
Lecture 6: 25 January, 2024

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning
January–April 2024

https://www.cmi.ac.in/~madhavan

Finding the best fit line

Training input is
{(x1, y1), (x2, y2), . . . , (xn, yn)}

Each input xi is a vector (x1i , . . . , x
k
i)

Add x0i = 1 by convention

yi is actual output

How far away is our prediction hθ(xi) from
the true answer yi?

Define a cost (loss) function

J(θ) =
1

2

n∑
i=1

(hθ(xi)− yi)
2

Essentially, the sum squared error (SSE)

Divide by n, mean squared error (MSE)
Madhavan Mukund Lecture 6: 25 January, 2024 DMML Jan–Apr 2024 2 / 23

Minimizing SSE

Write xi as row vector
[
1 x1i · · · xki

]

X =

1 x11 · · · xk1
1 x12 · · · xk2

· · ·
1 x1i · · · xki

· · ·
1 x1n · · · xkn

, y =

y1
y2
· · ·
yi
· · ·
yn

Write θ as column vector, θT =

[
θ0 θ1 · · · θk

]
J(θ) =

1

2

n∑
i=1

(hθ(xi)− yi)
2 =

1

2
(Xθ − y)T (Xθ − y)

Minimize J(θ) — set ∇θ J(θ) = 0

Madhavan Mukund Lecture 6: 25 January, 2024 DMML Jan–Apr 2024 3 / 23

Minimizing SSE iteratively

Normal equation θ = (XTX)−1XT y is a closed form solution

Computational challenges

Matrix inversion (XTX)−1 is expensive, also need invertibility

Iterative approach, make an initial
guess

Adjust each parameter against
gradient

θi = θi − α
∂

∂θi
J(θ)

Stop when we converge

Gradient descent

Madhavan Mukund Lecture 6: 25 January, 2024 DMML Jan–Apr 2024 4 / 23

Minimizing SSE iteratively

Normal equation θ = (XTX)−1XT y is a closed form solution

Computational challenges

Matrix inversion (XTX)−1 is expensive, also need invertibility

Iterative approach, make an initial
guess

Adjust each parameter against
gradient

θi = θi − α
∂

∂θi
J(θ)

Stop when we converge

Gradient descent

Madhavan Mukund Lecture 6: 25 January, 2024 DMML Jan–Apr 2024 5 / 23

Minimizing SSE iteratively

Normal equation θ = (XTX)−1XT y is a closed form solution

Computational challenges

Matrix inversion (XTX)−1 is expensive, also need invertibility

Iterative approach, make an initial
guess

Adjust each parameter against
gradient

θi = θi − α
∂

∂θi
J(θ)

Stop when we converge

Gradient descent

Madhavan Mukund Lecture 6: 25 January, 2024 DMML Jan–Apr 2024 6 / 23

Minimizing SSE iteratively

Normal equation θ = (XTX)−1XT y is a closed form solution

Computational challenges

Matrix inversion (XTX)−1 is expensive, also need invertibility

Iterative approach, make an initial
guess

Adjust each parameter against
gradient

θi = θi − α
∂

∂θi
J(θ)

Stop when we converge

Gradient descent

Madhavan Mukund Lecture 6: 25 January, 2024 DMML Jan–Apr 2024 7 / 23

Regression and SSE loss

Training input is {(x1, y1), (x2, y2), . . . , (xn, yn)}
Outputs are noisy samples from a linear function

yi = θT xi + ϵ

ϵ ∼ N (0, σ2) : Gaussian noise, mean 0, fixed variance σ2

yi ∼ N (µi , σ
2), µi = θT xi

Model gives us an estimate for θ, so regression learns µi for each xi

How good is our estimate?

Likelihood — probability of current observation given θ

L(θ) =
n∏

i=1

P(yi | xi ; θ)

Madhavan Mukund Lecture 6: 25 January, 2024 DMML Jan–Apr 2024 8 / 23

Likelihood

How good is our estimate?

Want Maximum Likelihood Estimator (MLE)

Find θ that maximizes L(θ) =
n∏

i=1

P(yi | xi ; θ)

Equivalently, maximize log likelihood

ℓ(θ) = log

(
n∏

i=1

P(yi | xi ; θ)

)
=

n∑
i=1

log(P(yi | xi ; θ))

Easier to work with summation than product

Madhavan Mukund Lecture 6: 25 January, 2024 DMML Jan–Apr 2024 9 / 23

Log likelihood and SSE loss

yi = N (µi , σ
2), so P(yi | xi ; θ) =

1√
2πσ2

e−
(yi−µi)

2

2σ2 =
1√
2πσ2

e−
(yi−θT xi)

2

2σ2

Log likelihood (assuming natural logarithm)

ℓ(θ) =
n∑

i=1

log

(
1√
2πσ2

e−
(yi−θT xi)

2

2σ2

)
= n log

(
1√
2πσ2

)
−

n∑
i=1

(yi − θT xi)
2

2σ2

To maximize ℓ(θ) with respect to θ, ignore all terms that do not depend on θ

Optimum value of θ is given by

θ̂MSE = argmax
θ

[
−

n∑
i=1

(yi − θT xi)
2

]
= argmin

θ

[
n∑

i=1

(yi − θT xi)
2

]
Assuming data points are generated by linear function and then perturbed by
Gaussian noise, SSE is the “correct” loss function to maximize likelihood

Madhavan Mukund Lecture 6: 25 January, 2024 DMML Jan–Apr 2024 10 / 23

The non-linear case

What if the relationship is
not linear?

