Lecture 19: 26 March, 2024

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning
January—April 2024


https://www.cmi.ac.in/~madhavan

Conditional probabilities

m Boolean variables x1, x0, ..., X,
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Conditional probabilities

m Boolean variables x1, x0, ..., X,

m Joint probabilities P(vi, vo,. .., v,)
m 2" combinations of x1,x, ..., X,

m 2" — 1 parameters
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Conditional probabilities

m Boolean variables x1, x0, ..., X,
m Joint probabilities P(vi, vo,. .., v,)
m 2" combinations of x1,x, ..., X,

m 2" — 1 parameters

m Naive Bayes assumption — complete independence
m P(x; = 1) for each x;

m N parameters
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Conditional probabilities

m Boolean variables x1, x0, ..., X,
m Joint probabilities P(vi, vo,. .., v,)
m 2" combinations of x1,x, ..., X,

m 2" — 1 parameters

m Naive Bayes assumption — complete independence
m P(x; = 1) for each x;
m N parameters

m Can we strive for something in between?

m “Local” dependencies between some variables
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Probabilistic graphical models —

m Represent local dependencies using
directed graph

m Each node has a local (conditional)
probability table
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Probabilistic graphical models —
m Represent local dependencies using

directed graph P(E)

.002

Burglary

m Each node has a local (conditional)
probability table

E | P
m Example: Burglar alarm ; 95
_ 94
m Pearl’'s house has a burglar alarm t 29
. . S ool

m Neighbours John and Mary call if

they hear the alarm

A [P
7|01
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Probabilistic graphical models —
m Represent local dependencies using

directed graph P(E)

Burgla;y .002

m Each node has a local (conditional)
probability table

E | P
m Example: Burglar alarm ; 95
_ 94
m Pearl’'s house has a burglar alarm t 29
. . S ool

m Neighbours John and Mary call if

they hear the alarm

m John is prone to mistaking
ambulances etc for the alarm

A [P
7|01
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Probabilistic graphical models —
m Represent local dependencies using

directed graph P(E)

.002

Burglary

m Each node has a local (conditional)
probability table

E | P
m Example: Burglar alarm t | 95
f 94

m Pearl’'s house has a burglar alarm ‘ 29

f o0l

m Neighbours John and Mary call if
they hear the alarm

m John is prone to mistaking
ambulances etc for the alarm

A [P
7|01

m Mary listens to loud music and
sometimes fails to hear the alarm
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Probabilistic graphical models —
m Represent local dependencies using )
Burglary Earthquake

directed graph P(E)

.002

m Each node has a local (conditional)
probability table

E | P
m Example: Burglar alarm t | 95
f 94

m Pearl’'s house has a burglar alarm ‘ 29

f o0l

m Neighbours John and Mary call if
they hear the alarm

m John is prone to mistaking
ambulances etc for the alarm

A [P
7|01

m Mary listens to loud music and
sometimes fails to hear the alarm

m The alarm may also be triggered by
an earthquake (California!)
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Probabilistic graphical models

Earthquake

m Graph is a DAG, no cyclic (
dependencies

Burglary PE)

.002

E | P
t 95
f 94

t 29
Sl oot

A [P
7|01
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Probabilistic graphical models

m Graph is a DAG, no cyclic
dependencies

m Fundamental assumption:
A node is conditionally independent
of non-descendants, given its parents
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Student example

m Example due to Nir Friedman and
Daphne Koller 06 | 04

m Student asks teacher for a reference

letter
gl
m Teacher has forgotten the student, so P03
letter is entirely based on student’s f:",dl 0.05
rade in the course itd®| o9
& itd*|os

g3l 0% 0o
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Evaluating a network

m John and Mary call Pearl. What is the probability that there has been a burglary?
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Evaluating a network

m John and Mary call Pearl. What is the probability that there has been a burglary?

m P(b,m,j), where b: burglary, j: John calls, m: Mary calls
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Evaluating a network

m John and Mary call Pearl. What is the probability that there has been a burglary?

m P(b,m,j), where b: burglary, j: John calls, m: Mary calls

11
m P(b,m,j)= ZZ P(b,j, m, a,e), where a: alarm rings, e: earthquake
a=0 e=0
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Evaluating a network

m John and Mary call Pearl. What is the probability that there has been a burglary?

m P(b,m,j), where b: burglary, j: John calls, m: Mary calls

11
m P(b,m,j)= ZZ P(b,j, m, a,e), where a: alarm rings, e: earthquake
a=0 e=0

m Bayes Rule: P(A,B) = P(A| B)P(B)
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Evaluating a network

m John and Mary call Pearl. What is the probability that there has been a burglary?

m P(b,m,j), where b: burglary, j: John calls, m: Mary calls

11
m P(b,m,j)= ZZ P(b,j, m, a,e), where a: alarm rings, e: earthquake
a=0 e=0
m Bayes Rule: P(A,B) = P(A| B)P(B)
m P(xi,x2,. .., %n) = P(x1 | x2,x3, ..., Xn) P(x2, X3, ..., Xp)
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Evaluating a network

m John and Mary call Pearl. What is the probability that there has been a burglary?

