Lecture 4: 18 January, 2024

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning January–April 2024

Decision tree algorithm

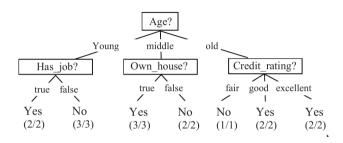
A: current set of attributes

Pick $a \in A$, create children corresponding to resulting partition with attributes $A \setminus \{a\}$

Stopping criterion:

- Current node has uniform class label
- A is empty no more attributes to query

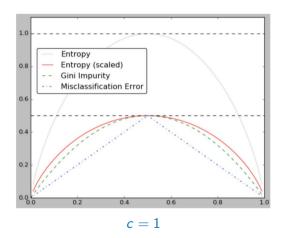
If a leaf node is not uniform, use majority class as prediction



- Non-uniform leaf node identical combination of attributes, but different classes
- Attributes do not capture all criteria used for classification

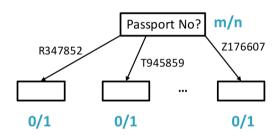
Greedy heuristic

- Goal: partition with uniform category — pure leaf
- Impure node best prediction is majority value
- Minority ratio is impurity
- Heuristic: reduce impurity as much as possible
- For each attribute, compute weighted average impurity of children
- Choose the minimum



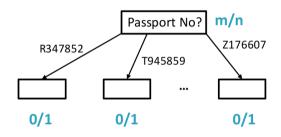
Information gain

- Greedy strategy: choose attribute to maximize reduction in impurity maximize information gain
- Suppose an attribute is a unique identifier
 - Roll number, passport number, Aadhaar . . .
- Querying this attribute produces partitions of size 1
 - Each partition guaranteed to be pure
 - New impurity is zero
- Maximum possible impurity reduction, but useless!



Information gain

- Tree building algorithm blindly picks attribute that maximizes information gain
- Need a correction to penalize attributes with highly scattered attributes
- Extend the notion of impurity to attributes



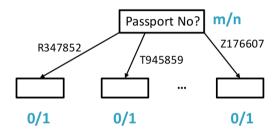
Attribute Impurity

- Attribute takes values $\{v_1, v_2, \dots, v_k\}$
- v_i appears n_i times across n rows
- $p_i = n_i/n$
- Entropy across *k* values

$$-\sum_{i=1}^k p_i \log_2 p_i$$

■ Gini index across k values

$$1 - \sum_{i=1}^k p_i^2$$



Attribute Impurity

- **E**xtreme case, each $p_i = 1/n$
- Entropy

$$-\sum_{i=1}^{n} \frac{1}{n} \log_2 \frac{1}{n} = -n \cdot \frac{1}{n} (-\log_2 n) = \log_2 n$$

Gini index

$$1 - \sum_{i=1}^{n} \left(\frac{1}{n}\right)^2 = 1 - \frac{n}{n^2} = \frac{n-1}{n}$$

 \blacksquare Both increase as n increases

Penalizing scattered attributes

- Divide information gain by attribute impurity
- Information gain ratio(A)

$$\frac{\mathsf{Information}\text{-}\mathsf{Gain}(\mathsf{A})}{\mathsf{Impurity}(A)}$$

 Scattered attributes have high denominator, counteracting high numerator

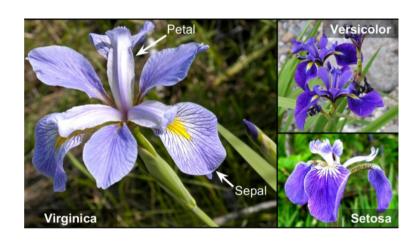
Categorical vs numeric attributes

- So far, all attributes have been categorical
- What age groups make up young, middle, old?
- How are these boundaries defined?
- How do we query numerical attributes?
 - Height, weight, length, income,

ID	Age	Has_job	Own_house	Credit_rating	Class
1	young	false	false	fair	No
2	young	false	false	good	No
3	young	true	false	good	Yes
4	young	true	true	fair	Yes
5	young	false	false	fair	No
6	middle	false	false	fair	No
7	middle	false	false	good	No
8	middle	true	true	good	Yes
9	middle	false	true	excellent	Yes
10	middle	false	true	excellent	Yes
11	old	false	true	excellent	Yes
12	old	false	true	good	Yes
13	old	true	false	good	Yes
14	old	true	false	excellent	Yes
15	old	false	false	fair	No

