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Conditional probabilities

Boolean variables x1, x2, . . . , xn

Joint probabilities P(v1, v2, . . . , vn)

2n combinations of x1, x2, . . . , xn

2n − 1 parameters

Näıve Bayes assumption — complete independence

P(xi = 1) for each xi

n parameters

Can we strive for something in between?

“Local” dependencies between some variables
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Probabilistic graphical models — Judea Pearl, Turing Award 2011

Represent local dependencies using
directed graph

Each node has a local (conditional)
probability table

Example: Burglar alarm

Pearl’s house has a burglar alarm

Neighbours John and Mary call if
they hear the alarm

John is prone to mistaking
ambulances etc for the alarm

Mary listens to loud music and
sometimes fails to hear the alarm

The alarm may also be triggered by
an earthquake (California!)
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Probabilistic graphical models

Graph is a DAG, no cyclic
dependencies

Fundamental assumption:
A node is conditionally independent
of non-descendants, given its parents
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Student example

Example due to Nir Friedman and
Daphne Koller

Student asks teacher for a reference
letter

Teacher has forgotten the student, so
letter is entirely based on student’s
grade in the course
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Evaluating a network

John and Mary call Pearl. What is the probability that there has been a burglary?

P(b,m, j), where b: burglary, j : John calls, m: Mary calls

P(b,m, j) =
1∑

a=0

1∑
e=0

P(b, j ,m, a, e), where a: alarm rings, e: earthquake

Bayes Rule: P(A,B) = P(A | B)P(B)

P(x1, x2, . . . , xn) = P(x1 | x2, x3, . . . , xn)P(x2, x3, . . . , xn)

Applied recursively, this gives us the chain rule

P(x1, x2, . . . , xn) = P(x1 | x2, . . . , xn)P(x2 | x3, . . . , xn) · · ·P(xn−1 | xn)P(xn)
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Evaluating a network

P(x1, x2, . . . , xn) = P(x1 | x2, . . . , xn)P(x2 | x3, . . . , xn) · · ·P(xn−1 | xn)P(xn)

Can choose any ordering of x1, x2, . . . , xn

Use topological ordering in a Bayesian network

P(m, j , a, b, e) =
P(m | j , a, b, e)P(j | a, b, e)P(a | b, e)P(b | e)P(e)

P(m, j , b) =
1∑

e=0

1∑
a=0

P(m | a)P(j | a)P(a | b, e)P(b)P(e)

P(m, j , b) = P(b)
1∑

e=0

P(e)
1∑

a=0

P(m | a)P(j | a)P(a | b, e)
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Evaluation tree
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Designing the Bayesian network

Need to choose node ordering wisely to
get a compact Bayesian network

Ordering MaryCalls, JohnCalls, Alarm,
Burglary, Earthquake produces this
network

Ordering MaryCalls, JohnCalls,
Earthquake, Burglary, Alarm is even
worse

Causal model (causes to effects) works
better than diagnostic model (effects to
causes)
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Complexity of exact inference

Exact inference of Bayesian networks is NP-complete

Boolean formula in Conjunctive Normal Form (CNF)

Boolean variables {u1, u2, . . . , un}
A literal ℓi is either ui or ¬ui

A clause is a disjunction of literals ℓj1 ∨ ℓj2 ∨ · · · ∨ ℓjk

A CNF formula is a conjunction of clauses C1 ∧ C2 ∧ · · · ∧ Cm

SAT — given a formula in CNF, is there an assignment to variables that makes the
formula true?

3-SAT — SAT where each clause has exactly 3 literals

Both SAT and 3-SAT are NP-complete

No known efficient algorithm — try all possible valuations
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Reducing 3-SAT to exact inference

Convert a 3-CNF formula into a Bayesian network

Top layer: one node for each variable ui

Middle layer: one node for each clause Cj

Parents are three variables whose literals are in Cj

Conditional probability table for Cj has 8 rows, for
all possible valuations of 3 variables

P(Cj = 1) = 0 for row where each input literal is
false, P(Cj = 1) = 1 for remaining 7 rows

Bottom row builds up C1 ∧ · · · ∧ Cm one clause at a
time

P(Y = 1) > 0 iff original 3-CNF formula is
satisfiable
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