Lecture 17: 19 March, 2024

Madhavan Mukund
https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning January-April 2024

Linear separators and Perceptrons

■ Perceptrons define linear separators $w \cdot x+b$

- $w \cdot x+b>0$, classify Yes $(+1)$
- $w \cdot x+b<0$, classify No (-1)

Linear separators and Perceptrons

■ Perceptrons define linear separators $w \cdot x+b$

- $w \cdot x+b>0$, classify Yes $(+1)$
- $w \cdot x+b<0$, classify No (-1)

■ What if we cascade perceptrons?
inputs

Linear separators and Perceptrons

■ Perceptrons define linear separators $w \cdot x+b$

- $w \cdot x+b>0$, classify Yes $(+1)$
- $w \cdot x+b<0$, classify No (-1)

■ What if we cascade perceptrons?

- Result is still a linear separator

Linear separators and Perceptrons

■ Perceptrons define linear separators $w \cdot x+b$

- $w \cdot x+b>0$, classify Yes $(+1)$
- $w \cdot x+b<0$, classify No (-1)

■ What if we cascade perceptrons?

- Result is still a linear separator

■ $f_{1}=w_{1} \cdot x+b_{1}, f_{2}=w_{2} \cdot x+b_{2}$

Linear separators and Perceptrons

■ Perceptrons define linear separators $w \cdot x+b$

- $w \cdot x+b>0$, classify Yes $(+1)$
- $w \cdot x+b<0$, classify No (-1)

■ What if we cascade perceptrons?

- Result is still a linear separator

■ $f_{1}=w_{1} \cdot x+b_{1}, f_{2}=w_{2} \cdot x+b_{2}$

- $f_{3}=w_{3} \cdot\left\langle f_{1}, f_{2}\right\rangle+b_{3}$

Linear separators and Perceptrons

■ Perceptrons define linear separators $w \cdot x+b$

- $w \cdot x+b>0$, classify Yes $(+1)$
- $w \cdot x+b<0$, classify No (-1)

■ What if we cascade perceptrons?

- Result is still a linear separator

■ $f_{1}=w_{1} \cdot x+b_{1}, f_{2}=w_{2} \cdot x+b_{2}$

- $f_{3}=w_{3} \cdot\left\langle f_{1}, f_{2}\right\rangle+b_{3}$
- $f_{3}=w_{3} \cdot\left\langle w_{1} \cdot x+b_{1}, w_{2} \cdot x+b_{2}\right\rangle+b_{3}$

Linear separators and Perceptrons

■ Perceptrons define linear separators $w \cdot x+b$

- $w \cdot x+b>0$, classify Yes $(+1)$
- $w \cdot x+b<0$, classify No (-1)

■ What if we cascade perceptrons?

- Result is still a linear separator

■ $f_{1}=w_{1} \cdot x+b_{1}, f_{2}=w_{2} \cdot x+b_{2}$

- $f_{3}=w_{3} \cdot\left\langle f_{1}, f_{2}\right\rangle+b_{3}$
- $f_{3}=w_{3} \cdot\left\langle w_{1} \cdot x+b_{1}, w_{2} \cdot x+b_{2}\right\rangle+b_{3}$

■ $f_{3}=\sum_{i=1}^{4}\left(w_{3_{1}} w_{1_{i}}+w_{3_{2}} w_{2_{i}}\right) \cdot x_{i}$ $+\left(w_{3_{1}} b_{1}+w_{3_{2}} b_{2}+b_{3}\right)$

Limits of linearity

- Cannot compute exclusive-or (XOR)
- $\operatorname{XOR}\left(x_{1}, x_{2}\right)$ is true if exactly one of x_{1}, x_{2} is true (not both)

Limits of linearity

- Cannot compute exclusive-or (XOR)
- $\operatorname{XOR}\left(x_{1}, x_{2}\right)$ is true if exactly one of x_{1}, x_{2} is true (not both)
■ Suppose $\operatorname{XOR}\left(x_{1}, x_{2}\right)=u x_{1}+v x_{2}+b$

Limits of linearity

- Cannot compute exclusive-or (XOR)
- $\operatorname{XOR}\left(x_{1}, x_{2}\right)$ is true if exactly one of x_{1}, x_{2} is true (not both)
■ Suppose $\operatorname{XOR}\left(x_{1}, x_{2}\right)=u x_{1}+v x_{2}+b$
- $x_{2}=0$: As x_{1} goes from 0 to 1 , output goes from 0 to 1 , so $u>0$

Limits of linearity

- Cannot compute exclusive-or (XOR)
- $\operatorname{XOR}\left(x_{1}, x_{2}\right)$ is true if exactly one of x_{1}, x_{2} is true (not both)
■ Suppose $\operatorname{XOR}\left(x_{1}, x_{2}\right)=u x_{1}+v x_{2}+b$
- $x_{2}=0$: As x_{1} goes from 0 to 1 , output goes from 0 to 1 , so $u>0$
- $x_{2}=1$: As x_{1} goes from 0 to 1 , output goes from 1 to 0 , so $u<0$

Limits of linearity

- Cannot compute exclusive-or (XOR)
- $\operatorname{XOR}\left(x_{1}, x_{2}\right)$ is true if exactly one of x_{1}, x_{2} is true (not both)
■ Suppose $\operatorname{XOR}\left(x_{1}, x_{2}\right)=u x_{1}+v x_{2}+b$
- $x_{2}=0$: As x_{1} goes from 0 to 1 , output goes from 0 to 1 , so $u>0$
- $x_{2}=1$: As x_{1} goes from 0 to 1 , output goes from 1 to 0 , so $u<0$
■ Observed by Minsky and Papert, 1969, first "Al Winter"

