Lecture 19: 26 March, 2024

Madhavan Mukund

<https://www.cmi.ac.in/~madhavan>

Data Mining and Machine Learning January–April 2024

メロト メタト メミト メミト ニミー りんぴ

Boolean variables x_1, x_2, \ldots, x_n

化重新化重新

 \leftarrow \Box

∢母

重

- **Boolean variables** x_1, x_2, \ldots, x_n
- Joint probabilities $P(v_1, v_2, \ldots, v_n)$
	- 2^n combinations of x_1, x_2, \ldots, x_n
	- $2^n 1$ parameters

 \rightarrow \equiv

4日下

э

- **Boolean variables** x_1, x_2, \ldots, x_n
- **Joint probabilities** $P(y_1, y_2, \ldots, y_n)$
	- 2^n combinations of x_1, x_2, \ldots, x_n
	- $2^n 1$ parameters
- \blacksquare Naïve Bayes assumption complete independence
	- $P(x_i = 1)$ for each x_i
	- \blacksquare *n* parameters

 \rightarrow \equiv

э

- **Boolean variables** x_1, x_2, \ldots, x_n
- Joint probabilities $P(y_1, y_2, \ldots, y_n)$
	- 2^n combinations of x_1, x_2, \ldots, x_n
	- $2^n 1$ parameters
- \blacksquare Naïve Bayes assumption complete independence
	- $P(x_i = 1)$ for each x_i
	- \blacksquare *n* parameters
- Can we strive for something in between?
	- **E** "Local" dependencies between some variables

- Represent local dependencies using directed graph
- Each node has a local (conditional) probability table

 \leftarrow

 \rightarrow \rightarrow \rightarrow

- Represent local dependencies using directed graph
- Each node has a local (conditional) probability table
- Example: Burglar alarm
	- **Pearl's house has a burglar alarm**
	- Neighbours John and Mary call if they hear the alarm

- Represent local dependencies using directed graph
- Each node has a local (conditional) probability table
- Example: Burglar alarm
	- **Pearl's house has a burglar alarm**
	- Neighbours John and Mary call if they hear the alarm
	- **John is prone to mistaking** ambulances etc for the alarm

- Represent local dependencies using directed graph
- Each node has a local (conditional) probability table
- Example: Burglar alarm
	- **Pearl's house has a burglar alarm**
	- Neighbours John and Mary call if they hear the alarm
	- **John is prone to mistaking** ambulances etc for the alarm
	- **Mary listens to loud music and** sometimes fails to hear the alarm

- Represent local dependencies using directed graph
- Each node has a local (conditional) probability table
- Example: Burglar alarm
	- **Pearl's house has a burglar alarm**
	- Neighbours John and Mary call if they hear the alarm
	- **John is prone to mistaking** ambulances etc for the alarm
	- **Mary listens to loud music and** sometimes fails to hear the alarm
	- The alarm may also be triggered by an earthquake (California!)

 299

Probabilistic graphical models

Graph is a DAG, no cyclic dependencies

4 0 8 卢

 \mathcal{A}

 $\mathbf{A} \rightarrow \mathbf{B}$

э

Probabilistic graphical models

- Graph is a DAG, no cyclic dependencies
- **Fundamental assumption:** A node is conditionally independent of non-descendants, given its parents

Student example

- Example due to Nir Friedman and Daphne Koller
- **Student asks teacher for a reference** letter
- Teacher has forgotten the student, so letter is entirely based on student's grade in the course

John and Mary call Pearl. What is the probability that there has been a burglary?

 \triangleright \rightarrow \equiv

4 0 8

э

- **John and Mary call Pearl. What is the probability that there has been a burglary?**
- $P(b, m, i)$, where b: burglary, *i*: John calls, *m*: Mary calls

4 **D F**

一 4 (国)

John and Mary call Pearl. What is the probability that there has been a burglary?

