Lecture 11: 15 February, 2024

Madhavan Mukund https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning January–April 2024

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Recall

- Bias : Expressiveness of model limits classification
- Variance: Variation in model based on sample of training data

Recall

- Bias : Expressiveness of model limits classification
- Variance: Variation in model based on sample of training data

Overcoming limitations

- Bagging is an effective way to overcome high variance
 - Ensemble models
 - Sequence of models based on independent bootstrap samples
 - Use voting to get an overall classifier
- How can we cope with high bias?

Dealing with bias

- A biased model always makes mistakes
 - Build an ensemble of models to average out mistakes

▶ < ∃ >

Dealing with bias

- A biased model always makes mistakes
 - Build an ensemble of models to average out mistakes
- Mistakes should be compensated across models in the ensemble
 - How to build a sequence of models, each biased a different way?
 - Again, we assume we have only one set of training data

- Build a sequence of weak classifiers M_1, M_2, \ldots, M_n on inputs D_1, D_2, \ldots, D_n
 - A weak classifier is any classifier that has error rate strictly below 50%

→

- Build a sequence of weak classifiers M_1, M_2, \ldots, M_n on inputs D_1, D_2, \ldots, D_n
 - A weak classifier is any classifier that has error rate strictly below 50%
- Each D_i is a weighted variant of original training data D
 - Initially all weights equal, D_1
 - Going from D_i to D_{i+1} : increase weights where M_i makes mistakes on D_i
 - M_{i+1} will compensate for errors of M_i

N 4 E N

- Build a sequence of weak classifiers M_1, M_2, \ldots, M_n on inputs D_1, D_2, \ldots, D_n
 - A weak classifier is any classifier that has error rate strictly below 50%
- Each D_i is a weighted variant of original training data D
 - Initially all weights equal, D_1
 - Going from D_i to D_{i+1} : increase weights where M_i makes mistakes on D_i
 - M_{i+1} will compensate for errors of M_i
- Also, each model M_i gets a weight α_i based on its accuracy on D_i

- Build a sequence of weak classifiers M_1, M_2, \ldots, M_n on inputs D_1, D_2, \ldots, D_n
 - A weak classifier is any classifier that has error rate strictly below 50%
- Each D_i is a weighted variant of original training data D
 - Initially all weights equal, D_1
 - Going from D_i to D_{i+1} : increase weights where M_i makes mistakes on D_i
 - M_{i+1} will compensate for errors of M_i
- Also, each model M_i gets a weight α_i based on its accuracy on D_i
- Ensemble output
 - Individual classification outcomes are $\{-1, +1\}$
 - Unknown input x: ensemble outcome is weighted sum $\sum \alpha_i M_i(x)$
 - Check if weighted sum is negative/positive

 Initially, all data items have equal weight AdaBoost(D, Y, BaseLeaner, k) Initialize $D_1(w_i) \leftarrow 1/n$ for all *i*; 1. 2 for t = 1 to k do 3. $f_t \leftarrow \text{BaseLearner}(D_t)$; $e_t \leftarrow \sum D_t(w_i);$ 4. $i: f_i(D_i(\mathbf{x}_i)) \neq v_i$ 5. if $e_1 > \frac{1}{2}$ then 6. $k \leftarrow k-1$: 7. exit-loop 8 else $\beta_t \leftarrow e_t / (1 - e_t);$ $D_{t+1}(w_i) \leftarrow D_t(w_i) \times \begin{cases} \beta_t & \text{if } f_t(D_t(\mathbf{x}_i)) = y_i \\ 1 & \text{otherwise} \end{cases};$ 9. 10 $D_{t+1}(w_i) \leftarrow \frac{D_{t+1}(w_i)}{\sum_{i=1}^n D_{t+1}(w_i)}$ 11.

- Initially, all data items have equal weight
- Build a new model and compute its weighted error

AdaBoost(D, Y, BaseLeaner, k) Initialize $D_1(w_i) \leftarrow 1/n$ for all *i*; 1. 2 for t = 1 to k do $f_t \leftarrow \text{BaseLearner}(D_t); \\ e_t \leftarrow \sum_{i:f_t(D_t(\mathbf{x}_i)) \neq y_i} D_t(w_i); \end{cases}$ 3. 4. 5. if $e_1 > \frac{1}{2}$ then 6. $k \leftarrow k - 1$: 7. exit-loop 8 else $\beta_{t} \leftarrow e_{t} / (1 - e_{t});$ $D_{t+1}(w_{i}) \leftarrow D_{t}(w_{i}) \times \begin{cases} \beta_{t} & \text{if } f_{t}(D_{t}(\mathbf{x}_{i})) = y_{i} \\ 1 & \text{otherwise} \end{cases};$ 9. 10 $D_{t+1}(w_i) \leftarrow \frac{D_{t+1}(w_i)}{\sum_{i=1}^{n} D_{t+1}(w_i)}$ 11.

