (1 - \alpha)^n Q_1$

$$= (1-\alpha)^n Q_1 + \sum_{i=1}^n \alpha (1-\alpha)^{n-i} R_i$$

Exponentially decaying weighted average of rewards

13/14

- Non-stationary: Reward probabilities change over time
- Use a constant step $\alpha \in (0,1]$ $Q_{n+1} = Q_n + \alpha [R_n Q_n]$

•
$$Q_{n+1} = Q_n + \alpha [R_n - Q_n] = \alpha R_n + (1 - \alpha)Q_n$$

 $= \alpha R_n + (1 - \alpha)[\alpha R_{n-1} + (1 - \alpha)Q_{n-1}]$
 $= \alpha R_n + \alpha (1 - \alpha)R_{n-1} + (1 - \alpha)^2 Q_{n-1}$
 $= \alpha R_n + \alpha (1 - \alpha)R_{n-1} + \alpha (1 - \alpha)^2 R_{n-2} + \dots + \alpha (1 - \alpha)^{n-1} R_1 + (1 - \alpha)^n Q_1$

$$= (1-\alpha)^n Q_1 + \sum_{i=1}^n \alpha (1-\alpha)^{n-i} R_i$$

- Exponentially decaying weighted average of rewards
- Initial value Q_1 affects the calculation different heuristics possible

Summary

- *k*-armed bandit is the simplest interesting situation to analyze
- ε -greedy strategy balances exploration and exploitation
- Incremental update rule for estimates NewEstimate = OldEstimate + Step [Target - OldEstimate]
- Exponentially decaying weighted average when rewards change over time (non-stationary)