 $P(b, m, i)$, where b: burglary, *j*: John calls, *m*: Mary calls

 $P(b, m, j) = \sum$ 1 $a=0$ $e=0$ \sum 1 $P(b, j, m, a, e)$, where a: alarm rings, e: earthquake

John and Mary call Pearl. What is the probability that there has been a burglary?

 $P(b, m, i)$, where b: burglary, *i*: John calls, *m*: Mary calls

$$
P(b, m, j) = \sum_{a=0}^{1} \sum_{e=0}^{1} P(b, j, m, a, e)
$$
, where *a*: alarm rings, *e*: earthquake

Bayes Rule: $P(A, B) = P(A | B)P(B)$

э

John and Mary call Pearl. What is the probability that there has been a burglary?

 $P(b, m, i)$, where b: burglary, *j*: John calls, *m*: Mary calls

$$
P(b, m, j) = \sum_{a=0}^{1} \sum_{e=0}^{1} P(b, j, m, a, e)
$$
, where *a*: alarm rings, *e*: earthquake

Bayes Rule: $P(A, B) = P(A | B)P(B)$

 $P(x_1, x_2, \ldots, x_n) = P(x_1 | x_2, x_3, \ldots, x_n) P(x_2, x_3, \ldots, x_n)$

John and Mary call Pearl. What is the probability that there has been a burglary?

 $P(b, m, i)$, where b: burglary, i: John calls, m: Mary calls

$$
P(b, m, j) = \sum_{a=0}^{1} \sum_{e=0}^{1} P(b, j, m, a, e)
$$
, where *a*: alarm rings, *e*: earthquake

Bayes Rule: $P(A, B) = P(A | B)P(B)$

- $P(x_1, x_2, \ldots, x_n) = P(x_1 | x_2, x_3, \ldots, x_n) P(x_2, x_3, \ldots, x_n)$
- **Applied recursively, this gives us the chain rule** $P(x_1, x_2, \ldots, x_n) = P(x_1 | x_2, \ldots, x_n) P(x_2 | x_3, \ldots, x_n) \cdots P(x_{n-1} | x_n) P(x_n)$

■ $P(x_1, x_2, ..., x_n) = P(x_1 | x_2, ..., x_n)P(x_2 | x_3, ..., x_n) \cdots P(x_{n-1} | x_n)P(x_n)$

医单侧 医骨下的

不自下

 \Rightarrow

- **■** $P(x_1, x_2, ..., x_n) = P(x_1 | x_2, ..., x_n)P(x_2 | x_3, ..., x_n) \cdots P(x_{n-1} | x_n)P(x_n)$
- **Can choose any ordering of** x_1, x_2, \ldots, x_n

 \triangleright and \exists \triangleright and

э

4日下

- **P**(x₁, x₂, ..., x_n) = P(x₁ | x₂, ..., x_n)P(x₂ | x₃, ..., x_n) · · · P(x_{n−1} | x_n)P(x_n)
- Gan choose any ordering of x_1, x_2, \ldots, x_n
- Use topological ordering in a Bayesian network

- **P**(x₁, x₂, ..., x_n) = P(x₁ | x₂, ..., x_n)P(x₂ | x₃, ..., x_n) ...P(x_{n-1} | x_n)P(x_n)
- **Can choose any ordering of** x_1, x_2, \ldots, x_n
- Use topological ordering in a Bayesian network
- $P(m, j, a, b, e) =$ $P(m | i, a, b, e)P(i | a, b, e)P(a | b, e)P(b | e)P(e)$

- **P**(x₁, x₂, ..., x_n) = P(x₁ | x₂, ..., x_n)P(x₂ | x₃, ..., x_n) ...P(x_{n-1} | x_n)P(x_n)
- **Can choose any ordering of** x_1, x_2, \ldots, x_n
- Use topological ordering in a Bayesian network
- $P(m, j, a, b, e) =$ $P(m | j, a, b, e)P(j | a, b, e)P(a | b, e)P(b | e)P(e)$ $= P(m | a)P(j | a)P(a | b, e)P(b)P(e)$