- Initially, all data items have equal weight
- Build a new model and compute its weighted error
- Discard if error rate is above 50%

AdaBoost(D, Y, BaseLeaner, k) Initialize $D_1(w_i) \leftarrow 1/n$ for all *i*; 1. 2 for t = 1 to k do 3. $f_t \leftarrow \text{BaseLearner}(D_t)$; $e_t \leftarrow \sum D_t(w_i);$ 4. $i: f_i(D_i(\mathbf{x}_i)) \neq v_i$ if $e_1 > \frac{1}{2}$ then 5. 6. $k \leftarrow k-1;$ 7. exit-loop 8 else $\beta_t \leftarrow e_t / (1 - e_t);$ $D_{t+1}(w_i) \leftarrow D_t(w_i) \times \begin{cases} \beta_t & \text{if } f_t(D_t(\mathbf{x}_i)) = y_i \\ 1 & \text{otherwise} \end{cases};$ 9. 10 $D_{t+1}(w_i) \leftarrow \frac{D_{t+1}(w_i)}{\sum_{i=1}^{n} D_{t+1}(w_i)}$ 11.

- Initially, all data items have equal weight
- Build a new model and compute its weighted error
- Discard if error rate is above 50%
- Damping factor reduce weight of correct inputs

AdaBoost(D, Y, BaseLeaner, k) Initialize $D_1(w_i) \leftarrow 1/n$ for all *i*; 1. 2 for t = 1 to k do 3. $f_t \leftarrow \text{BaseLearner}(D_t)$; $e_t \leftarrow \sum D_t(w_i);$ 4. $i: f_i(D_i(\mathbf{x}_i)) \neq v_i$ 5. if $e_1 > \frac{1}{2}$ then 6. $k \leftarrow k - 1$: 7. exit-loop 8. else $\begin{array}{c} \beta_t \leftarrow e_t / (1 - e_t); \\ D_{t+1}(w_i) \leftarrow D_t(w_i) \times \begin{cases} \beta_t & \text{if } f_t(D_t(\mathbf{x}_i)) = y_i \\ 1 & \text{otherwise} \end{cases} ;$ 9. 10 $D_{t+1}(w_i) \leftarrow \frac{D_{t+1}(w_i)}{\sum_{i=1}^{n} D_{t+1}(w_i)}$ 11.

- Initially, all data items have equal weight
- Build a new model and compute its weighted error
- Discard if error rate is above 50%
- Damping factor reduce weight of correct inputs
- Reweight data items and normalize

AdaBoost(D, Y, BaseLeaner, k) Initialize $D_1(w_i) \leftarrow 1/n$ for all *i*; 1. 2 for t = 1 to k do $f_t \leftarrow \text{BaseLearner}(D_t);$ 3. $e_t \leftarrow \sum D_t(w_i);$ 4 $i: f_i(D_i(\mathbf{x}_i)) \neq v_i$ 5. if $e_1 > \frac{1}{2}$ then 6. $k \leftarrow k - 1$: 7. exit-loop 8 else $\begin{array}{c} \beta_t \leftarrow e_t / (1 - e_t); \\ \hline D_{t+1}(w_i) \leftarrow D_t(w_i) \times \begin{cases} \beta_t & \text{if } f_t(D_t(\mathbf{x}_i)) = y_i \\ 1 & \text{otherwise} \end{cases} , \end{array}$ 9. 10 $D_{t+1}(w_i) \leftarrow \frac{D_{t+1}(w_i)}{\sum_{i=1}^{n} D_{t+1}(w_i)}$ 11.

- Initially, all data items have equal weight
- Build a new model and compute its weighted error
- Discard if error rate is above 50%
- Damping factor reduce weight of correct inputs
- Reweight data items and normalize
- Final classifier

$$f_{\mathsf{final}}(x) = rg\max_{y \in Y} \sum_{t: f_t(x)=y} \log \frac{1}{\beta_t}$$

AdaBoost(D, Y, BaseLeaner, k) 1. Initialize $D_1(w_i) \leftarrow 1/n$ for all *i*;

2. **for** t = 1 to k **do**

 $f_t \leftarrow \text{BaseLearner}(D_t);$

$$e_t \leftarrow \sum_{i:f_t(D_t(\mathbf{x}_i))\neq y_i} D_t(w_i);$$

if $e_t > \frac{1}{2}$ then $k \leftarrow k - 1$; exit-loop

else

$$\beta_t \leftarrow e_t / (1 - e_t);$$

$$D_{t+1}(w_i) \leftarrow D_t(w_i) \times \begin{cases} \beta_t & \text{if } f_t(D_t(\mathbf{x}_i)) = y_i \\ 1 & \text{otherwise} \end{cases};$$

$$D_{t+1}(w_i) \leftarrow \frac{D_{t+1}(w_i)}{\sum_{i=1}^n D_{t+1}(w_i)}$$

3.

4

5.

6.

7.

8.

9.

10

11.

