Lecture 8: 1 February, 2024

Madhavan Mukund
https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning January-April 2024

Regression for classification

- Regression line
- Set a threshold
- Classifier

■ Output below threshold : 0 (No)

- Output above threshold : 1 (Yes)
- Classifier output is a step function

Smoothen the step

- Sigmoid function

$$
\sigma(z)=\frac{1}{1+e^{-z}}
$$

- Input z is output of our regression

$$
\sigma(z)=\frac{1}{1+e^{-\left(\theta_{0}+\theta_{1} x_{1}+\cdots+\theta_{k} x_{k}\right)}}
$$

- Adjust parameters to fix horizontal position and steepness
 of step

Logistic regression

■ Compute the coefficients?

- Solve by gradient descent
- Need derivatives to exist
- Hence smooth sigmoid, not step function
- $\sigma^{\prime}(z)=\sigma(z)(1-\sigma(z))$
- Need a cost function to minimize

Loss function for logistic regression

- Goal is to maximize log likelihood

■ Let $h_{\theta}\left(x_{i}\right)=\sigma\left(z_{i}\right)$. So, $\quad P\left(y_{i}=1 \mid x_{i} ; \theta\right)=h_{\theta}\left(x_{i}\right)$,

$$
P\left(y_{i}=0 \mid x_{i} ; \theta\right)=1-h_{\theta}\left(x_{i}\right)
$$

■ Combine as $P\left(y_{i} \mid x_{i} ; \theta\right)=h_{\theta}\left(x_{i}\right)^{y_{i}} \cdot\left(1-h_{\theta}\left(x_{i}\right)\right)^{1-y_{i}}$

- Likelihood: $\mathcal{L}(\theta)=\prod_{i=1}^{n} h_{\theta}\left(x_{i}\right)^{y_{i}} \cdot\left(1-h_{\theta}\left(x_{i}\right)\right)^{1-y_{i}}$
- Log-likelihood: $\ell(\theta)=\sum_{i=1}^{n} y_{i} \log h_{\theta}\left(x_{i}\right)+\left(1-y_{i}\right) \log \left(1-h_{\theta}\left(x_{i}\right)\right)$
- Minimize cross entropy: $-\sum_{i=1}^{n} y_{i} \log h_{\theta}\left(x_{i}\right)+\left(1-y_{i}\right) \log \left(1-h_{\theta}\left(x_{i}\right)\right)$

MSE for logistic regression and gradient descent

- Suppose we take mean sum-squared error as the loss function.
- Consider two inputs $x=\left(x_{1}, x_{2}\right)$

$$
C=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\sigma\left(z_{i}\right)\right)^{2}, \text { where } z_{i}=\theta_{0}+\theta_{1} x_{i_{1}}+\theta_{2} x_{i_{2}}
$$

- For gradient descent, we compute $\frac{\partial C}{\partial \theta_{1}}, \frac{\partial C}{\partial \theta_{2}}, \frac{\partial C}{\partial \theta_{0}}$
- For $j=1,2$,

$$
\begin{aligned}
\frac{\partial C}{\partial \theta_{j}} & =\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\sigma\left(z_{i}\right)\right) \cdot-\frac{\partial \sigma\left(z_{i}\right)}{\partial \theta_{j}}=\frac{2}{n} \sum_{i=1}^{n}\left(\sigma\left(z_{i}\right)-y_{i}\right) \frac{\partial \sigma\left(z_{i}\right)}{\partial z_{i}} \frac{\partial z_{i}}{\partial \theta_{j}} \\
& =\frac{2}{n} \sum_{i=1}^{n}\left(\sigma\left(z_{i}\right)-y_{i}\right) \sigma^{\prime}\left(z_{i}\right) x_{i_{j}} \\
\text { ■ } \frac{\partial C}{\partial \theta_{0}} & =\frac{2}{n} \sum_{i=1}^{n}\left(\sigma\left(z_{i}\right)-y_{i}\right) \frac{\partial \sigma\left(z_{i}\right)}{\partial z_{i}} \frac{\partial z_{i}}{\partial \theta_{0}}=\frac{2}{n} \sum_{i=1}^{n}\left(\sigma\left(z_{i}\right)-y_{i}\right) \sigma^{\prime}\left(z_{i}\right)
\end{aligned}
$$

MSE for logistic regression and gradient descent ...

- For $j=1,2, \frac{\partial C}{\partial \theta_{j}}=\frac{2}{n} \sum_{i=1}^{n}\left(\sigma\left(z_{i}\right)-y_{i}\right) \sigma^{\prime}\left(z_{i}\right) x_{j}^{i}$, and $\frac{\partial C}{\partial \theta_{0}}=\frac{2}{n} \sum_{i=1}^{n}\left(\sigma\left(z_{i}\right)-y_{i}\right) \sigma^{\prime}\left(z_{i}\right)$
- Each term in $\frac{\partial C}{\partial \theta_{1}}, \frac{\partial C}{\partial \theta_{2}}, \frac{\partial C}{\partial \theta_{0}}$ is proportional to $\sigma^{\prime}\left(z_{i}\right)$
- Ideally, gradient descent should take large steps when $\sigma(z)$ - y is large
- $\sigma(z)$ is flat at both extremes
- If $\sigma(z)$ is completely wrong, $\sigma(z) \approx(1-y)$, we still have $\sigma^{\prime}(z) \approx 0$
- Learning is slow even when current model is far from optimal

Cross entropy and gradient descent

- $C=-[y \ln (\sigma(z))+(1-y) \ln (1-\sigma(z))]$

$$
\begin{aligned}
\frac{\partial C}{\partial \theta_{j}}=\frac{\partial C}{\partial \sigma} \frac{\partial \sigma}{\partial \theta_{j}} & =-\left[\frac{y}{\sigma(z)}-\frac{1-y}{1-\sigma(z)}\right] \frac{\partial \sigma}{\partial \theta_{j}} \\
& =-\left[\frac{y}{\sigma(z)}-\frac{1-y}{1-\sigma(z)}\right] \frac{\partial \sigma}{\partial z} \frac{\partial z}{\partial \theta_{j}} \\
& =-\left[\frac{y}{\sigma(z)}-\frac{1-y}{1-\sigma(z)}\right] \sigma^{\prime}(z) x_{j} \\
& =-\left[\frac{y(1-\sigma(z))-(1-y) \sigma(z)}{\sigma(z)(1-\sigma(z))}\right] \sigma^{\prime}(z) x_{j}
\end{aligned}
$$

Cross entropy and gradient descent . . .

- $\frac{\partial C}{\partial \theta_{j}}=-\left[\frac{y(1-\sigma(z))-(1-y) \sigma(z)}{\sigma(z)(1-\sigma(z))}\right] \sigma^{\prime}(z) x_{j}$
- Recall that $\sigma^{\prime}(z)=\sigma(z)(1-\sigma(z))$
- Therefore, $\frac{\partial C}{\partial \theta_{j}}=-[y(1-\sigma(z))-(1-y) \sigma(z)] x_{j}$

$$
\begin{aligned}
& =-[y-y \sigma(z)-\sigma(z)+y \sigma(z)] x_{j} \\
& =(\sigma(z)-y) x_{j}
\end{aligned}
$$

- Similarly, $\frac{\partial C}{\partial \theta_{0}}=(\sigma(z)-y)$
- Thus, as we wanted, the gradient is proportional to $\sigma(z)-y$
- The greater the error, the faster the learning rate

