Lecture 22: 04 April, 2024

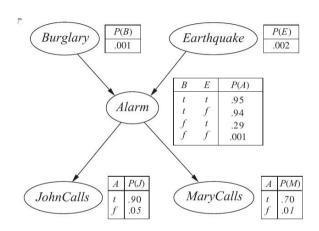
Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning January–April 2024

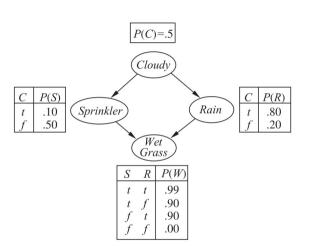
Approximate inference

- Exact inference is NP-complete
- Generate random samples, count to estimate probabilities
- Respect conditional probabilities generate in topological order
- Suppose we are interested in P(b | j, m)
- Samples with $\neg j$ or $\neg m$ are useless
- Can we sample more efficiently?



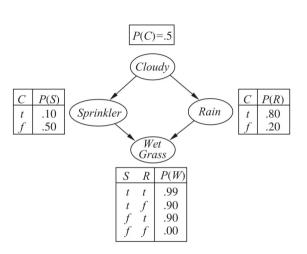
Rejection sampling

- *P*(*Rain* | *Cloudy*, *Wet Grass*)
- If we start with ¬Cloudy, sample is useless
- Immediately stop and reject this sample — rejection sampling
- General problem with low probability situation — many samples are rejected



Likelihood weighted sampling

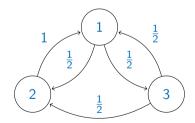
- *P*(*Rain* | *Cloudy*, *Wet Grass*)
- Fix evidence Cloudy, Wet Grass true
- Then generate the other variables
- Compute likelihood of evidence
- Samples $s_1, s_2, ..., s_N$ with weights $w_1, w_2, ... w_N$
- $P(r \mid c, w) = \frac{\sum_{s_i \text{ has rain } w_i}}{\sum_{1 \le i \le N} w_i}$



Approximate inference using Markov chains

Markov chains

- Finite set of states, with transition probabilities between states
- For us, a state will be an assignment of values to variables
- A three state Markov Chain



■ Represent using a transition matrix — stochastic

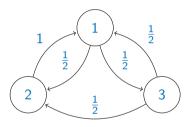
5 / 15

$$A = \left[\begin{array}{ccc} 0 & \frac{1}{2} & \frac{1}{2} \\ 1 & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 \end{array} \right]$$

P[j] is probability of being in state j

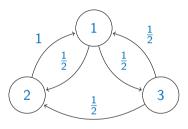
Ergodicity

- Markov chain A is ergodic if there is some t_0 such that for every P, for all $t > t_0$, for every j, $(P^{\top}A^t)[j] > 0$.
- Ergodic Markov chain has a stationary distribution π^* , $(\pi^*)^\top A = \pi^*$
- For any starting distribution P, $\lim_{t\to\infty} P^{\top}A^t = \pi^*$
- Stationary distribution represents fraction of visits to each state in a long enough execution
- Sufficient conditions for ergodicity
 - Irreducible (strong connected)
 - Aperiodic (paths of all lengths between states)



Approximate inference using Markov chains

- Bayesian network has variables V_1, V_2, \dots, V_n
- Each assignment of values to the variables is a state
- Set up a Markov chain based on these states
- Stationary distribution should assign to state s the probability P(s) in the Bayesian network
- How to reverse engineer the transition probabilities to achieve this?



Reversible Markov chains

- Ergodic Markov chain with stationary distribution π^* (which we shall write as π)
- Transition matrix A, write p_{jk} for A[j][k]
 - Probability of transition from state j to state k
- Reversibility : $\pi_j \cdot p_{jk} = \pi_k \cdot p_{kj}$, for all j,k (balance equations)
 - In steady state, probability of being in state *j* and then moving to *k* same as probability of being in state *k* and then moving to *j*
- Derivation of balance equations
 - Given an evolution $x_1x_2...$, for large n, $P[x_n = j \mid x_{n-1} = k] = P[x_{n-1} = j \mid x_n = k]$
 - $P[x_{n-1} = j \mid x_n = k] = P[x_n = k \mid x_{n-1} = j]$. $\frac{P[x_{n-1} = j]}{P[x_n = k]}$ $\frac{\pi_j}{\pi_k}$, in steady state
 - $p_{kj} = p_{jk} \frac{\pi_j}{\pi_k}, \text{ so } \pi_j \cdot p_{jk} = \pi_k \cdot p_{kj}$

