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Regression for classification

Regression line

Set a threshold

Classifier

Output below threshold : 0 (No)

Output above threshold : 1 (Yes)

Classifier output is a step function
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Smoothen the step

Sigmoid function

σ(z) =
1

1 + e−z

Input z is output of our
regression

σ(z) =
1

1 + e−(θ0+θ1x1+···+θkxk )

Adjust parameters to fix
horizontal position and steepness
of step
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Logistic regression

Compute the coefficients?

Solve by gradient descent

Need derivatives to exist

Hence smooth sigmoid, not
step function

σ′(z) = σ(z)(1− σ(z))

Need a cost function to minimize
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Loss function for logistic regression

Goal is to maximize log likelihood

Let hθ(xi ) = σ(zi ). So, P(yi = 1 | xi ; θ) = hθ(xi ),
P(yi = 0 | xi ; θ) = 1− hθ(xi )

Combine as P(yi | xi ; θ) = hθ(xi )
yi · (1− hθ(xi ))

1−yi

Likelihood: L(θ) =
n∏

i=1

hθ(xi )
yi · (1− hθ(xi ))

1−yi

Log-likelihood: ℓ(θ) =
n∑

i=1

yi log hθ(xi ) + (1− yi ) log(1− hθ(xi ))

Minimize cross entropy: −
n∑

i=1

yi log hθ(xi ) + (1− yi ) log(1− hθ(xi ))
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MSE for logistic regression and gradient descent

Suppose we take mean sum-squared error as the loss function.

Consider two inputs x = (x1, x2)

C =
1

n

n∑
i=1

(yi − σ(zi ))
2, where zi = θ0 + θ1xi1 + θ2xi2

For gradient descent, we compute
∂C

∂θ1
,
∂C

∂θ2
,
∂C

∂θ0
For j = 1, 2,

∂C

∂θj
=

2

n

n∑
i=1

(yi − σ(zi )) · −
∂σ(zi )

∂θj
=

2

n

n∑
i=1

(σ(zi )− yi )
∂σ(zi )

∂zi

∂zi
∂θj

=
2

n

n∑
i=1

(σ(zi )− yi )σ
′(zi )xij

∂C

∂θ0
=

2

n

n∑
i=1

(σ(zi )− yi )
∂σ(zi )

∂zi

∂zi
∂θ0

=
2

n

n∑
i=1

(σ(zi )− yi )σ
′(zi )
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MSE for logistic regression and gradient descent . . .

For j = 1, 2,
∂C

∂θj
=

2

n

n∑
i=1

(σ(zi )− yi )σ
′(zi )x

i
j , and

∂C

∂θ0
=

2

n

n∑
i=1

(σ(zi )− yi )σ
′(zi )

Each term in
∂C

∂θ1
,
∂C

∂θ2
,
∂C

∂θ0
is proportional to σ′(zi )

Ideally, gradient descent should take large steps when σ(z)− y is large

σ(z) is flat at both extremes

If σ(z) is completely wrong,
σ(z) ≈ (1− y), we still have
σ′(z) ≈ 0

Learning is slow even when current
model is far from optimal
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Cross entropy and gradient descent

C = −[y ln(σ(z)) + (1− y) ln(1− σ(z))]

∂C

∂θj
=

∂C

∂σ

∂σ

∂θj
= −

[
y

σ(z)
− 1− y

1− σ(z)

]
∂σ

∂θj

= −
[

y

σ(z)
− 1− y

1− σ(z)

]
∂σ

∂z

∂z

∂θj

= −
[

y

σ(z)
− 1− y

1− σ(z)

]
σ′(z)xj

= −
[
y(1− σ(z))− (1− y)σ(z)

σ(z)(1− σ(z))

]
σ′(z)xj
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Cross entropy and gradient descent . . .

∂C

∂θj
= −

[
y(1− σ(z))− (1− y)σ(z)

σ(z)(1− σ(z))

]
σ′(z)xj

Recall that σ′(z) = σ(z)(1− σ(z))

Therefore,
∂C

∂θj
= −[y(1− σ(z))− (1− y)σ(z)]xj

= −[y − yσ(z)− σ(z) + yσ(z)]xj

= (σ(z)− y)xj

Similarly,
∂C

∂θ0
= (σ(z)− y)

Thus, as we wanted, the gradient is proportional to σ(z)− y

The greater the error, the faster the learning rate
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