
Open in ColabOpen in Colab Open in KaggleOpen in Kaggle

Chapter 9 – Unsupervised Learning

This notebook contains all the sample code and solutions to the exercises in chapter 9.

Setup

This project requires Python 3.7 or above:

import sys

assert sys.version_info >= (3, 7)

It also requires Scikit-Learn ≥ 1.0.1:

from packaging import version

import sklearn

assert version.parse(sklearn.__version__) >= version.parse("1.0.1")

As we did in previous chapters, let's define the default font sizes to make the figures prettier:

import matplotlib.pyplot as plt

plt.rc('font', size=14)

plt.rc('axes', labelsize=14, titlesize=14)

plt.rc('legend', fontsize=14)

plt.rc('xtick', labelsize=10)

plt.rc('ytick', labelsize=10)

And let's create the images/unsupervised_learning folder (if it doesn't already exist), and

define the save_fig() function which is used through this notebook to save the figures in high-

res for the book:

from pathlib import Path

IMAGES_PATH = Path() / "images" / "unsupervised_learning"

IMAGES_PATH.mkdir(parents=True, exist_ok=True)

def save_fig(fig_id, tight_layout=True, fig_extension="png", resolution=300):

 path = IMAGES_PATH / f"{fig_id}.{fig_extension}"

 if tight_layout:

 plt.tight_layout()

 plt.savefig(path, format=fig_extension, dpi=resolution)

First, let's import a few common modules, ensure MatplotLib plots figures inline and prepare a

function to save the figures.

Clustering

In [1]:

In [2]:

In [3]:

In [4]:

https://colab.research.google.com/github/ageron/handson-ml3/blob/main/09_unsupervised_learning.ipynb
https://colab.research.google.com/github/ageron/handson-ml3/blob/main/09_unsupervised_learning.ipynb
https://kaggle.com/kernels/welcome?src=https://github.com/ageron/handson-ml3/blob/main/09_unsupervised_learning.ipynb
https://kaggle.com/kernels/welcome?src=https://github.com/ageron/handson-ml3/blob/main/09_unsupervised_learning.ipynb

K-Means

Fit and predict

Let's train a K-Means clusterer on a dataset if blobs. It will try to find each blob's center and assign

each instance to the closest blob:

from sklearn.cluster import KMeans

from sklearn.datasets import make_blobs

import numpy as np

extra code – the exact arguments of make_blobs() are not important

blob_centers = np.array([[0.2, 2.3], [-1.5 , 2.3], [-2.8, 1.8],

 [-2.8, 2.8], [-2.8, 1.3]])

blob_std = np.array([0.4, 0.3, 0.1, 0.1, 0.1])

X, y = make_blobs(n_samples=2000, centers=blob_centers, cluster_std=blob_std,

 random_state=7)

k = 5

kmeans = KMeans(n_clusters=k, random_state=42)

y_pred = kmeans.fit_predict(X)

Now let's plot them:

extra code – this cell generates and saves Figure 9–2

def plot_clusters(X, y=None):

 plt.scatter(X[:, 0], X[:, 1], c=y, s=1)

 plt.xlabel("x_1")

 plt.ylabel("x_2", rotation=0)

plt.figure(figsize=(8, 4))

plot_clusters(X)

plt.gca().set_axisbelow(True)

plt.grid()

save_fig("blobs_plot")

plt.show()

In [5]:

In [6]:

Each instance was assigned to one of the 5 clusters:

y_pred

array([2, 2, 4, ..., 1, 4, 2], dtype=int32)

y_pred is kmeans.labels_

True

And the following 5 centroids (i.e., cluster centers) were estimated:

kmeans.cluster_centers_

array([[-0.066884 , 2.10378803],

 [-2.79290307, 2.79641063],

 [-2.80214068, 1.55162671],

 [-1.47468607, 2.28399066],

 [0.47042841, 2.41380533]])

Note that the KMeans instance preserves the labels of the instances it was trained on. Somewhat

confusingly, in this context, the label of an instance is the index of the cluster that instance gets

assigned to (they are not targets, they are predictions):

kmeans.labels_

array([2, 2, 4, ..., 1, 4, 2], dtype=int32)

Of course, we can predict the labels of new instances:

import numpy as np

X_new = np.array([[0, 2], [3, 2], [-3, 3], [-3, 2.5]])

kmeans.predict(X_new)

array([0, 4, 1, 1], dtype=int32)