m P(b,m,j), where b: burglary, j: John calls, m: Mary calls

11
m P(b,m,j)= ZZ P(b,j, m, a,e), where a: alarm rings, e: earthquake
a=0 e=0
m Bayes Rule: P(A,B) = P(A| B)P(B)
m P(xi,x2,. .., %n) = P(x1 | x2,x3, ..., Xn) P(x2, X3, ..., Xp)
m Applied recursively, this gives us the chain rule

P(x1,x2, ..., xn) = P(x1 | x2,...,xn)P(x2 | x3,...,Xn) - P(Xn—1 | Xn)P(xn)

Madhavan Mukund Lecture 19: 26 March, 2024 DMML Jan—Apr 2024



Evaluating a network

m P(xi,x2,. .., %xn) = P(x1 | X2y .y xn)P(x2 | X3, ...y Xn) -+ P(Xn—1 | Xn)P(xn)
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Evaluating a network

m P(xi,x2,. .., %xn) = P(x1 | X2y .y xn)P(x2 | X3, ...y Xn) -+ P(Xn—1 | Xn)P(xn)

m Can choose any ordering of xq,x2,..., X,
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Evaluating a network

m P(xi,x2,. .., %xn) = P(x1 | X2y .y xn)P(x2 | X3, ...y Xn) -+ P(Xn—1 | Xn)P(xn)
m Can choose any ordering of xq,x2,..., X,

m Use topological ordering in a Bayesian network
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Evaluating a network

m P(xi,x2,. .., %xn) = P(x1 | X2y .y xn)P(x2 | X3, ...y Xn) -+ P(Xn—1 | Xn)P(xn)
m Can choose any ordering of xq,x2,..., X,

m Use topological ordering in a Bayesian network

Earthquake

P)
95
94

m P(m,j,a,b,e)=
P(m|j,a,b,e)P(j| a, b,e)P(a|b,e)P(b|e)P(e)

29
.001

A [POM)
.70
o1
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Evaluating a network

m P(xi,x2,. .., %xn) = P(x1 | X2y .y xn)P(x2 | X3, ...y Xn) -+ P(Xn—1 | Xn)P(xn)
m Can choose any ordering of xq,x2,..., X,

m Use topological ordering in a Bayesian network
m P(m,j,a,b,e)=
P(m|j,a,b,e)P(j| a, b,e)P(a|b,e)P(b|e)P(e)
= P(m|a)P(j|a)P(a]b,e)P(b)P(e)

A [POM)
.70
o1
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Evaluating a network

m P(xi,x2,. .., %xn) = P(x1 | X2y .y xn)P(x2 | X3, ...y Xn) -+ P(Xn—1 | Xn)P(xn)

m Can choose any ordering of xq,x2,..., X,

m Use topological ordering in a Bayesian network
m P(m,j,a,b,e)=
P(m|j,a,b,e)P(j|a,b,e)P(a|b,e)P(b]|e)P(e)
= P(m[a)P(j | a)P(a]b,e)P(b)P(e)
u P(m7j7 b) -
1 1 4 [Pon)
Y > P(ma)P(|a)P(a] b, e)P(b)P(e) 7o
a=0 e=0
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Evaluating a network

m P(xi,x2,. .., %xn) = P(x1 | X2y .y xn)P(x2 | X3, ...y Xn) -+ P(Xn—1 | Xn)P(xn)

m Can choose any ordering of xq,x2,..., X,

m Use topological ordering in a Bayesian network
m P(m,j,a,b,e)=
P(m|j,a,b,e)P(j|a,b,e)P(a|b,e)P(b]|e)P(e)
= P(m[a)P(j | a)P(a]b,e)P(b)P(e)
u P(m7j7 b) -
1 1 4 [Pon)
Y > P(m|a)P(|a)P(a] b, e)P(b)P(e) 7o
e=0 a=0
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Evaluating a network

m P(xi,x2,. .., %xn) = P(x1 | X2y .y xn)P(x2 | X3, ...y Xn) -+ P(Xn—1 | Xn)P(xn)
m Can choose any ordering of xq,x2,..., X,
m Use topological ordering in a Bayesian network

m P(m,j,a,b,e)

P(m|j,a, b, e);(J | a,b,e)P(a| b,e)P(b | e)P(e)
= P(m|[a)P(j | a)P(a| b,e)P(b)P(e)
= Pl(m Jyb) =
> Y P(m|a)P(j | a)P(a| b,e)P(b)P(e) ilor
e=0 a=0
1 1
m P(m,j,b)=P(b)> P(e)> P(m|a)P(j|a)P(a] b,e)
e=0 a=0
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Evaluation tree

P(alb,—e)
.94

P(—alb,~e)

