Lecture 2: 11 January, 2024

Madhavan Mukund
https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning January-April 2024

Market-basket analysis

■ Set of items $I=\left\{i_{1}, i_{2}, \ldots, i_{N}\right\}$

- A transaction is a set $t \subseteq I$ of items
- Set of transactions $T=\left\{t_{1}, t_{2}, \ldots, t_{M}\right\}$

■ Identify association rules $X \rightarrow Y$

- $X, Y \subseteq I, X \cap Y=\emptyset$
- If $X \subseteq t_{j}$ then it is likely that $Y \subseteq t_{j}$

■ Two thresholds

- How frequently does $X \subseteq t_{j}$ imply $Y \subseteq t_{j}$?
- How significant is this pattern overall?

Setting thresholds

■ For $Z \subseteq I, Z$.count $=\left|\left\{t_{j} \mid Z \subseteq t_{j}\right\}\right|$
■ How frequently does $X \subseteq t_{j}$ imply $Y \subseteq t_{j}$?

- Fix a confidence level χ
- Want $\frac{(X \cup Y) \cdot \text { count }}{X . c o u n t} \geq \chi$

■ How significant is this pattern overall?

- Fix a support level σ
- Want $\frac{(X \cup Y) \cdot \text { count }}{M} \geq \sigma$
- Given sets of items / and transactions T, with confidence χ and support σ, find all valid association rules $X \rightarrow Y$

Apriori

- If Z is frequent, so is every subset $Y \subseteq Z$
- We exploit the contrapositive

Apriori observation

If Z is not a frequent itemset, no superset $Y \supseteq Z$ can be frequent

- For any frequent pair $\{x, y\}$, both $\{x\}$ and $\{y\}$ must be frequent
- Build frequent itemsets bottom up, size $1,2, \ldots$

Apriori algorithm

- F_{i} : frequent itemsets of size i - Level i
- F_{1} : Scan T, maintain a counter for each $x \in I$

■ $C_{2}=\left\{\{x, y\} \mid x, y \in F_{1}\right\}:$ Candidates in level 2

- F_{2} : Scan T, maintain a counter for each $X \in C_{2}$
- $C_{3}=\left\{\{x, y, z\} \mid\{x, y\},\{x, z\},\{y, z\} \in F_{2}\right\}$
- F_{3} : Scan T, maintain a counter for each $X \in C_{3}$

■...

- $C_{k}=$ subsets of size k, every $(k-1)$-subset is in F_{k-1}
- F_{k} : Scan T, maintain a counter for each $X \in C_{k}$

Apriori algorithm

■ $C_{k}=$ subsets of size k, every $(k-1)$-subset is in F_{k-1}

- How do we generate C_{k} ?

■ Naïve: enumerate subsets of size k and check each one

- Expensive!
- Observation: Any $C_{k}^{\prime} \supseteq C_{k}$ will do as a candidate set
- Items are ordered: $i_{1}<i_{2}<\cdots<i_{N}$

■ List each itemset in ascending order - canonical representation
■ Merge two ($k-1$)-subsets if they differ in last element
■ $X=\left\{i_{1}, i_{2}, \ldots, i_{k-2}, i_{k-1}\right\}$
■ $X^{\prime}=\left\{i_{1}, i_{2}, \ldots, i_{k-2}, i_{k-1}^{\prime}\right\}$
■ $\operatorname{Merge}\left(X, X^{\prime}\right)=\left\{i_{1}, i_{2}, \ldots, i_{k-2}, i_{k-1}, i_{k-1}^{\prime}\right\}$

Apriori algorithm

■ $\operatorname{Merge}\left(X, X^{\prime}\right)=\left\{i_{1}, i_{2}, \ldots, i_{k-2}, i_{k-1}, i_{k-1}^{\prime}\right\}$

- $X=\left\{i_{1}, i_{2}, \ldots, i_{k-2}, i_{k-1}\right\}$
- $X^{\prime}=\left\{i_{1}, i_{2}, \ldots, i_{k-2}, i_{k-1}^{\prime}\right\}$
- $C_{k}^{\prime}=\left\{\operatorname{Merge}\left(X, X^{\prime}\right) \mid X, X^{\prime} \in F_{k-1}\right\}$
- Claim $C_{k} \subseteq C_{k}^{\prime}$
- Suppose $Y=\left\{i_{1}, i_{2}, \ldots, i_{k-1}, i_{k}\right\} \in C_{k}$
- $X=\left\{i_{1}, i_{2}, \ldots, i_{k-2}, i_{k-1}\right\} \in F_{k-1}$ and $X^{\prime}=\left\{i_{1}, i_{2}, \ldots, i_{k-2}, i_{k}\right\} \in F_{k-1}$
- $Y=\operatorname{Merge}\left(X, X^{\prime}\right) \in C_{k}^{\prime}$
- Can generate C_{k}^{\prime} efficiently
- Arrange F_{k-1} in dictionary order
- Split into blocks that differ on last element
- Merge all pairs within each block

