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Regression for classification

m Regression line

m Set a threshold

m Classifier
m Output below threshold : 0 (No) e
m Output above threshold : 1 (Yes)

m Classifier output is a step function
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Smoothen the step

m Sigmoid function

o(z)= |

- 1+e 2

[y

® Input z is output of our

regression 0.5
B 1
o(z) = 1 + e—(Oo+01x1++0kxi)
m Adjust parameters to fix ] o
horizontal position and steepness =6 - =2 g z & a
of step
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Logistic regression

m Compute the coefficients?

[y

m Solve by gradient descent /

m Need derivatives to exist

m Hence smooth sigmoid, not

05
step function
m 0'(2) = 0(2)(1 — 0(2))
m Need a cost function to minimize
-6 -4 -2 0 2 4 6
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Loss function for logistic regression

m Goal is to maximize log likelihood

Let ho(x;) = o(z). So, P(yi =1 x;0) = ho(x;),
P(yi =0|x;0) =1 — hp(x;)

Combine as P(y; | xi;0) = ho(x;)" - (1 — hy(x;))*

m Likelihood: £(0 th X))+ (L= hg(xi))' ™

Log-likelihood: £(0) = " yilog hy(x;) + (1 — yi) log(1 — hy(x;))

m Minimize cross entropy: — Zy,- log hg(xi) + (1 — y;i) log(1 — hg(x;))
i=1
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MSE for logistic regression and gradient descent

m Suppose we take mean sum-squared error as the loss function.
m Consider two inputs x = (x1, x2)

1
C= ; ;(y; — O'(Z,'))2, where z; = 0y + 91X,-1 + 92x,-2
m For gradient descent, we compute E % %
& ! PUte 56" 96, 6,
m Forj =12,
9c _ 2 - L ) _0‘7(2/) 2 - N 0o(z;) 0z
67% - n ;(y/ U(ZI)) 09] n ; (U(Zl) }/,) 02,- 891

=- Z o'(z)x;

5 = = Y oa) - m&;(j) =23 (ola) - 1) (2)

=
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MSE for logistic regression and gradient descent . ..

. OC 2N, s 0C 2, v
m Forj =12, 7891- = ,-E_ (0(zi) — yi)o'(zi)x;, and 99~ n E: (o(zi) — yi)o'(zi)
C o0C oC
m Each term in 301 202 290 is proportional to ¢’(z;)

m Ideally, gradient descent should take large steps when o(z) — y is large

m o(z) is flat at both extremes 1 —

/

m If o(z) is completely wrong,
o(z) =~ (1 —y), we still have
o'(z) =0

m Learning is slow even when current
model is far from optimal

o)
o
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Cross entropy and gradient descent

m C=—[yln(c(2)) + (1 —y)In(1 - o(2))]

L0C_9Cor [y 1yl

00; 0o 08;  |o(z) 1-—o(2)] 90;
vy 1oy 000z
o(z) 1—o0(z)] 0z 0;

= — _ y — l_y O'/ZX'
= @ 1_0(2)} (20
Y1 - o(2) — (1 - y)o(2)

=T e e@) }"(Z)Xf
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Cross entropy and gradient descent . ..

m Therefore, g;j = -yl -0o(2)) = (1= y)o(2)]lx

= —ly —yo(z) —o(z) + yo(z)]x

m Similarly, SQC; =(o(z) —y)

m Thus, as we wanted, the gradient is proportional to o(z) — y

m The greater the error, the faster the learning rate
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