- **P**(x₁, x₂, ..., x_n) = P(x₁ | x₂, ..., x_n)P(x₂ | x₃, ..., x_n) ...P(x_{n-1} | x_n)P(x_n)
- **Can choose any ordering of** x_1, x_2, \ldots, x_n
- Use topological ordering in a Bayesian network
- $P(m, i, a, b, e) =$ $P(m | i, a, b, e)P(i | a, b, e)P(a | b, e)P(b | e)P(e)$ $= P(m \mid a)P(i \mid a)P(a \mid b, e)P(b)P(e)$

 $P(m, j, b) =$ $\sum P(m \mid a)P(j \mid a)P(a \mid b, e)P(b)P(e)$ 1 $a=0$ $e=0$ 1

- **P**(x₁, x₂, ..., x_n) = P(x₁ | x₂, ..., x_n)P(x₂ | x₃, ..., x_n) ...P(x_{n-1} | x_n)P(x_n)
- **Can choose any ordering of** x_1, x_2, \ldots, x_n
- Use topological ordering in a Bayesian network
- $P(m, i, a, b, e) =$ $P(m | i, a, b, e)P(i | a, b, e)P(a | b, e)P(b | e)P(e)$ $= P(m \mid a)P(i \mid a)P(a \mid b, e)P(b)P(e)$

 $P(m, j, b) =$ $\sum P(m \mid a)P(j \mid a)P(a \mid b, e)P(b)P(e)$ 1 $e=0$ a=0 1

- **P**(x₁, x₂, ..., x_n) = P(x₁ | x₂, ..., x_n)P(x₂ | x₃, ..., x_n) ...P(x_{n-1} | x_n)P(x_n)
- **Can choose any ordering of** x_1, x_2, \ldots, x_n
- Use topological ordering in a Bayesian network
- $P(m, j, a, b, e) =$ $P(m | i, a, b, e)P(i | a, b, e)P(a | b, e)P(b | e)P(e)$ $= P(m | a)P(i | a)P(a | b, e)P(b)P(e)$
- $P(m, j, b) =$ $\sum P(m \mid a)P(j \mid a)P(a \mid b, e)P(b)P(e)$ 1 $e = 0$ $a = 0$ 1

$$
P(m, j, b) = P(b) \sum_{e=0}^{1} P(e) \sum_{a=0}^{1} P(m \mid a) P(j \mid a) P(a \mid b, e)
$$

Evaluation tree

Þ

Need to choose node ordering wisely to get a compact Bayesian network

 \leftarrow

 \rightarrow \equiv

- Need to choose node ordering wisely to get a compact Bayesian network
- Ordering *MaryCalls*, JohnCalls, Alarm, Burglary, Earthquake produces this network

- Need to choose node ordering wisely to get a compact Bayesian network
- Ordering MaryCalls, JohnCalls, Alarm, Burglary, Earthquake produces this network
- **Ordering MaryCalls, JohnCalls,** Earthquake, Burglary, Alarm is even worse

- Need to choose node ordering wisely to get a compact Bayesian network
- Ordering *MaryCalls*, JohnCalls, Alarm, Burglary, Earthquake produces this network
- **Ordering MaryCalls, JohnCalls,** Earthquake, Burglary, Alarm is even worse
- Causal model (causes to effects) works better than diagnostic model (effects to causes)

Exact inference of Bayesian networks is NP-complete

 \leftarrow

 \rightarrow \equiv

- **Exact inference of Bayesian networks is NP-complete**
- Boolean formula in Conjunctive Normal Form (CNF)
	- **Boolean variables** $\{u_1, u_2, \ldots, u_n\}$
	- A literal ℓ_i is either u_i or $\neg u_i$

 \leftarrow

- Exact inference of Bayesian networks is NP-complete
- Boolean formula in Conjunctive Normal Form (CNF)
	- **Boolean variables** $\{u_1, u_2, \ldots, u_n\}$
	- A literal ℓ_i is either u_i or $\neg u_i$
	- A clause is a disjunction of literals $\ell_{i_1} \vee \ell_{i_2} \vee \cdots \vee \ell_{i_k}$