Decision Boundaries

Let's plot the model's decision boundaries. This gives us a Voronoi diagram:

extra code – this cell generates and saves Figure 9–3

def plot_data(X):

 plt.plot(X[:, 0], X[:, 1], 'k.', markersize=2)

def plot_centroids(centroids, weights=None, circle_color='w', cross_color='k'):

 if weights is not None:

 centroids = centroids[weights > weights.max() / 10]

 plt.scatter(centroids[:, 0], centroids[:, 1],

 marker='o', s=35, linewidths=8,

 color=circle_color, zorder=10, alpha=0.9)

 plt.scatter(centroids[:, 0], centroids[:, 1],

 marker='x', s=2, linewidths=12,

 color=cross_color, zorder=11, alpha=1)

def plot_decision_boundaries(clusterer, X, resolution=1000, show_centroids=True,

In [7]:

Out[7]:

In [8]:

Out[8]:

In [9]:

Out[9]:

In [10]:

Out[10]:

In [11]:

Out[11]:

In [12]:

 show_xlabels=True, show_ylabels=True):

 mins = X.min(axis=0) - 0.1

 maxs = X.max(axis=0) + 0.1

 xx, yy = np.meshgrid(np.linspace(mins[0], maxs[0], resolution),

 np.linspace(mins[1], maxs[1], resolution))

 Z = clusterer.predict(np.c_[xx.ravel(), yy.ravel()])

 Z = Z.reshape(xx.shape)

 plt.contourf(Z, extent=(mins[0], maxs[0], mins[1], maxs[1]),

 cmap="Pastel2")

 plt.contour(Z, extent=(mins[0], maxs[0], mins[1], maxs[1]),

 linewidths=1, colors='k')

 plot_data(X)

 if show_centroids:

 plot_centroids(clusterer.cluster_centers_)

 if show_xlabels:

 plt.xlabel("x_1")

 else:

 plt.tick_params(labelbottom=False)

 if show_ylabels:

 plt.ylabel("x_2", rotation=0)

 else:

 plt.tick_params(labelleft=False)

plt.figure(figsize=(8, 4))

plot_decision_boundaries(kmeans, X)

save_fig("voronoi_plot")

plt.show()

Not bad! Some of the instances near the edges were probably assigned to the wrong cluster, but

overall it looks pretty good.

Hard Clustering vs Soft Clustering

Rather than arbitrarily choosing the closest cluster for each instance, which is called hard

clustering, it might be better to measure the distance of each instance to all 5 centroids. This is

what the transform() method does:

kmeans.transform(X_new).round(2)In [13]:

array([[0.12, 2.9 , 2.84, 1.5 , 0.63],

 [3.07, 5.85, 5.82, 4.48, 2.56],

 [3.07, 0.29, 1.46, 1.69, 3.52],

 [2.96, 0.36, 0.97, 1.54, 3.47]])

You can verify that this is indeed the Euclidian distance between each instance and each centroid:

extra code

np.linalg.norm(np.tile(X_new, (1, k)).reshape(-1, k, 2)

 - kmeans.cluster_centers_, axis=2).round(2)

array([[0.12, 2.9 , 2.84, 1.5 , 0.63],

 [3.07, 5.85, 5.82, 4.48, 2.56],

 [3.07, 0.29, 1.46, 1.69, 3.52],

 [2.96, 0.36, 0.97, 1.54, 3.47]])

The K-Means Algorithm

The K-Means algorithm is one of the fastest clustering algorithms, and also one of the simplest:

First initialize centroids randomly: e.g., distinct instances are chosen randomly from the

dataset and the centroids are placed at their locations.

Repeat until convergence (i.e., until the centroids stop moving):

Assign each instance to the closest centroid.

Update the centroids to be the mean of the instances that are assigned to them.

The KMeans class uses an optimized initialization technique by default. To get the original K-

Means algorithm (for educational purposes only), you must set init="random" and

n_init=1 . More on this later in this chapter.

Let's run the K-Means algorithm for 1, 2 and 3 iterations, to see how the centroids move around:

extra code – this cell generates and saves Figure 9–4

kmeans_iter1 = KMeans(n_clusters=5, init="random", n_init=1, max_iter=1,

 random_state=5)

kmeans_iter2 = KMeans(n_clusters=5, init="random", n_init=1, max_iter=2,

 random_state=5)

kmeans_iter3 = KMeans(n_clusters=5, init="random", n_init=1, max_iter=3,

 random_state=5)

kmeans_iter1.fit(X)

kmeans_iter2.fit(X)

kmeans_iter3.fit(X)

plt.figure(figsize=(10, 8))

plt.subplot(321)

plot_data(X)

plot_centroids(kmeans_iter1.cluster_centers_, circle_color='r', cross_color='w')

plt.ylabel("x_2", rotation=0)

plt.tick_params(labelbottom=False)

plt.title("Update the centroids (initially randomly)")

plt.subplot(322)

plot_decision_boundaries(kmeans_iter1, X, show_xlabels=False,

 show_ylabels=False)

plt.title("Label the instances")