• Each M_i could be a different type of model

< ∃ >

- Each M_i could be a different type of model
- Can we pick best *n* out of *N* weak classifiers?

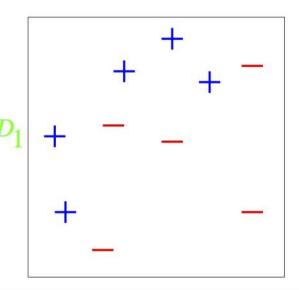
- Each M_i could be a different type of model
- Can we pick best *n* out of *N* weak classifiers?
- Initially all data items have equal weight, select M₁ as model with lowest error rate among N candidates

- Each M_i could be a different type of model
- Can we pick best *n* out of *N* weak classifiers?
- Initially all data items have equal weight, select M₁ as model with lowest error rate among N candidates
- Inductively, assume we have selected M_1, \ldots, M_j , with model weights $\alpha_1, \ldots, \alpha_j$, and dataset is updated with new weights as D_{j+1}

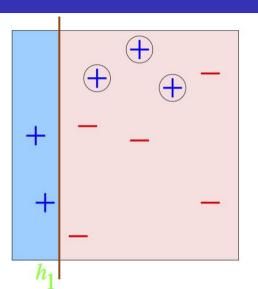
- Each M_i could be a different type of model
- Can we pick best *n* out of *N* weak classifiers?
- Initially all data items have equal weight, select M₁ as model with lowest error rate among N candidates
- Inductively, assume we have selected M_1, \ldots, M_j , with model weights $\alpha_1, \ldots, \alpha_j$, and dataset is updated with new weights as D_{j+1}
 - Pick model with lowest error rate on D_{j+1} as M_{j+1}
 - Calculate α_{j+1} based on error rate of M_{j+1}
 - Reweight all training data based on error rate of M_{j+1}

- Each M_i could be a different type of model
- Can we pick best *n* out of *N* weak classifiers?
- Initially all data items have equal weight, select M₁ as model with lowest error rate among N candidates
- Inductively, assume we have selected M_1, \ldots, M_j , with model weights $\alpha_1, \ldots, \alpha_j$, and dataset is updated with new weights as D_{j+1}
 - Pick model with lowest error rate on D_{j+1} as M_{j+1}
 - Calculate α_{j+1} based on error rate of M_{j+1}
 - Reweight all training data based on error rate of M_{j+1}
- Note that same model M may be picked in multiple iterations, assigned different weights α

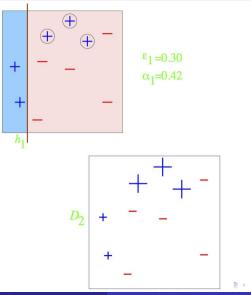
- Weak classifiers are horizontal and vertical lines
- Initial training data has equal weights



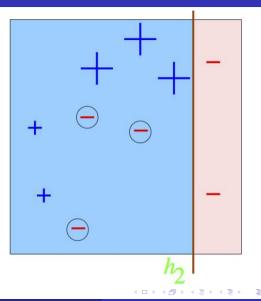
- Weak classifiers are horizontal and vertical lines
- Initial training data has equal weights
- First separator: vertical line



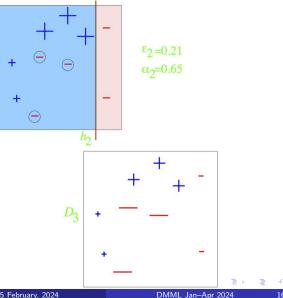
- Weak classifiers are horizontal and vertical lines
- Initial training data has equal weights
- First separator: vertical line
 - Increase weight of misclassified inputs



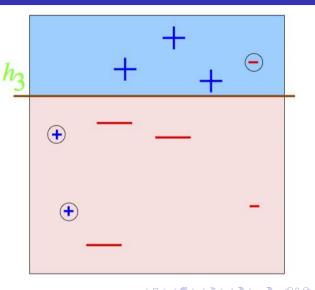
- Weak classifiers are horizontal and vertical lines
- Initial training data has equal weights
- First separator: vertical line
 - Increase weight of misclassified inputs
- Second separator: vertical line



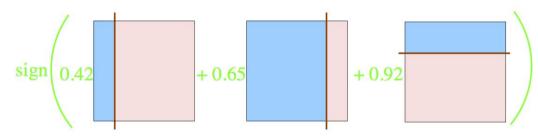
- Weak classifiers are horizontal and vertical lines
- Initial training data has equal weights
- First separator: vertical line
 - Increase weight of misclassified inputs
- Second separator: vertical line
 - Increase weight of misclassified inputs



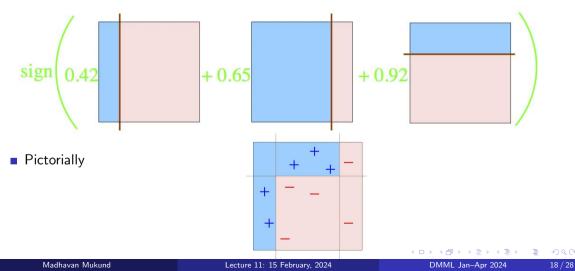
- Weak classifiers are horizontal and vertical lines
- Initial training data has equal weights
- First separator: vertical line
 - Increase weight of misclassified inputs
- Second separator: vertical line
 - Increase weight of misclassified inputs
- Third separator: horizontal line