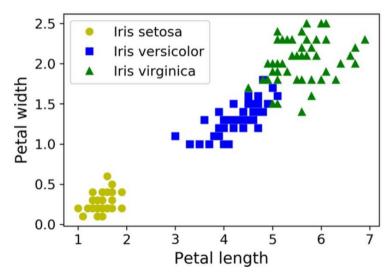
Iris dataset

- Iris is a type of flower
- Three species: iris setosa, iris versicolor, iris virginica
- Dataset has sepal length and width and petal length and width for 150 flowers
- Scatter plot for two attributes, petal length and petal width
- Decision tree for this data set



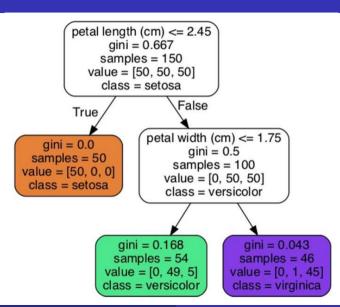
Iris dataset

- Iris is a type of flower
- Three species: *iris* setosa, *iris* versicolor, *iris* virginica
- Dataset has sepal length and width and petal length and width for 150 flowers
- Scatter plot for two attributes, petal length and petal width
- Decision tree for this data set



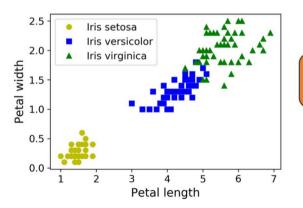
Iris dataset

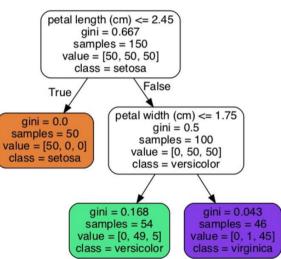
- Iris is a type of flower
- Three species: iris setosa, iris versicolor, iris virginica
- Dataset has sepal length and width and petal length and width for 150 flowers
- Scatter plot for two attributes, petal length and petal width
- Decision tree for this data set



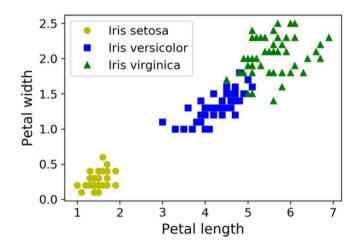
Decision tree for iris dataset

- Queries compare numerical attribute against a value
- How do we find these query values?



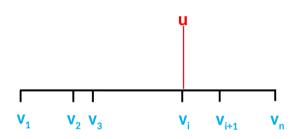


- Numerical attribute takes values in a range [L, U]
 - Petal length : [1,7]
 - Petal width : [0, 2.5]
- Pick a value v in the range and check if $A \le v$
- Infinitely many choices for v
- How do we pick a sensible one?

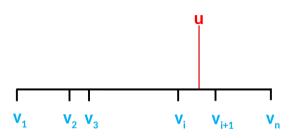


- Only n values for A in training data
 - \blacksquare Sort as $v_1 < v_2 < \cdots < v_n$
- Consider interval $[v_i, v_{i+1}]$

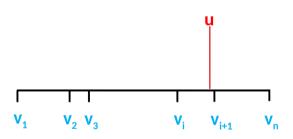
- Only n values for A in training data
 - \blacksquare Sort as $v_1 < v_2 < \cdots < v_n$
- Consider interval $[v_i, v_{i+1}]$
- For each $v_i \le u < v_{i+1}$, query $A \le u$ gives the same answer



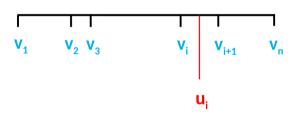
- Only n values for A in training data
 - \blacksquare Sort as $v_1 < v_2 < \cdots < v_n$
- Consider interval $[v_i, v_{i+1}]$
- For each $v_i \le u < v_{i+1}$, query $A \le u$ gives the same answer



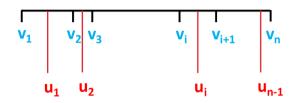
- Only n values for A in training data
 - \blacksquare Sort as $v_1 < v_2 < \cdots < v_n$
- Consider interval $[v_i, v_{i+1}]$
- For each $v_i \le u < v_{i+1}$, query $A \le u$ gives the same answer
- Only n-1 useful intervals to check



- Only n values for A in training data
 - \blacksquare Sort as $v_1 < v_2 < \cdots < v_n$
- Consider interval $[v_i, v_{i+1}]$
- For each $v_i \le u < v_{i+1}$, query $A \le u$ gives the same answer
- Only n-1 useful intervals to check
- Pick midpoint $u_i = (v_i + v_{i+1})/2$ as query value for each interval



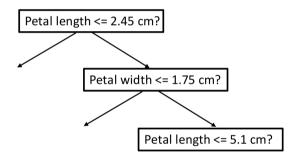
- Pick midpoint $u_i = (v_i + v_{i+1})/2$ as query value for each interval
- Each query $A \le u_i$ partitions training data
- Choose the query $A \le u_i$ with maximum information gain
- Assign this as the information gain for this attribute
- Compare across all attributes and choose best one