Out[13]:

In [14]:

Out[14]:

k k

In [15]:

plt.subplot(323)

plot_decision_boundaries(kmeans_iter1, X, show_centroids=False,

 show_xlabels=False)

plot_centroids(kmeans_iter2.cluster_centers_)

plt.subplot(324)

plot_decision_boundaries(kmeans_iter2, X, show_xlabels=False,

 show_ylabels=False)

plt.subplot(325)

plot_decision_boundaries(kmeans_iter2, X, show_centroids=False)

plot_centroids(kmeans_iter3.cluster_centers_)

plt.subplot(326)

plot_decision_boundaries(kmeans_iter3, X, show_ylabels=False)

save_fig("kmeans_algorithm_plot")

plt.show()

K-Means Variability

In the original K-Means algorithm, the centroids are just initialized randomly, and the algorithm

simply runs a single iteration to gradually improve the centroids, as we saw above.

However, one major problem with this approach is that if you run K-Means multiple times (or with

different random seeds), it can converge to very different solutions, as you can see below:

extra code – this cell generates and saves Figure 9–5

def plot_clusterer_comparison(clusterer1, clusterer2, X, title1=None,

 title2=None):

 clusterer1.fit(X)

 clusterer2.fit(X)

 plt.figure(figsize=(10, 3.2))

 plt.subplot(121)

 plot_decision_boundaries(clusterer1, X)

 if title1:

 plt.title(title1)

 plt.subplot(122)

 plot_decision_boundaries(clusterer2, X, show_ylabels=False)

 if title2:

 plt.title(title2)

kmeans_rnd_init1 = KMeans(n_clusters=5, init="random", n_init=1, random_state=2)

kmeans_rnd_init2 = KMeans(n_clusters=5, init="random", n_init=1, random_state=9)

plot_clusterer_comparison(kmeans_rnd_init1, kmeans_rnd_init2, X,

 "Solution 1",

 "Solution 2 (with a different random init)")

save_fig("kmeans_variability_plot")

plt.show()

good_init = np.array([[-3, 3], [-3, 2], [-3, 1], [-1, 2], [0, 2]])

kmeans = KMeans(n_clusters=5, init=good_init, n_init=1, random_state=42)

kmeans.fit(X)

extra code

plt.figure(figsize=(8, 4))

plot_decision_boundaries(kmeans, X)

In [16]:

In [17]:

Out[17]: ▾ ?i KMeans

KMeans(init=array([[-3, 3],
 [-3, 2],
 [-3, 1],
 [-1, 2],
 [0, 2]]),
 n_clusters=5, n_init=1, random_state=42)

In [18]:

https://scikit-learn.org/1.4/modules/generated/sklearn.cluster.KMeans.html

Inertia

To select the best model, we will need a way to evaluate a K-Mean model's performance.

Unfortunately, clustering is an unsupervised task, so we do not have the targets. But at least we

can measure the distance between each instance and its centroid. This is the idea behind the

inertia metric:

kmeans.inertia_

211.59853725816836

kmeans_rnd_init1.inertia_ # extra code

219.58201503602288

kmeans_rnd_init2.inertia_ # extra code

211.5985372581684

As you can easily verify, inertia is the sum of the squared distances between each training instance

and its closest centroid:

extra code

X_dist = kmeans.transform(X)

(X_dist[np.arange(len(X_dist)), kmeans.labels_] ** 2).sum()

211.59853725816862

The score() method returns the negative inertia. Why negative? Well, it is because a predictor's

score() method must always respect the "greater is better" rule.

kmeans.score(X)

-211.59853725816834

In [19]:

Out[19]:

In [20]:

Out[20]:

In [21]:

Out[21]:

In [22]:

Out[22]:

In [23]:

Out[23]:

Multiple Initializations

So one approach to solve the variability issue is to simply run the K-Means algorithm multiple

times with different random initializations, and select the solution that minimizes the inertia.