Final classifier is weighted sum of three weak classifiers



Final classifier is weighted sum of three weak classifiers



Gradient Boosting

- AdaBoost uses weights to build new weak learners that compensate for earlier errors
- Gradient boosting follows a different approach
 - Shortcomings of the current model are defined in terms of gradients
 - Gradient boosting = Gradient descent
 - + boosting

- Training data (x1, y1), (x2, y2), ..., (xn, yn)
- Fit a model F(x) to minimize square loss

-

- Training data (x1, y1), (x2, y2), ..., (xn, yn)
- Fit a model F(x) to minimize square loss
- The model F we build is good, but not perfect

```
• y_1 = 0.9, F(x_1) = 0.8
• y_2 = 1.3, F(x_2) = 1.4
```

э

- Training data (x1, y1), (x2, y2), ..., (xn, yn)
- Fit a model F(x) to minimize square loss
- The model F we build is good, but not perfect
 - $y_1 = 0.9, F(x_1) = 0.8$ • $y_2 = 1.3, F(x_2) = 1.4$ • ...
- Add an additional model h, so that new prediction is F(x) + h(x)

э

- Training data (x₁, y₁), (x₂, y₂), ..., (x_n, y_n)
- Fit a model F(x) to minimize square loss
- The model F we build is good, but not perfect
 - $y_1 = 0.9, F(x_1) = 0.8$ • $y_2 = 1.3, F(x_2) = 1.4$ • ...
- Add an additional model h, so that new prediction is F(x) + h(x)

What should h look like?

э

- Training data (x₁, y₁), (x₂, y₂), ..., (x_n, y_n)
- Fit a model F(x) to minimize square loss
- The model F we build is good, but not perfect
 - $y_1 = 0.9, F(x_1) = 0.8$ • $y_2 = 1.3, F(x_2) = 1.4$
- Add an additional model h, so that new prediction is F(x) + h(x)

- What should h look like?
- For each x_i , want $F(x_i) + h(x_i) = y_i$

э

- Training data (x₁, y₁), (x₂, y₂), ..., (x_n, y_n)
- Fit a model F(x) to minimize square loss
- The model F we build is good, but not perfect
 - $y_1 = 0.9, F(x_1) = 0.8$ • $y_2 = 1.3, F(x_2) = 1.4$
- Add an additional model h, so that new prediction is F(x) + h(x)

- What should h look like?
- For each x_i , want $F(x_i) + h(x_i) = y_i$
- $\bullet h(x_i) = y_i F(x_i)$

Gradient Boosting for Regression

- Training data (x₁, y₁), (x₂, y₂), ..., (x_n, y_n)
- Fit a model F(x) to minimize square loss
- The model F we build is good, but not perfect
 - $y_1 = 0.9, F(x_1) = 0.8$ • $y_2 = 1.3, F(x_2) = 1.4$
- Add an additional model h, so that new prediction is F(x) + h(x)

- What should h look like?
- For each x_i , want $F(x_i) + h(x_i) = y_i$
- $\bullet h(x_i) = y_i F(x_i)$
- Fit a new model *h* (typically a regression tree) to the residuals y_i − F(x_i)

э

20 / 28

Gradient Boosting for Regression

- Training data (x₁, y₁), (x₂, y₂), ..., (x_n, y_n)
- Fit a model F(x) to minimize square loss
- The model F we build is good, but not perfect
 - $y_1 = 0.9, F(x_1) = 0.8$ • $y_2 = 1.3, F(x_2) = 1.4$
- Add an additional model h, so that new prediction is F(x) + h(x)

- What should h look like?
- For each x_i , want $F(x_i) + h(x_i) = y_i$
- $\bullet h(x_i) = y_i F(x_i)$
- Fit a new model *h* (typically a regression tree) to the residuals y_i − F(x_i)
- If F + h is not satisfactory, build another model h' to fit residuals y_i - [F(x_i) + h(x_i)]

Gradient Boosting for Regression

- Training data (x₁, y₁), (x₂, y₂), ..., (x_n, y_n)
- Fit a model F(x) to minimize square loss
- The model F we build is good, but not perfect
 - $y_1 = 0.9, F(x_1) = 0.8$ • $y_2 = 1.3, F(x_2) = 1.4$
- Add an additional model h, so that new prediction is F(x) + h(x)

- What should h look like?
- For each x_i , want $F(x_i) + h(x_i) = y_i$
- $\bullet h(x_i) = y_i F(x_i)$
- Fit a new model *h* (typically a regression tree) to the residuals y_i − F(x_i)
- If F + h is not satisfactory, build another model h' to fit residuals y_i - [F(x_i) + h(x_i)]
- Why should this work?

