Lecture 20: 28 March, 2024

Madhavan Mukund
https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning January-April 2024

Probabilistic graphical models

- Underlying DAG, no cyclic dependencies
- Each node has a local (conditional) probability table

John calls, Mary calls - was there a burglar?

$$
\begin{aligned}
& P(B \mid J, M)=\frac{P(B, J, M)}{P(J, M)} \\
& P(\neg B \mid J, M)=y \frac{P(I B, J, M)}{P(J, M)} \\
& x+y=1 \quad \frac{x}{y}=\frac{P(B, J, M)}{P(\neg B, J, M)}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{P(B, J, M)}{\alpha}=P(B \mid J, M) \cdot \alpha \\
& P(T B, J, M)=P(B B \mid J, M) \cdot \alpha \\
& P(B, J, M)+P(\neg B, J, M)=(P(B \mid J, M)+P(\neg B \mid J, M)) \alpha \\
& P(J, M)=\sum_{B=0,1} P(B, J, M)
\end{aligned}
$$

Conditional independence

- $x \perp y-x$ and y are independent
- $P(x \wedge y)=P(x) \cdot P(y)$

Conditional independence

- $x \perp y-x$ and y are independent
- $P(x \wedge y)=P(x) \cdot P(y)$
- $x \perp y \mid z$
- x and y are independent given z

■ $P(x \wedge y \mid z)=P(x \mid z) \cdot P(y \mid z)$

$$
P(x \mid y, 2)=P(x \mid z)
$$

Conditional independence

- $x \perp y-x$ and y are independent
- $P(x \wedge y)=P(x) \cdot P(y)$

■ $x \perp y \mid z$

- x and y are independent given z
- $P(x \wedge y \mid z)=P(x \mid z) \cdot P(y \mid z)$
- Is JohnCalls independent of MaryCalls $(j \perp m)$?

Conditional independence

- $x \perp y-x$ and y are independent
- $P(x \wedge y)=P(x) \cdot P(y)$

■ $x \perp y \mid z$

- x and y are independent given z
- $P(x \wedge y \mid z)=P(x \mid z) \cdot P(y \mid z)$

■ Is JohnCalls independent of MaryCalls $(j \perp m)$?

- No - value of j tells us something about value of m and vice versa

Conditional independence

- $x \perp y-x$ and y are independent
- $P(x \wedge y)=P(x) \cdot P(y)$
- $x \perp y \mid z$
- x and y are independent given z
- $P(x \wedge y \mid z)=P(x \mid z) \cdot P(y \mid z)$

■ Is JohnCalls independent of MaryCalls $(j \perp m)$?

- No - value of j tells us something about value of m and vice versa

- Is JohnCalls independent of MaryCalls given Alarm $(j \perp m \mid a)$?

Conditional independence

- $x \perp y-x$ and y are independent
- $P(x \wedge y)=P(x) \cdot P(y)$
- $x \perp y \mid z$
- x and y are independent given z
- $P(x \wedge y \mid z)=P(x \mid z) \cdot P(y \mid z)$
- Is JohnCalls independent of MaryCalls $(j \perp m)$?
- No - value of j tells us something about value of m and vice versa

- Is JohnCalls independent of MaryCalls given Alarm $(j \perp m \mid a)$?
- Yes - by semantics of network, local independence

Probabilistic graphical models

■ Fundamental assumption
A node is conditionally independent of non-descendants, given its parents

Student example

■ SAT \perp Grade \| Difficulty ?

Student example

■ SAT \perp Grade | Difficulty ?
■ No

Student example

■ SAT \perp Grade | Difficulty ?
■ No

- Can we calculate conditional independence from the graph?

Student example

■ SAT \perp Grade | Difficulty ?
■ No

- Can we calculate conditional independence from the graph?

■ In general, check if $X \perp Y \mid Z$ for sets of variables X, Y, Z

Conditional independence

■ How does dependence "flow" through
a network?

Conditional independence

■ How does dependence "flow" through a network?

■ For neighbouring nodes, dependence flows both ways

- If $x \rightarrow y$, knowing x tells us about
y and vice versa

Conditional independence

■ How does dependence "flow" through a network?

- For neighbouring nodes, dependence flows both ways
- If $x \rightarrow y$, knowing x tells us about
y and vice versa
- Examine trails between nodes
- Paths in the underlying undirected graph

Conditional independence

■ How does dependence "flow" through a network?