When you set the n_init hyperparameter, Scikit-Learn runs the original algorithm n_init

times, and selects the solution that minimizes the inertia. By default, Scikit-Learn sets

n_init=10 .

extra code

kmeans_rnd_10_inits = KMeans(n_clusters=5, init="random", n_init=10,

 random_state=2)

kmeans_rnd_10_inits.fit(X)

As you can see, we end up with the initial model, which is certainly the optimal K-Means solution

(at least in terms of inertia, and assuming).

extra code

plt.figure(figsize=(8, 4))

plot_decision_boundaries(kmeans_rnd_10_inits, X)

plt.show()

kmeans_rnd_10_inits.inertia_

211.5985372581684

Centroid initialization methods

In [24]:

Out[24]: ▾ ?i KMeans

KMeans(init='random', n_clusters=5, n_init=10, random_state=2)

k = 5

In [25]:

In [26]:

Out[26]:

https://scikit-learn.org/1.4/modules/generated/sklearn.cluster.KMeans.html

Instead of initializing the centroids entirely randomly, it is preferable to initialize them using the

following algorithm, proposed in a 2006 paper by David Arthur and Sergei Vassilvitskii:

Take one centroid , chosen uniformly at random from the dataset.

Take a new center , choosing an instance with probability: / where

 is the distance between the instance and the closest centroid that was already

chosen. This probability distribution ensures that instances that are further away from already

chosen centroids are much more likely be selected as centroids.

Repeat the previous step until all centroids have been chosen.

The rest of the K-Means++ algorithm is just regular K-Means. With this initialization, the K-Means

algorithm is much less likely to converge to a suboptimal solution, so it is possible to reduce

n_init considerably. Most of the time, this largely compensates for the additional complexity of

the initialization process.

To set the initialization to K-Means++, simply set init="k-means++" (this is actually the

default):

Accelerated K-Means

The K-Means algorithm can sometimes be accelerated by avoiding many unnecessary distance

calculations: this is achieved by exploiting the triangle inequality (given three points A, B and C, the

distance AC is always such that AC ≤ AB + BC) and by keeping track of lower and upper bounds for

distances between instances and centroids (see this 2003 paper by Charles Elkan for more details).

For Elkan's variant of K-Means, use algorithm="elkan" . For regular KMeans, use

algorithm="full" . The default is "auto" , which uses the full algorithm since Scikit-Learn

1.1 (it used Elkan's algorithm before that).

Finding the optimal number of clusters

What if the number of clusters was set to a lower or greater value than 5?

extra code – this cell generates and saves Figure 9–7

kmeans_k3 = KMeans(n_clusters=3, random_state=42)

kmeans_k8 = KMeans(n_clusters=8, random_state=42)

plot_clusterer_comparison(kmeans_k3, kmeans_k8, X, "$k=3$", "$k=8$")

save_fig("bad_n_clusters_plot")

plt.show()

c1

ci xi D(xi)
2

m

∑
j=1

D(xj)
2

D(xi) xi

k

In [27]:

https://goo.gl/eNUPw6
https://www.aaai.org/Papers/ICML/2003/ICML03-022.pdf

Ouch, these two models don't look great. What about their inertias?

kmeans_k3.inertia_

653.2167190021552

kmeans_k8.inertia_

127.13141880461829

No, we cannot simply take the value of that minimizes the inertia, since it keeps getting lower as

we increase . Indeed, the more clusters there are, the closer each instance will be to its closest

centroid, and therefore the lower the inertia will be. However, we can plot the inertia as a function

of and analyze the resulting curve:

extra code – this cell generates and saves Figure 9–8

kmeans_per_k = [KMeans(n_clusters=k, random_state=42).fit(X)

 for k in range(1, 10)]

inertias = [model.inertia_ for model in kmeans_per_k]

plt.figure(figsize=(8, 3.5))

plt.plot(range(1, 10), inertias, "bo-")

plt.xlabel("k")

plt.ylabel("Inertia")

plt.annotate("", xy=(4, inertias[3]), xytext=(4.45, 650),

 arrowprops=dict(facecolor='black', shrink=0.1))

plt.text(4.5, 650, "Elbow", horizontalalignment="center")

plt.axis([1, 8.5, 0, 1300])

plt.grid()

save_fig("inertia_vs_k_plot")

plt.show()

In [28]:

Out[28]:

In [29]:

Out[29]:

k

k

k

In [30]:

As you can see, there is an elbow at , which means that less clusters than that would be bad,

and more clusters would not help much and might cut clusters in half. So is a pretty good

choice. Of course in this example it is not perfect since it means that the two blobs in the lower left

will be considered as just a single cluster, but it's a pretty good clustering nonetheless.

extra code

plot_decision_boundaries(kmeans_per_k[4 - 1], X)

plt.show()

Another approach is to look at the silhouette score, which is the mean silhouette coefficient over

all the instances. An instance's silhouette coefficient is equal to (b - a) / max(a, b) where a is the

mean distance to the other instances in the same cluster (it is the mean intra-cluster distance), and

b is the mean nearest-cluster distance, that is the mean distance to the instances of the next

closest cluster (defined as the one that minimizes b, excluding the instance's own cluster). The

silhouette coefficient can vary between -1 and +1: a coefficient close to +1 means that the instance

k = 4

k = 4

In [31]:

is well inside its own cluster and far from other clusters, while a coefficient close to 0 means that it

is close to a cluster boundary, and finally a coefficient close to -1 means that the instance may have

been assigned to the wrong cluster.