Gradient descent

 Move parameters against the gradient with respect to loss function

$$\theta_i \leftarrow \theta_i - \frac{\partial J}{\partial \theta_i}$$

-

Gradient descent

- Move parameters against the gradient with respect to loss function
 - $\theta_i \leftarrow \theta_i \frac{\partial J}{\partial \theta_i}$

• Individual loss: $L(y, F(x) = (y - F(x))^2/2$

Gradient descent

 Move parameters against the gradient with respect to loss function

$$\theta_i \leftarrow \theta_i - \frac{\partial J}{\partial \theta_i}$$

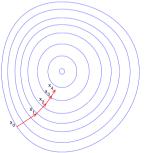
- Individual loss: $L(y, F(x) = (y - F(x))^2/2$
- Minimize overall loss: $J = \sum_{i} L(y_i, F(x_i))$

21 / 28

Gradient descent

 Move parameters against the gradient with respect to loss function

$$\theta_i \leftarrow \theta_i - \frac{\partial J}{\partial \theta_i}$$



- Individual loss: $L(y, F(x) = (y - F(x))^2/2$
- Minimize overall loss: $J = \sum_{i} L(y_i, F(x_i))$ $- \frac{\partial J}{\partial x_i} = F(x_i) - y$

$$\bullet \ \overline{\partial F(x_i)} = F(x_i)$$

Gradient descent

 Move parameters against the gradient with respect to loss function

$$\theta_i \leftarrow \theta_i - \frac{\partial J}{\partial \theta_i}$$

- Individual loss: $L(y, F(x) = (y - F(x))^2/2$
- Minimize overall loss: $J = \sum_{i} L(y_i, F(x_i))$ $\frac{\partial J}{\partial J} = \sum_{i} D(y_i) + D(y_i)$

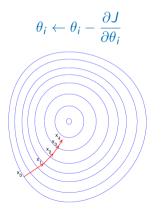
•
$$\frac{\partial J}{\partial F(x_i)} = F(x_i) - y$$

• Residual $y_i - F(x_i)$ is negative gradient

21/28

Gradient descent

 Move parameters against the gradient with respect to loss function



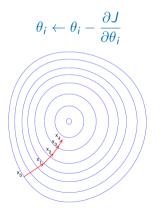
- Individual loss: $L(y, F(x) = (y - F(x))^2/2$
- Minimize overall loss: $J = \sum_{i} L(y_i, F(x_i))$

•
$$\frac{\partial J}{\partial F(x_i)} = F(x_i) - y$$

- Residual $y_i F(x_i)$ is negative gradient
- Fitting h to residual is same as fitting h to negative gradient

Gradient descent

 Move parameters against the gradient with respect to loss function



- Individual loss: $L(y, F(x) = (y - F(x))^2/2$
- Minimize overall loss: $J = \sum_{i} L(y_i, F(x_i))$

•
$$\frac{\partial J}{\partial F(x_i)} = F(x_i) - y$$

- Residual $y_i F(x_i)$ is negative gradient
- Fitting h to residual is same as fitting h to negative gradient
- Updating F using residual is same as updating F based on negative gradient

 Residuals are a special case — gradients for square loss

▶ < ∃ >

- Residuals are a special case gradients for square loss
- Can use other loss functions, and fit h to corresponding gradient

- Residuals are a special case gradients for square loss
- Can use other loss functions, and fit h to corresponding gradient
- Square loss gets skewed by outliers

- Residuals are a special case gradients for square loss
- Can use other loss functions, and fit h to corresponding gradient
- Square loss gets skewed by outliers
- More robust loss functions with outliers
 - Absolute loss |y f(x)|
 - Huber loss

$$L(y,F) = \begin{cases} \frac{1}{2}(y-F)^2, & |y-F| \le \delta\\ \delta(|y-F|-\delta/2), & |y-F| > \delta \end{cases}$$

э

22 / 28

- Residuals are a special case gradients for square loss
- Can use other loss functions, and fit h to corresponding gradient
- Square loss gets skewed by outliers
- More robust loss functions with outliers
 - Absolute loss |y f(x)|
 - Huber loss

$$L(y,F) = \begin{cases} \frac{1}{2}(y-F)^2, & |y-F| \le \delta \\ \delta(|y-F| - \delta/2), & |y-F| > \delta \end{cases}$$

 More generally, boosting with respect to gradient rather than just residuals

- Residuals are a special case gradients for square loss
- Can use other loss functions, and fit h to corresponding gradient
- Square loss gets skewed by outliers
- More robust loss functions with outliers
 - Absolute loss |y f(x)|
 - Huber loss

$$L(y,F) = \begin{cases} \frac{1}{2}(y-F)^2, & |y-F| \le \delta\\ \delta(|y-F|-\delta/2), & |y-F| > \delta \end{cases}$$