Reversible Markov chains

- Ergodic Markov chain
- Suppose $a^{\top} = (a_1, a_2, \dots, a_n)$ satisfies reversibility balance equations for all j,k
 - $a_j \cdot p_{jk} = a_k \cdot p_{kj}$
- $\bullet \sum_{k} a_j \cdot p_{jk} = \sum_{k} a_k \cdot p_{kj}$
- $a_j \sum_k p_{jk} = \sum_k a_k \cdot p_{kj}$
- $a_j \cdot 1 = \sum_k a_k \cdot p_{kj}$
- $a^{\top} = a^{\top}A$, so a^{\top} is the stationary distribution of A

Gibbs sampling

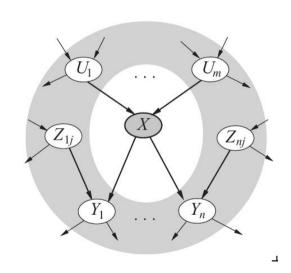
- State of a Bayesian network is a valuation of variables (V_1, V_2, \dots, V_n)
- Move probabilistically from $s_j = (x_1, x_2, ..., x_n)$ to $s_k = (y_1, y_2, ..., y_n)$
- Allow such a move only when s_i , s_k differ at exactly one position
 - $s_j = (x_1, x_2, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_n)$
 - \bullet $s_k = (x_1, x_2, \dots, x_{i-1}, y_i, x_{i+1}, \dots, x_n)$
- Sampling algorithm
 - Current state is $s_i = (x_1, x_2, \dots, x_n)$
 - Choose i uniformly in [1, n]
 - Resample x_i given current values $(x_1, x_2, \dots, x_{i-1}, x_{i+1}, \dots, x_n)$
- Need to compute $P[y_i \mid x_1, x_2, \dots, x_{i-1}, x_{i+1}, \dots, x_n]$

Markov blanket

- Recall MB(X) Markov blanket of X
 - Parents(X)
 - Children(X)
 - \blacksquare Parents of Children(X)
- $\blacksquare X \perp \neg MB(X) \mid MB(X)$
- Need to compute $P[y_i \mid x_1, x_2, \dots, x_{i-1}, x_{i+1}, \dots, x_n]$

$$[j_1 \mid \lambda_1, \lambda_2, \dots, \lambda_{l-1}, \lambda_{l+1}, \dots, \lambda_n]$$

- $x_1, x_2, \dots, x_{i-1}, x_{i+1}, \dots, x_n$ fix $MB(V_i)$
- Can compute $P[y_i \mid x_1, x_2, \dots, x_{i-1}, x_{i+1}, \dots, x_n]$ given conditional probability tables in the network



Gibbs sampling

- Move from $s_j = (x_1, x_2, ..., x_{i-1}, x_i, x_{i+1}, ..., x_n)$ to $s_k = (x_1, x_2, ..., x_{i-1}, y_i, x_{i+1}, ..., x_n)$
- Let $\bar{x} = (x_1, x_2, \dots, x_{i-1}, x_{i+1}, \dots, x_n)$
- $p_{jk} = \frac{1}{n} P[y_i \mid \bar{x}] = \frac{1}{n} \frac{P(s_k)}{P(\bar{x})}$
- Likewise $p_{kj} = \frac{1}{n}P[x_i \mid \bar{x}] = \frac{1}{n}\frac{P(s_j)}{P(\bar{x})}$
- Therefore, $\frac{p_{jk}}{p_{kj}} = \frac{P(s_k)}{P(s_j)}$, so $P(s_j) \cdot p_{jk} = P(s_k) \cdot p_{kj}$ and this chain is reversible
- By our previous observation about any vector \mathbf{a}^{\top} satisfying balance equations, we must have $(P(s_1), P(s_2), \dots, P(s_n)) = (\pi_1, \pi_2, \dots, \pi_n)$ for the current Markov chain

- Move from $s_j = (x_1, x_2, ..., x_{i-1}, x_i, x_{i+1}, ..., x_n)$ to $s_k = (x_1, x_2, ..., x_{i-1}, y_i, x_{i+1}, ..., x_n)$
- $\blacksquare \ \pi_j \cdot p_{jk} = \pi_k \cdot p_{kj}$
- We have created a reversible Markov chain whose stationary distribution provides the true probabilities of the original Bayesian network!
- Gibbs sampling is a special case of the more general Metropolis-Hastings algorithm

Gibbs sampling

- Since we are dealing with steady state probabilities, it is not necessary to change just one variable at a time
 - Generate an entirely new sample state $(y_1, y_2, ..., y_n)$
 - First generate y_1 , given x_2, x_3, \ldots, x_n
 - Then generate y_2 , given y_1, x_3, \ldots, x_n
 -
 - Then generate y_n , given $y_1, y_2, \ldots, y_{n-1}$
- Standard Gibbs sampler again a reversible Markov chain

Approximate inference using Markov chains

- Bayesian network has variables V_1, V_2, \dots, V_n
- Use Gibbs sampling to set up a reversible Markov chain
- Stationary distribution will assign to each state s its probability P(s) in the Bayesian network