Here the best possible
explanation seems to be a
quadratic

Non-linear : cross
dependencies

Input xi : (xi1 , xi2)

Quadratic dependencies:

y = θ0 + θ1xi1 + θ2xi2 + θ11x
2
i1
+ θ22x

2
i2
+ θ12xi1xi2

Madhavan Mukund Lecture 6: 25 January, 2024 DMML Jan–Apr 2024 11 / 23

The non-linear case

What if the relationship is
not linear?

Here the best possible
explanation seems to be a
quadratic

Non-linear : cross
dependencies

Input xi : (xi1 , xi2)

Quadratic dependencies:

y = θ0 + θ1xi1 + θ2xi2 + θ11x
2
i1
+ θ22x

2
i2
+ θ12xi1xi2

Madhavan Mukund Lecture 6: 25 January, 2024 DMML Jan–Apr 2024 12 / 23

The non-linear case

Recall how we fit a line[
1 xi

] [θ0
θ1

]

For quadratic, add new
coefficients and expand
parameters[

1 xi x2i
] θ0

θ1
θ2

Madhavan Mukund Lecture 6: 25 January, 2024 DMML Jan–Apr 2024 13 / 23

The non-linear case

Input (xi1 , xi2)

For the general quadratic
case, we add new derived
“features”

xi3 = x2i1

xi4 = x2i2

xi5 = xi1xi2

Madhavan Mukund Lecture 6: 25 January, 2024 DMML Jan–Apr 2024 14 / 23

The non-linear case

Original input matrix

1 x11 x12
1 x21 x22

· · ·
1 xi1 xi2

· · ·
1 xn1 x2

Madhavan Mukund Lecture 6: 25 January, 2024 DMML Jan–Apr 2024 15 / 23

The non-linear case

Expanded input matrix

1 x11 x12 x211 x212 x11x12

1 x21 x22 x221 x222 x21x22
· · ·

1 xi1 xi2 x2i1 x2i2 xi1xi2
· · ·

1 xn1 xn2 x2n1 x2n2 xn1xn2

New columns are computed
and filled in from original
inputs

Madhavan Mukund Lecture 6: 25 January, 2024 DMML Jan–Apr 2024 16 / 23

Exponential parameter blow-up

Cubic derived features

x3i1 , x
3
i2
, x3i3 ,

x2i1xi2 , x
2
i1
xi3 ,

x2i2xi1 , x
2
i2
xi3 ,

x2i3xi1 , x
2
i3
xi2 ,

xi1xi2xi3 ,

x2i1 , x
2
i2
, x2i3 ,

xi1xi2 , xi1xi3 , xi2xi3 ,

xi1 , xi2 , xi3 .

Madhavan Mukund Lecture 6: 25 January, 2024 DMML Jan–Apr 2024 17 / 23

Higher degree polynomials

How complex a polynomial
should we try?

Aim for degree that
minimizes SSE

As degree increases,
features explode
exponentially

Madhavan Mukund Lecture 6: 25 January, 2024 DMML Jan–Apr 2024 18 / 23

Overfitting

Need to be careful about
adding higher degree terms

For n training points, can
always fit polynomial of
degree (n − 1) exactly

However, such a curve
would not generalize well to
new data points

Overfitting — model fits
training data well, performs
poorly on unseen data

Madhavan Mukund Lecture 6: 25 January, 2024 DMML Jan–Apr 2024 19 / 23

Regularization

Need to trade off SSE
against curve complexity

So far, the only cost has
been SSE

Add a cost related to
parameters (θ0, θ1, . . . , θk)

Minimize, for instance

1

2

n∑
i=1

(zi − yi)
2 +

k∑
j=1

θ2j

Madhavan Mukund Lecture 6: 25 January, 2024 DMML Jan–Apr 2024 20 / 23

Regularization

1

2

n∑
i=1

(zi − yi)
2 +

k∑
j=1

θ2j

Second term penalizes curve complexity

Variations on regularization

Ridge regression:
k∑

j=1

θ2j

LASSO regression:
k∑

j=1

|θj |

Elastic net regression:
k∑

j=1

λ1|θj |+ λ2θ
2
j

Madhavan Mukund Lecture 6: 25 January, 2024 DMML Jan–Apr 2024 21 / 23

The non-polynomial case

Percentage of urban
population as a function of
per capita GDP

Not clear what polynomial
would be reasonable

Take log of GDP

Regression we are
computing is
y = θ0 + θ1 log x1

Madhavan Mukund Lecture 6: 25 January, 2024 DMML Jan–Apr 2024 22 / 23

The non-polynomial case

Percentage of urban
population as a function of
per capita GDP

Not clear what polynomial
would be reasonable

Take log of GDP

Regression we are
computing is
y = θ0 + θ1 log x1

Madhavan Mukund Lecture 6: 25 January, 2024 DMML Jan–Apr 2024 23 / 23

The non-polynomial case

Reverse the relationship

Plot per capita GDP in
terms of percentage of
urbanization

Now we take log of the
output variable
log y = θ0 + θ1x1

Log-linear transformation

Earlier was linear-log

Can also use log-log

Madhavan Mukund Lecture 6: 25 January, 2024 DMML Jan–Apr 2024 24 / 23