- More generally, boosting with respect to gradient rather than just residuals
- Given any differential loss function *L*,
 - Start with an initial model F
 - Calculate negative gradients

$$-g(x_i) = \frac{\partial L(y_i, F(x_i))}{\partial F(x_i)}$$

- Fit a regression tree *h* to negative gradients -g(x_i)
- Update F to $F + \rho h$
- ρ is the learning rate

Regression Trees

Predict age based on given attributes

Person ID	Age	Likes Garden ing	Plays Video Games	Likes Hats
1	13	FALSE	TRUE	TRUE
2	14	FALSE	TRUE	FALSE
З	15	FALSE	TRUE	FALSE
4	25	TRUE	TRUE	TRUE
5	35	FALSE	TRUE	TRUE
6	49	TRUE	FALSE	FALSE
7	68	TRUE	TRUE	TRUE
8	71	TRUE	FALSE	FALSE
9	73	TRUE	FALSE	TRUE

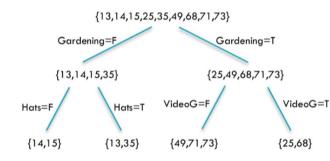
Lecture 11: 15 February, 2024

-

Regression Trees

- Predict age based on given attributes
- Build a regression tree using CART algorithm

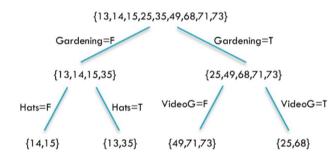
Person ID	Age	Likes Garden ing	Plays Video Games	Likes Hats
1	13	FALSE	TRUE	TRUE
2	14	FALSE	TRUE	FALSE
з	15	FALSE	TRUE	FALSE
4	25	TRUE	TRUE	TRUE
5	35	FALSE	TRUE	TRUE
6	49	TRUE	FALSE	FALSE
7	68	TRUE	TRUE	TRUE
8	71	TRUE	FALSE	FALSE
9	73	TRUE	FALSE	TRUE



LikesHats seems irrelevant, yet pops up

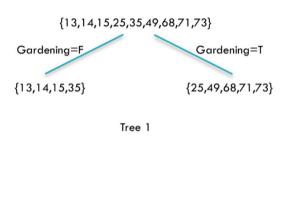
Person ID	Age	Likes Garden ing	Plays Video Games	Likes Hats
1	13	FALSE	TRUE	TRUE
2	14	FALSE	TRUE	FALSE
З	15	FALSE	TRUE	FALSE
4	25	TRUE	TRUE	TRUE
5	35	FALSE	TRUE	TRUE
6	49	TRUE	FALSE	FALSE
7	68	TRUE	TRUE	TRUE
8	71	TRUE	FALSE	FALSE
9	73	TRUE	FALSE	TRUE

< 3



- LikesHats seems irrelevant, yet pops up
- Can we do better?

Person ID	Age	Likes Garden ing	Plays Video Games	Likes Hats
1	13	FALSE	TRUE	TRUE
2	14	FALSE	TRUE	FALSE
3	15	FALSE	TRUE	FALSE
4	25	TRUE	TRUE	TRUE
5	35	FALSE	TRUE	TRUE
6	49	TRUE	FALSE	FALSE
7	68	TRUE	TRUE	TRUE
8	71	TRUE	FALSE	FALSE
9	73	TRUE	FALSE	TRUE



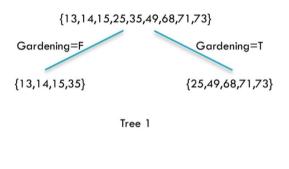
PersonID	Age	Tree1 Prediction	Tree1 Residual
1	13	19.25	-6.25
2	14	19.25	-5.25
3	15	19.25	-4.25
4	25	57.2	-32.2
5	35	19.25	15.75
6	49	57.2	-8.2
7	68	57.2	10.8
8	71	57.2	13.8
9	73	57.2	15.8

Madhavan Mukund

Lecture 11: 15 February, 2024

★ Ξ ► ★ Ξ ► DMML Jan-Apr 2024

25 / 28



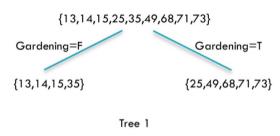
PersonID	Age	Tree1 Prediction	Tree1 Residual
1	13	19.25	-6.25
2	14	19.25	-5.25
З	15	19.25	-4.25
4	25	57.2	-32.2
5	35	19.25	15.75
6	49	57.2	-8.2
7	68	57.2	10.8
8	71	57.2	13.8
9	73	57.2	15.8

Madhavan Mukund

Lecture 11: 15 February, 2024

★ Ξ ► ★ Ξ ► DMML Jan-Apr 2024

25 / 28



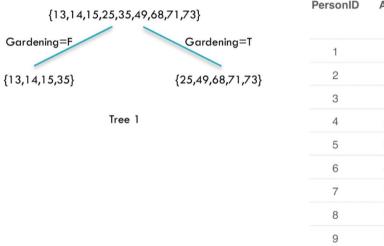
PersonID	Age	Tree1 Prediction	Tree1 Residual
1	13	19.25	-6.25
2	14	19.25	-5.25
3	15	19.25	-4.25
4	25	57.2	-32.2
5	35	19.25	15.75
6	49	57.2	-8.2
7	68	57.2	10.8
8	71	57.2	13.8
9	73	57.2	15.8