- For neighbouring nodes, dependence flows both ways
- If $x \rightarrow y$, knowing x tells us about y and vice versa
- Examine trails between nodes
- Paths in the underlying undirected graph
- Basic trails - (undirected) paths of length 2

(a)
(b)

- Four basic trails

Basic trails

Basic trails

- (a), (b) and (c): Z blocks flow between X and Y, by semantics of Bayesian networks

$$
P\left(x_{\wedge} \mid / 2\right)=P(y \wedge x \mid z)
$$

(a)

(b)

Basic trails

- (a), (b) and (c): Z blocks flow between X and Y, by semantics of Bayesian networks
- In (d), knowing Z allows influence to flow

Basic trails

- (a), (b) and (c): Z blocks flow between X and Y, by semantics of Bayesian networks
- In (d), knowing Z allows influence to flow
- Z: Car does not start
X : Low Battery, Y : No Fuel

Basic trails

- (a), (b) and (c): Z blocks flow between X and Y, by semantics of Bayesian networks
- In (d), knowing Z allows influence to flow
- Z: Car does not start
X : Low Battery, Y : No Fuel
- Z: Grass is wet
X : Overnight rain, Y : Sprinkler ran
(a)

(b)

Basic trails

- (a), (b) and (c): Z blocks flow between X and Y, by semantics of Bayesian networks
- In (d), knowing Z allows influence to flow
- Z: Car does not start
X : Low Battery, Y : No Fuel
- Z: Grass is wet
X : Overnight rain, Y : Sprinkler ran
- Simplest form of V-structure

(d)

D-Separation

- Check if $X \perp Y \mid Z$

D-Separation

■ Check if $X \perp Y \mid Z$

- Dependence should be blocked on every trail from X to Y

D-Separation

- Check if $X \perp Y \mid Z$
- Dependence should be blocked on every trail from X to Y
- Each undirected path from X to Y is a sequence of basic trails

(d)

D-Separation

- Check if $X \perp Y \mid Z$
- Dependence should be blocked on every trail from X to Y
- Each undirected path from X to Y is a sequence of basic trails
- For (a), (b), (c), need Z present

(d)

D-Separation

- Check if $X \perp Y \mid Z$
- Dependence should be blocked on every trail from X to Y
- Each undirected path from X to Y is a sequence of basic trails
- For (a), (b), (c), need Z present
- For (d), need Z absent

D-Separation

- Check if $X \perp Y \mid Z$
- Dependence should be blocked on every trail from X to Y
- Each undirected path from X to Y is a sequence of basic trails
- For (a), (b), (c), need Z present
- For (d), need Z absent
- In general, V-structure includes descendants of the bottom node

D-Separation

- Check if $X \perp Y \mid Z$
- Dependence should be blocked on every trail from X to Y
- Each undirected path from X to Y is a sequence of basic trails
- For (a), (b), (c), need Z present
- For (d), need Z absent
- In general, V-structure includes

(c) descendants of the bottom node

■ x and y are D-separated given z if all trails are blocked

D-Separation

- Check if $X \perp Y \mid Z$
- Dependence should be blocked on every trail from X to Y
- Each undirected path from X to Y is a sequence of basic trails
- For (a), (b), (c), need Z present
- For (d), need Z absent
- In general, V-structure includes

(c) descendants of the bottom node

■ x and y are D-separated given z if all trails are blocked

- Variation of breadth first search (BFS) to check if y is reachable from x through some trail

Breadin forst seach

D-Separation

- Check if $X \perp Y \mid Z$
- Dependence should be blocked on every trail from X to Y
- Each undirected path from X to Y is a sequence of basic trails
- For (a), (b), (c), need Z present

■ For (d), need Z absent
■ In general, V-structure includes

(c) descendants of the bottom node

- x and y are D-separated given z if all trails are blocked
- Variation of breadth first search (BFS) to check if y is reachable from x through some trail

■ Extends to sets - each $x \in X$ is D-separated from each $y \in Y$

Conditional independence, example

■ Is SAT independent of Difficulty given Intelligence?

■ Yes, Difficulty - Grade - Intelligence - SAT trail is blocked at Grade (V-structure) and Intelligence

Conditional independence, example

- Is SAT independent of Difficulty given Intelligence?

■ Yes, Difficulty - Grade - Intelligence - SAT trail is blocked at Grade (V-structure) and Intelligence

- Is SAT independent of Difficulty given Letter?

■ No, Difficulty - Grade - Intelligence - SAT trail is open

- Letter is known, hence something about Grade is known (V-structure)
- Intelligence is not known

