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Unsupervised learning

• Supervised learning requires labelled 
data

• Vast majority of data is unlabelled

• What insights can you get into 
unlabelled data?

“If intelligence was a cake, unsupervised 
learning would be the cake, supervised 
learning would be the icing on the cake
...” 

- Yann LeCun
ACM Turing Award 2018



Applications

• Customer segmentation

• Marketing campaigns

• Anomaly detection

• Outliers

• Semi-supervised learning

• Propagate limited labels

• Image segmentation

• Object detection



Semi-supervised learning

• Labelling training data is a bottleneck of 
supervised learning

• Handwritten digits 0,1,...,9

• 1797 images

• Standard logistic regression model has 
96.9% accuracy

• Suppose we take 50 random samples as 
training set

• Logistic regression gives 83.3%



Semi-supervised learning

• Instead of 50 random samples, 50 
clusters using K means

• Use image nearest to each centroid as 
training set

• 50 representative images

• Logistic regression accuracy jumps to 
92.2%



Semi-supervised learning

• Propagate representative image label to 
entire cluster

• Logistic regression improves to 93.3%

• Propagage representive image label to 
only 20% items closest to centroid

• Logistic regression improves to 94%

• Only 50 actual labels used, about 5 per 
class!



Image segmentation

• An image is a matrix of pixels

• Each pixel has (R,G,B) values

• K means clustering on these values 
merges colours
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Image segmentation

• An image is a matrix of pixels

• Each pixel has (R,G,B) values

• K means clustering on these values 
merges colours

• With 10 clusters, not much change

• Same with 8

• At 6 colours, ladybug red goes

• 4 colours

• Finally 2 colours, flower and rest



Summary

• Unsupervised learning is useful as a 
preprocessing step

• Semi supervised learning

• Identify a small subset of items 
to label manually

• Propagate labels via cluster

• Image segmentation

• Highlight objects by colour



A geometric view of supervised learning

Think of data as points in space

Find a separating curve (surface)

Separable case

Each class is a connected region

A single curve can separate them

More complex scenario

Classes form multiple connected
regions

Need multiple separators
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Linear separators

Simplest case — linearly separable data

Dual of linear regression

Find a line that passes close to a set
of points

Find a line that separates the two sets
of points

Many lines are possible

How do we find the best one?

What is a good notion of “cost” to
optimize?
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Linear separators

Each input x has n attributes
⟨x1, x2, . . . , xn⟩

Linear separator has the form
w1x1 + w2x2 + · · ·wnxn + b

Classification criterion

w1x1 + w2x2 + · · ·wnxn + b > 0,
classify yes, +1

w1x1 + w2x2 + · · ·wnxn + b < 0,
classify no, −1
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Linear separators

Dot product w · x
⟨w1,w2, . . . ,wn⟩ · ⟨x1, x2, . . . , xn⟩ =
w1x1 + w2x2 + · · ·+ wnxn

Collapsed form
w · x + b > 0, w · x + b < 0

Rename bias b as w0, create fictitious
x0 = 1

Classification criteria become
w · x > 0, w · x < 0
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Perceptron algorithm

(Frank Rosenblatt, 1958)

Each training input is (xi , yi ), where
xi = ⟨xi1 , xi2 , . . . , xin⟩ and yi = +1 or −1

Need to find w = ⟨w0,w1, . . . ,wn⟩
Recall xi0 = 1, always

Initialize w = ⟨0, 0, . . . , 0⟩

While there exists xi , yi such that

yi = +1 and w · xi < 0, or

yi = −1 and w · xi > 0

Update w to w + xiyi
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Perceptron algorithm . . .

Keep updating w as long as some training
data item is misclassified

Update is an offset by misclassified input

Need not stabilize, potentially an infinite
loop

Theorem

If the points are linearly separable, the
Perceptron algorithms always terminates with a
valid separator
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Perceptron algorithm . . .

Theorem

If the points are linearly separable, the
Perceptron algorithms always terminates with a
valid separator

Termination time depends on two factors

Width of the band separating the
positive and negative points

Narrow band takes longer to converge

Magnitude of the x values

Larger spread of points takes longer to
converge
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Perceptron Algorithm — Proof

Theorem

If there is w∗ satisfying (w∗ · xi )yi ≥ 1 for all i , then the Perceptron Algorithm finds
a solution w with (w · xi )yi > 0 for all i in at most r2|w∗|2 updates, where
r = max

i
|xi |.

Assume w∗ exists. Keep track of two quantities: w⊤w∗, |w |2.

Each update increases w⊤w∗ by at least 1.

(w + xiyi )
⊤w∗ = w⊤w∗ + x⊤i yiw

∗ ≥ w⊤w∗ + 1

Each update increases |w |2 by at most r2

(w + xiyi )
⊤(w + xiyi ) = |w |2 + 2x⊤i yiw + |xiyi |2 ≤ |w |2 + |xi |2 ≤ |w |2 + r2

Note that we update only when x⊤i yiw < 0
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Perceptron Algorithm — Proof (cont’d)

Assume Perceptron Algorithm makes m updates

Then, w⊤w∗ ≥ m, |w |2 ≤ mr2

m ≤ |w ||w∗|, because a · b = |a||b| cos θ
m ≤ |w ||w∗|

m/|w∗| ≤ |w |
m/|w∗| ≤ r

√
m, because |w |2 ≤ mr2

m/|w∗| ≤ r
√
m

√
m ≤ r |w∗|
m ≤ r2|w∗|2

Note (for later) that final w is of the form
∑
i

nixi
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Linear separators

Simplest case — linearly separable data

Perceptron algorithm is a simple procedure
to find a linear separator, if one exists

Many lines are possible

Does the Perceptron algorithm find the
best one?

What is a good notion of “cost” to
optimize?
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