Madhavan Mukund

Lecture 11: 15 February, 2024

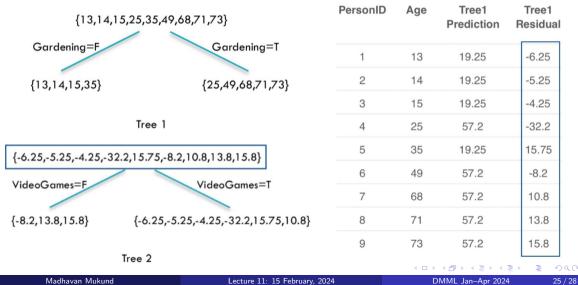
▶ < ☐ > < ⊇ > < ⊇ > DMML Jan-Apr 2024

25 / 28



PersonID	Age	Tree1 Prediction	Tree1 Residual
1	13	19.25	-6.25
2	14	19.25	-5.25
3	15	19.25	-4.25
4	25	57.2	-32.2
5	35	19.25	15.75
6	49	57.2	-8.2
7	68	57.2	10.8
8	71	57.2	13.8
9	73	57.2	15.8

3



		Per son ID	A g e	Tree1 Predi ction	Tree1 Resi dual	Tree2 Predi ction	Co mbi ned	Final Resi dual
Gardening=F	Gardening=T	1	13	19.25	-6.25	-3.567	15.68	- 2.683
{13,14,15,35}	{25,49,68,71,73}	2	14	19.25	-5.25	-3.567	15.68	- 1.683
{13,14,13,33} {23,4	(20,47,00), 1,70]	З	15	19.25	-4.25	-3.567	15.68	-0.6833
	Tree 1	4	25	57.2	-32.2	-3.567	53.63	- 28.63
		5	35	19.25	15.75	-3.567	15.68	+ 19.32
{-6.25,-5.25,-4.25,-32	.2,15.75,-8.2,10.8,13.8,15.8}	6	49	57.2	-8.2	7.133	64.33	- 15.33
VideoGames=F	VideoGames=T	7	68	57.2	10.8	-3.567	53.63	+ 14.37
(0.0.12.0.15.0)		8	71	57.2	13.8	7.133	64.33	+ 6.667
{-8.2,13.8,15.8}	{-6.25,-5.25,-4.25,-32.2,15.75,10.8}	9	73	57.2	15.8	7.133	64.33	+ 8.667

Tree 2

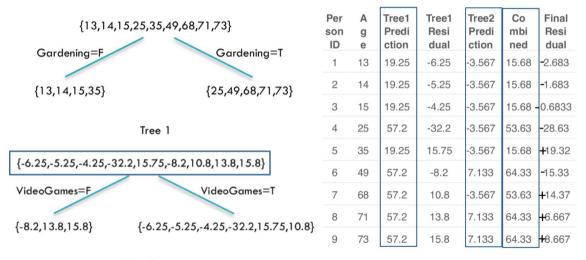
100 2		《日》《圖》《圖》《圖》	≣
Madhavan Mukund	Lecture 11: 15 February, 2024	DMML Jan–Apr 2024	26 / 28

{13,14,15,25,35,49,68,71,73}		Per son ID	A g e	Tree1 Predi ction	Tree1 Resi dual	Tree2 Predi ction	Co mbi ned	Final Resi dual
Gardening=F	Gardening=T	1	13	19.25	-6.25	-3.567	15.68	- 2.683
{13,14,15,35}	{25,49,68,71,73}	2	14	19.25	-5.25	-3.567	15.68	-1.683
	3	15	19.25	-4.25	-3.567	15.68	-0.6833	
	Tree 1	4	25	57.2	-32.2	-3.567	53.63	- 28.63
		5	35	19.25	15.75	-3.567	15.68	+ 19.32
{-6.25,-5.25,-4.25,-32	.2,15.75,-8.2,10.8,13.8,15.8}	6	49	57.2	-8.2	7.133	64.33	- 15.33
VideoGames=F	VideoGames=T	7	68	57.2	10.8	-3.567	53.63	+ 14.37
(8 2 1 2 8 1 5 8)		8	71	57.2	13.8	7.133	64.33	+ 6.667
{-8.2,13.8,15.8}	{-6.25,-5.25,-4.25,-32.2,15.75,10.8}	9	73	57.2	15.8	7.133	64.33	+ 8.667

Tree 2

Madhavan N	lukund
------------	--------

э.