Non-linear activation

- Transform linear output z through a non-linear activation function
- Sigmoid function $\frac{1}{1+e^{-z}}$

Structure of a neural network

- Acyclic

■ Input layer, hidden layers, output layer

Structure of a neural network

- Acyclic

■ Input layer, hidden layers, output layer

- Assumptions

Structure of a neural network

- Acyclic

■ Input layer, hidden layers, output layer

- Assumptions
- Hidden neurons are arranged in layers

Structure of a neural network

- Acyclic

■ Input layer, hidden layers, output layer

- Assumptions
- Hidden neurons are arranged in layers
- Each layer is fully connected to the next

Structure of a neural network

- Acyclic

■ Input layer, hidden layers, output layer

- Assumptions
- Hidden neurons are arranged in layers
- Each layer is fully connected to the next
- Set weight to zero to remove an edge

Non-linear activation

- Transform linear output z through a non-linear activation function
- Sigmoid function $\frac{1}{1+e^{-z}}$
- Step is at $z=0$
- $z=w x+b$, so step is at $x=-b / w$

Universality

■ Create a step at $x=-b / w$

Universality

■ Create a step at $x=-b / w$

- Cascade steps

Universality

- Create a step at $x=-b / w$
- Cascade steps
- Subtract steps to create a box

Universality

- Create a step at $x=-b / w$
- Cascade steps
- Subtract steps to create a box
- Create many boxes

Universality

- Create a step at $x=-b / w$
- Cascade steps
- Subtract steps to create a box
- Create many boxes
- Approximate any function

Universality

- Create a step at $x=-b / w$
- Cascade steps
- Subtract steps to create a box
- Create many boxes
- Approximate any function
- Need only one hidden layer!

Non-linear activation

- With non-linear activation, network of neurons can approximate any function

Non-linear activation

- With non-linear activation, network of neurons can approximate any function
- Can build "rectangular" blocks

Non-linear activation

- With non-linear activation, network of neurons can approximate any function
- Can build "rectangular" blocks
- Combine blocks to capture any classification boundary

Example: Recognizing handwritten digits

- MNIST data set

Example: Recognizing handwritten digits

- MNIST data set
- 1000 samples of 10 handwritten digits
- Assume input has been segmented

							3			7
	3	6		7		2	8	6		
0	9	1	1	2			3	2		
8	6	9	0	5		6	0	7		
8	7		3			8	5	9		
0	7	4	9			0	9	4		
4	6	0	4			6	1.	O		
7		6	3			2	7	I		
0	2	6	7	8		3	9	0		
			8							

Example: Recognizing handwritten digits

- MNIST data set
- 1000 samples of 10 handwritten digits
- Assume input has been segmented
- Each digit is 28×28 pixels
- Grayscale value, 0 to 1
- 784 pixels

Example: Recognizing handwritten digits

- MNIST data set
- 1000 samples of 10 handwritten digits

■ Assume input has been segmented

- Each digit is 28×28 pixels
- Grayscale value, 0 to 1
- 784 pixels

■ Input $x=\left(x_{1}, x_{2}, \ldots, x_{784}\right)$

Example: Network structure

■ Input layer $\left(x_{1}, x_{2}, \ldots, x_{784}\right)$

Example: Network structure

■ Input layer $\left(x_{1}, x_{2}, \ldots, x_{784}\right)$

- Single hidden layer, 15 nodes
hidden layer

Example: Network structure

■ Input layer $\left(x_{1}, x_{2}, \ldots, x_{784}\right)$

- Single hidden layer, 15 nodes
- Output layer, 10 nodes
- Decision a_{j} for each digit $j \in\{0,1, \ldots, 9\}$
hidden layer

Example: Network structure

■ Input layer $\left(x_{1}, x_{2}, \ldots, x_{784}\right)$

- Single hidden layer, 15 nodes
- Output layer, 10 nodes

■ Decision a_{j} for each digit $j \in\{0,1, \ldots, 9\}$

- Final output is best a_{j}
input layer (784 neurons)
hidden layer

Example: Network structure

■ Input layer $\left(x_{1}, x_{2}, \ldots, x_{784}\right)$

- Single hidden layer, 15 nodes
- Output layer, 10 nodes

■ Decision a_{j} for each digit $j \in\{0,1, \ldots, 9\}$

- Final output is best a_{j}
input layer (784 neurons)
- Naïvely, arg max a_{j}
hidden layer

Example: Network structure

■ Input layer $\left(x_{1}, x_{2}, \ldots, x_{784}\right)$

- Single hidden layer, 15 nodes
- Output layer, 10 nodes
- Decision a_{j} for each digit $j \in\{0,1, \ldots, 9\}$
- Final output is best a_{j}
- Naïvely, arg max a_{j}
- Softmax, arg $\max _{j} \frac{e^{a_{j}}}{\sum_{j} e^{a_{j}}}$
- "Smooth" version of arg max

Example: Extracting features

■ Hidden layers extract features

- For instance, patterns in different quadrants

Example: Extracting features

■ Hidden layers extract features

- For instance, patterns in different quadrants

■ Combination of features determines output

Example: Extracting features

■ Hidden layers extract features

- For instance, patterns in different quadrants

■ Combination of features determines output
■ Claim: Automatic identification of features is strength of the model

Example: Extracting features

■ Hidden layers extract features

- For instance, patterns in different quadrants

■ Combination of features determines output
■ Claim: Automatic identification of features is strength of the model

- Counter argument: implicitly extracted features are impossible to interpret
- Explainability