Apriori algorithm

- $C_{1}=\{\{x\} \mid x \in I\}$
- $F_{1}=\left\{Z \mid Z \in C_{1}, Z\right.$.count $\left.\geq \sigma \cdot M\right\}$

■ For $k \in\{2,3, \ldots\}$

- $C_{k}^{\prime}=\left\{\operatorname{Merge}\left(X, X^{\prime}\right) \mid X, X^{\prime} \in F_{k-1}\right\}$
- $F_{k}=\left\{Z \mid Z \in C_{k}^{\prime}, Z\right.$.count $\left.\geq \sigma \cdot M\right\}$

■ When do we stop?

- k exceeds the size of the largest transaction
- F_{k} is empty

Association rules

- Given sets of items / and transactions T, with confidence χ and support σ, find all valid association rules $X \rightarrow Y$
- $X, Y \subseteq I, X \cap Y=\emptyset$
- $\frac{(X \cup Y) \cdot \text { count }}{X \cdot \operatorname{count}} \geq \chi$
- $\frac{(X \cup Y) . \text { count }}{M} \geq \sigma$
- For a rule $X \rightarrow Y$ to be valid, $X \cup Y$ should be a frequent itemset

■ Apriori algorithm finds all $Z \subseteq I$ such that Z.count $\geq \sigma \cdot M$

Association rules

Naïve strategy

- For every frequent itemset Z
- Enumerate all pairs $X, Y \subseteq Z, X \cap Y=\emptyset$
- Check $\frac{(X \cup Y) \cdot \text { count }}{X \cdot \text { count }} \geq \chi$
- Can we do better?
- Sufficient to check all partitions of Z

■ If $X, Y \subseteq Z, X \cup Y$ is also a frequent itemset

Association rules

- Sufficient to check all partitions of Z

■ Suppose $Z=X \uplus Y, X \rightarrow Y$ is a valid rule and $y \in Y$
■ What about $(X \cup\{y\}) \rightarrow Y \backslash\{y\}$?

- Know $\frac{(X \cup Y) \cdot \text { count }}{X \cdot \text { count }} \geq \chi$
- Check $\frac{(X \cup Y) \cdot \text { count }}{(X \cup\{y\}) \cdot \text { count }} \geq \chi$

■ X.count $\geq(X \cup\{y\})$.count, always

- Second fraction has smaller denominator, so $(X \cup\{y\}) \rightarrow Y \backslash\{y\}$ is also a valid rule

Observation: Can use apriori principle again!

Apriori for association rules

- If $X \rightarrow Y$ is a valid rule, and $y \in Y$, $(X \cup\{y\}) \rightarrow Y \backslash\{y\}$ must also be a valid rule
- If $X \rightarrow Y$ is not a valid rule, and $x \in X$, $(X \backslash\{x\}) \rightarrow Y \cup\{x\}$ cannot be a valid rule

■ Start by checking rules with single element on the right

- $Z \backslash z \rightarrow\{z\}$
- For $X \rightarrow\{x, y\}$ to be a valid rule, both $(X \cup\{x\}) \rightarrow\{y\}$ and $(X \cup\{y\}) \rightarrow\{x\}$ must be valid
- Explore partitions of each frequent itemset "level by level"

Supervised learning

- A set of items

■ Each item is characterized by attributes $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$
■ Each item is assigned a class or category c

- Given a set of examples, predict c for a new item with attributes $\left(a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{k}^{\prime}\right)$
- Examples provided are called training data
- Aim is to learn a mathematical model that generalizes the training data
- Model built from training data should extend to previously unseen inputs
- Classification problem
- Usually assumed to binary - two classes

Association rules for classification

- Classify documents by topic
- Consider the table on the right
- Items are regular words and topics
- Documents are transactions - set of words and one topic

■ Look for association rules of a special form

Words in document	Topic
student, teach, school	Education
student, school	Education
teach, school, city, game	Education
cricket, football	Sports
football, player, spectator	Sports
cricket, coach, game, team	Sports
football, team, city, game	Sports

- \{student, school\} \rightarrow \{Education
- \{game, team \rightarrow \{Sports $\}$
- Right hand side always a single topic
- Class Association Rules

Summary

■ Market-basket analysis searches for correlated items across transactions

- Formalized as association rules
- Apriori principle helps us to efficiently
- identify frequent itemsets, and
- split these itemsets into valid rules
- Class association rules - simple supervised learning model