Tree 2

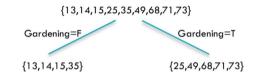
{13,14,15,25,35,49,68,71,73}		Per son ID	A g e	Tree1 Predi ction	Tree1 Resi dual	Tree2 Predi ction	Co mbi ned	Final Resi dual
Gardening=F	Gardening=T	1	13	19.25	-6.25	-3.567	15.68	-2.683
{13,14,15,35}	{25,49,68,71,73}	2	14	19.25	-5.25	-3.567	15.68	-1.683
		3	15	19.25	-4.25	-3.567	15.68 -	0.6833
Tree 1		4	25	57.2	-32.2	-3.567	53.63	-28.63
			35	19.25	15.75	-3.567	15.68	+ 19.32
{-6.25,-5.25,-4.25,-32.2,15.75,-8.2,10.8,13.8,15.8}		6	49	57.2	-8.2	7.133	64.33	- 15.33
VideoGames=F	VideoGames=T	7	68	57.2	10.8	-3.567	53.63	+ 14.37
{-8.2,13.8,15.8} {-0		8	71	57.2	13.8	7.133	64.33	+ 6.667
	{-6.25,-5.25,-4.25,-32.2,15.75,10.8}	9	73	57.2	15.8	7.133	64.33	+ 8.667

Tree 2

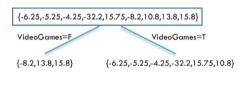
Madhavan Mukund

3

General Strategy



Tree 1



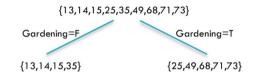
Tree 2

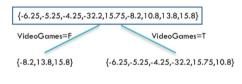
< □ > < 円

DMML Jan–Apr 2024

General Strategy

Build tree 1, F_1





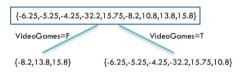
Tree 2

< □ > < 円

General Strategy

- Build tree 1, F_1
- Fit a model to residuals, $h_1(x) = y F_1(x)$

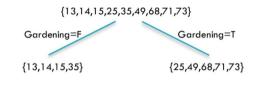
Tree 1



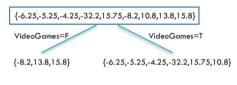
Tree 2

General Strategy

- Build tree 1, F_1
- Fit a model to residuals, $h_1(x) = y F_1(x)$
- Create a new model $F_2(x) = F_1(x) + h_1(x)$



Tree 1

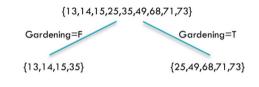


Tree 2

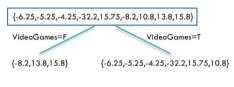
() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

General Strategy

- Build tree 1, F_1
- Fit a model to residuals, $h_1(x) = y F_1(x)$
- Create a new model $F_2(x) = F_1(x) + h_1(x)$
- Fit a model to residuals, $h_2(x) = y F_2(x)$



Tree 1



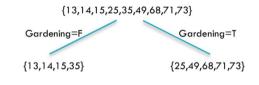
Tree 2

N 4 E

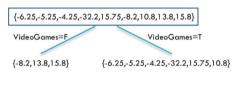
General Strategy

. . . .

- Build tree 1, F_1
- Fit a model to residuals, $h_1(x) = y F_1(x)$
- Create a new model $F_2(x) = F_1(x) + h_1(x)$
- Fit a model to residuals, $h_2(x) = y F_2(x)$
- Create a new model $F_3(x) = F_2(x) + h_2(x)$



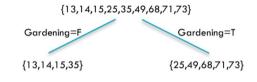
Tree 1



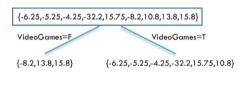
Tree 2

Madhavan Mukund

Learning Rate



Tree 1



Tree 2

Lecture	11

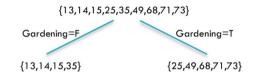
15 February, 2024

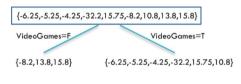
イロト イポト イヨト イヨト

Hyper Parameters

Learning Rate

• h_j fits residuals of F_j





Tree 2

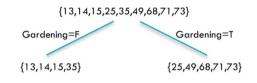
< □ > < 円

• • = • • = •

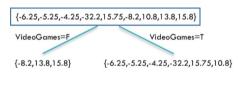
Hyper Parameters

Learning Rate

- h_i fits residuals of F_i
- $F_{i+1}(x) = F_J(x) + LR \cdot h_i(x)$
 - LR controls contribution of residual
 - LR = 1 in our previous example



Tree 1



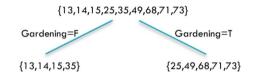
Tree 2

▶ ∢ ⊒

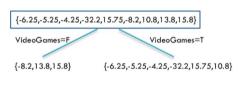
Hyper Parameters

Learning Rate

- h_j fits residuals of F_j
- $F_{j+1}(x) = F_J(x) + LR \cdot h_j(x)$
 - LR controls contribution of residual
 - LR = 1 in our previous example
- Ideally, choose *LR* separately for each residual to minimize loss function
 - Can apply different *LR* to different leaves



Tree 1



Tree 2