- Any point within an interval can be used
- May prefer endpoints midpoints may not be meaningful values

Building a decision tree

- For each numerical attribute, choose query $A \le v$ with maximum information gain
- Across all categorical and numerical attributes, choose the one with best information gain
- Categorical attrbutes can be queried only once on a path
- Numerical attributes can be queried repeatedly — interval to query keeps shrinking



Testing a supervised learning model

- How do we validate software?
 - Test suite of carefully selected inputs
 - Compare output with expected answers
- What about classification models?
 - By definition, deploy on data where the outcome is unknown
 - If expected answer available, have a deterministic solution, model not needed!
- On what basis can we evaluate a supervised learning model?

Creating a test set

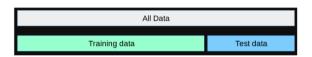
- Training data is labelled
 - No other source of inputs with expected answers
- Segregate some training data for testing
 - Terminology: training set and test set
 - Build model using training set, evaluate on test set
- Creating the test set
 - Need to choose a random sample
 - Can further use stratified sampling, preserve relative ratios (e.g., age wise distribution)
 - ML libraries can do this automatically

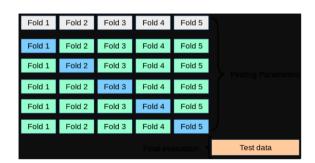
Creating a test set

- How large should the test set be?
 - Typically 20-30% of labelled data
- Depends on labelled data available
 - Need enough training data to build the model

Cross validation

- Partition labelled data into k chunks
- Hold out one chunk at a time
- Build *k* models, using *k*−1 chunks for training, 1 for testing
- Useful if labelled data is scarce





What are we measuring?

- Accuracy is an obvious measure
 - Fraction of inputs where classification is correct
- Classifiers are often used in asymmetric situations
 - Less than 1% of credit card transactions are fraud
- "Is this transaction a fraud?"
 - Trivial classifier always answer "No"
 - More than 99% accurate, but useless!

Catching the minority case

- The minority case is the useful case
 - Assume question is phrased so that minority answer is "Yes"
 - Want to flag as many "Yes" cases as possible
- Aggressive classifier
 - Marks borderline "No" as "Yes"
 - False positives
- Cautious classifier
 - Marks borderline "Yes" as "No"
 - False negatives

Confusion matrix

■ Four possible combinations

Actual answer: Yes / No

■ Prediction: Yes / No

 Record all four possibilities in confusion matrix

- Correct answers
 - True positives, true negatives
- Wrong answers
 - False positives, false negatives

	Classified positive	Classified negative
Actual	True Positive	False Negative
positive	(TP)	(FN)
Actual	False Positive	True Negative
negative	(FP)	(TN)

Precision

What percentage of positive predictions are correct?

$$\frac{\mathsf{TP}}{\mathsf{TP} + \mathsf{FP}}$$

Recall

What percentage of actual positive cases are discovered?

$$\frac{\mathsf{TP}}{\mathsf{TP} + \mathsf{FN}}$$

	Classified	Classified
	positive	negative
Actual	True Positive	False Negative
positive	(TP)	(FN)
Actual	False Positive	True Negative
negative	(FP)	(TN)

- Precision 1, Recall 0.01
- Recall up to 0.4, but precision down to 0.29
- Recall up to 0.99, but precision down to 0.165
- Precision-recall tradeoff
 - Strict classifiers: fewer false positives (high precision), miss more actual positives (low recall)
 - Permissive classifiers: catch more actual positives (high recall) but more false positives (low precision)

	Classified positive	Classified negative
Actual positive	1 40 99	99 60 1
Actual negative	0 100 500	900 800 400

- Which measure is more useful?
 - Depends on situation
- Hiring
 - Screening test: high recall
 - Interview: high precision
- Medical diagnosis
 - Immunization: high recall
 - Critical illness diagnosis: high precision

	Classified positive	Classified negative
Actual positive	True Positive (TP)	False Negative (FN)
Actual negative	False Positive (FP)	True Negative (TN)

Other measures, terminology

- Recall is also called sensitivity
- Accuracy: (TP+TN)/(TP+TN+FP+FN)
- Specificity: TN/(TN+FP)
- Threat score: TP/(TP+FP+FN)
 - TN usually majority, ignore, not useful

	Classified positive	Classified negative
Actual positive	True Positive (TP)	False Negative (FN)
Actual	False Positive	True Negative
negative	(FP)	(TN)

F Score

- A single combined score
- Harmonic mean of precision, recall

$$\frac{2pr}{p+r}$$