P(—alb,e)
.05
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Designing the Bayesian network

m Need to choose node ordering wisely to
get a compact Bayesian network
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Designing the Bayesian network
m Need to choose node ordering wisely to w
get a compact Bayesian network
m Ordering MaryCalls, JohnCalls, Alarm, @
Burglary, Earthquake produces this
network

Earthquake
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Designing the Bayesian network

m Need to choose node ordering wisely to

i MaryCalls
get a compact Bayesian network

m Ordering MaryCalls, JohnCalls, Alarm,
Burglary, Earthquake produces this
network

m Ordering MaryCalls, JohnCalls,
Earthquake, Burglary, Alarm is even
worse
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Designing the Bayesian network

m Need to choose node ordering wisely to

i MaryCalls
get a compact Bayesian network

m Ordering MaryCalls, JohnCalls, Alarm,
Burglary, Earthquake produces this
network

m Ordering MaryCalls, JohnCalls,
Earthquake, Burglary, Alarm is even
worse

m Causal model (causes to effects) works
better than diagnostic model (effects to
causes)
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Complexity of exact inference

m Exact inference of Bayesian networks is NP-complete
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Complexity of exact inference

m Exact inference of Bayesian networks is NP-complete

m Boolean formula in Conjunctive Normal Form (CNF)
m Boolean variables {uy, up, ..., u,}

m A literal ¢; is either u; or —u;
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Complexity of exact inference

m Exact inference of Bayesian networks is NP-complete

m Boolean formula in Conjunctive Normal Form (CNF)
m Boolean variables {uy, up, ..., u,}
m A literal ¢; is either u; or —u;

m A clause is a disjunction of literals £;, \V (;, V --- V
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Complexity of exact inference

m Exact inference of Bayesian networks is NP-complete

m Boolean formula in Conjunctive Normal Form (CNF)
m Boolean variables {uy, up, ..., u,}
m A literal ¢; is either u; or —u;
m A clause is a disjunction of literals ¢; \/ /;, vV --- V [},

m A CNF formula is a conjunction of clauses CG; A G A -+ A Cpy
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Complexity of exact inference

m Exact inference of Bayesian networks is NP-complete

m Boolean formula in Conjunctive Normal Form (CNF)
m Boolean variables {uy, up, ..., u,}
m A literal ¢; is either u; or —u;
m A clause is a disjunction of literals ¢; \/ /;, vV --- V [},

m A CNF formula is a conjunction of clauses CG; A G A -+ A Cpy

m SAT — given a formula in CNF, is there an assignment to variables that makes the
formula true?

m 3-SAT — SAT where each clause has exactly 3 literals
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Complexity of exact inference

m Exact inference of Bayesian networks is NP-complete

m Boolean formula in Conjunctive Normal Form (CNF)
m Boolean variables {uy, up, ..., u,}
m A literal ¢; is either u; or —u;
m A clause is a disjunction of literals ¢; \/ /;, vV --- V [},
m A CNF formula is a conjunction of clauses CG; A G A -+ A Cpy

m SAT — given a formula in CNF, is there an assignment to variables that makes the
formula true?

m 3-SAT — SAT where each clause has exactly 3 literals

m Both SAT and 3-SAT are NP-complete

m No known efficient algorithm — try all possible valuations
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Reducing 3-SAT to exact inference

m Convert a 3-CNF formula into a Bayesian network
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Reducing 3-SAT to exact inference

m Convert a 3-CNF formula into a Bayesian network

m Top layer: one node for each variable u;
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Reducing 3-SAT to exact inference

m Convert a 3-CNF formula into a Bayesian network

m Top layer: one node for each variable u;

m Middle layer: one node for each clause C;
m Parents are three variables whose literals are in C;

m Conditional probability table for C; has 8 rows, for
all possible valuations of 3 variables

m P(C; = 1) = 0 for row where each input literal is
false, P(C; = 1) = 1 for remaining 7 rows

DMML Jan-Apr 2024
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Reducing 3-SAT to exact inference

m Convert a 3-CNF formula into a Bayesian network

m Top layer: one node for each variable u;

m Middle layer: one node for each clause C;
m Parents are three variables whose literals are in C;

m Conditional probability table for C; has 8 rows, for
all possible valuations of 3 variables

m P(C; = 1) = 0 for row where each input literal is
false, P(C; = 1) = 1 for remaining 7 rows

m Bottom row builds up C; A --- A C,, one clause at a
time
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Reducing 3-SAT to exact inference

m Convert a 3-CNF formula into a Bayesian network

m Top layer: one node for each variable u;

m Middle layer: one node for each clause C;
m Parents are three variables whose literals are in C;

m Conditional probability table for C; has 8 rows, for
all possible valuations of 3 variables

m P(C; = 1) = 0 for row where each input literal is
false, P(C; = 1) = 1 for remaining 7 rows

m Bottom row builds up C; A --- A C,, one clause at a
time

m P(Y =1) > 0 iff original 3-CNF formula is
satisfiable
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