- **Exact inference of Bayesian networks is NP-complete**
- Boolean formula in Conjunctive Normal Form (CNF)
	- **Boolean variables** $\{u_1, u_2, \ldots, u_n\}$
	- A literal ℓ_i is either u_i or $\neg u_i$
	- A clause is a disjunction of literals $\ell_i \vee \ell_j \vee \cdots \vee \ell_k$
	- A CNF formula is a conjunction of clauses $C_1 \wedge C_2 \wedge \cdots \wedge C_m$

- **Exact inference of Bayesian networks is NP-complete**
- Boolean formula in Conjunctive Normal Form (CNF)
	- **Boolean variables** $\{u_1, u_2, \ldots, u_n\}$
	- A literal ℓ_i is either u_i or $\neg u_i$
	- A clause is a disjunction of literals $\ell_i \vee \ell_j \vee \cdots \vee \ell_j$
	- A CNF formula is a conjunction of clauses $C_1 \wedge C_2 \wedge \cdots \wedge C_m$
- \blacksquare SAT given a formula in CNF, is there an assignment to variables that makes the formula true?
- \blacksquare 3-SAT \smile SAT where each clause has exactly 3 literals

- **Exact inference of Bayesian networks is NP-complete**
- Boolean formula in Conjunctive Normal Form (CNF)
	- **Boolean variables** $\{u_1, u_2, \ldots, u_n\}$
	- A literal ℓ_i is either u_i or $\neg u_i$
	- A clause is a disjunction of literals $\ell_i \vee \ell_j \vee \cdots \vee \ell_j$
	- A CNF formula is a conjunction of clauses $C_1 \wedge C_2 \wedge \cdots \wedge C_m$
- \Box SAT given a formula in CNF, is there an assignment to variables that makes the formula true?
- \blacksquare 3-SAT \smile SAT where each clause has exactly 3 literals
- Both SAT and 3-SAT are NP-complete
	- \blacksquare No known efficient algorithm try all possible valuations

■ Convert a 3-CNF formula into a Bayesian network

 \leftarrow

Ξ

∍

 299

■ Convert a 3-CNF formula into a Bayesian network

 \blacksquare Top layer: one node for each variable u_i

 \leftarrow

- Convert a 3-CNF formula into a Bayesian network
- \blacksquare Top layer: one node for each variable u_i
- **Middle layer:** one node for each clause C_i
	- **Parents are three variables whose literals are in** C_i
	- Gonditional probability table for C_i has 8 rows, for all possible valuations of 3 variables
	- $P(C_i = 1) = 0$ for row where each input literal is false, $P(C_i = 1) = 1$ for remaining 7 rows

- Convert a 3-CNF formula into a Bayesian network
- \blacksquare Top layer: one node for each variable u_i
- **Middle layer:** one node for each clause C_i
	- **Parents are three variables whose literals are in** C_i
	- Gonditional probability table for C_i has 8 rows, for all possible valuations of 3 variables
	- $P(C_i = 1) = 0$ for row where each input literal is false, $P(C_i = 1) = 1$ for remaining 7 rows
- Bottom row builds up $C_1 \wedge \cdots \wedge C_m$ one clause at a time

- Convert a 3-CNF formula into a Bayesian network
- \blacksquare Top layer: one node for each variable u_i
- **Middle layer:** one node for each clause C_i
	- **Parents are three variables whose literals are in** C_i
	- Gonditional probability table for C_i has 8 rows, for all possible valuations of 3 variables
	- $P(C_i = 1) = 0$ for row where each input literal is false, $P(C_i = 1) = 1$ for remaining 7 rows
- Bottom row builds up $C_1 \wedge \cdots \wedge C_m$ one clause at a time
- $P(Y = 1) > 0$ iff original 3-CNF formula is satisfiable