Let's plot the silhouette score as a function of :

from sklearn.metrics import silhouette_score

silhouette_score(X, kmeans.labels_)

0.655517642572828

extra code – this cell generates and saves Figure 9–9

silhouette_scores = [silhouette_score(X, model.labels_)

 for model in kmeans_per_k[1:]]

plt.figure(figsize=(8, 3))

plt.plot(range(2, 10), silhouette_scores, "bo-")

plt.xlabel("k")

plt.ylabel("Silhouette score")

plt.axis([1.8, 8.5, 0.55, 0.7])

plt.grid()

save_fig("silhouette_score_vs_k_plot")

plt.show()

As you can see, this visualization is much richer than the previous one: in particular, although it

confirms that is a very good choice, but it also underlines the fact that is quite good as

well.

An even more informative visualization is given when you plot every instance's silhouette

coefficient, sorted by the cluster they are assigned to and by the value of the coefficient. This is

called a silhouette diagram:

extra code – this cell generates and saves Figure 9–10

from sklearn.metrics import silhouette_samples

from matplotlib.ticker import FixedLocator, FixedFormatter

plt.figure(figsize=(11, 9))

for k in (3, 4, 5, 6):

 plt.subplot(2, 2, k - 2)

k

In [32]:

In [33]:

Out[33]:

In [34]:

k = 4 k = 5

In [35]:

 y_pred = kmeans_per_k[k - 1].labels_

 silhouette_coefficients = silhouette_samples(X, y_pred)

 padding = len(X) // 30

 pos = padding

 ticks = []

 for i in range(k):

 coeffs = silhouette_coefficients[y_pred == i]

 coeffs.sort()

 color = plt.cm.Spectral(i / k)

 plt.fill_betweenx(np.arange(pos, pos + len(coeffs)), 0, coeffs,

 facecolor=color, edgecolor=color, alpha=0.7)

 ticks.append(pos + len(coeffs) // 2)

 pos += len(coeffs) + padding

 plt.gca().yaxis.set_major_locator(FixedLocator(ticks))

 plt.gca().yaxis.set_major_formatter(FixedFormatter(range(k)))

 if k in (3, 5):

 plt.ylabel("Cluster")

 if k in (5, 6):

 plt.gca().set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1])

 plt.xlabel("Silhouette Coefficient")

 else:

 plt.tick_params(labelbottom=False)

 plt.axvline(x=silhouette_scores[k - 2], color="red", linestyle="--")

 plt.title(f"$k={k}$")

save_fig("silhouette_analysis_plot")

plt.show()

As you can see, looks like the best option here, as all clusters are roughly the same size, and

they all cross the dashed line, which represents the mean silhouette score.

Limits of K-Means

Let's generate a more difficult dataset, with elongated blobs and varying densities, and show that

K-Means struggles to cluster it correctly:

extra code – this cell generates and saves Figure 9–11

X1, y1 = make_blobs(n_samples=1000, centers=((4, -4), (0, 0)), random_state=42)

X1 = X1.dot(np.array([[0.374, 0.95], [0.732, 0.598]]))

X2, y2 = make_blobs(n_samples=250, centers=1, random_state=42)

X2 = X2 + [6, -8]

X = np.r_[X1, X2]

y = np.r_[y1, y2]

kmeans_good = KMeans(n_clusters=3,

 init=np.array([[-1.5, 2.5], [0.5, 0], [4, 0]]),

 n_init=1, random_state=42)

kmeans_bad = KMeans(n_clusters=3, random_state=42)

kmeans_good.fit(X)

kmeans_bad.fit(X)

plt.figure(figsize=(10, 3.2))

k = 5

In [36]:

plt.subplot(121)

plot_decision_boundaries(kmeans_good, X)

plt.title(f"Inertia = {kmeans_good.inertia_:.1f}")

plt.subplot(122)

plot_decision_boundaries(kmeans_bad, X, show_ylabels=False)

plt.title(f"Inertia = {kmeans_bad.inertia_:.1f}")

save_fig("bad_kmeans_plot")

plt.show()

