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Conditional probabilities

Boolean variables x1, x2, . . . , xn

Joint probabilities P(v1, v2, . . . , vn)

2
n
combinations of x1, x2, . . . , xn

2
n � 1 parameters

Näıve Bayes assumption — complete independence

P(xi = 1) for each xi

n parameters

Can we strive for something in between?

“Local” dependencies between some variables
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Probabilistic graphical models — Judea Pearl, Turing Award 2011

Represent local dependencies using

directed graph

Each node has a local (conditional)

probability table

Example: Burglar alarm

Pearl’s house has a burglar alarm

Neighbours John and Mary call if

they hear the alarm

John is prone to mistaking

ambulances etc for the alarm

Mary listens to loud music and

sometimes fails to hear the alarm

The alarm may also be triggered by

an earthquake (California!)
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Probabilistic graphical models

Graph is a DAG, no cyclic

dependencies

Fundamental assumption:

A node is conditionally independent

of non-descendants, given its parents
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Student example

Example due to Nir Friedman and

Daphne Koller

Student asks teacher for a reference

letter

Teacher has forgotten the student, so

letter is entirely based on student’s

grade in the course
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Evaluating a network

John and Mary call Pearl. What is the probability that there has been a burglary?

P(b,m, j), where b: burglary, j : John calls, m: Mary calls

P(b,m, j) =
1X

a=0

1X

e=0

P(b, j ,m, a, e), where a: alarm rings, e: earthquake

Bayes Rule: P(A,B) = P(A | B)P(B)

P(x1, x2, . . . , xn) = P(x1 | x2, x3, . . . , xn)P(x2, x3, . . . , xn)

Applied recursively, this gives us the chain rule

P(x1, x2, . . . , xn) = P(x1 | x2, . . . , xn)P(x2 | x3, . . . , xn) · · ·P(xn�1 | xn)P(xn)
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Evaluating a network

P(x1, x2, . . . , xn) = P(x1 | x2, . . . , xn)P(x2 | x3, . . . , xn) · · ·P(xn�1 | xn)P(xn)

Can choose any ordering of x1, x2, . . . , xn

Use topological ordering in a Bayesian network

P(m, j , a, b, e) =
P(m | j , a, b, e)P(j | a, b, e)P(a | b, e)P(b | e)P(e)

P(m, j , b) =
1X

e=0

1X

a=0

P(m | a)P(j | a)P(a | b, e)P(b)P(e)

P(m, j , b) = P(b)
1X

e=0

P(e)
1X

a=0

P(m | a)P(j | a)P(a | b, e)
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Evaluation tree
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Designing the Bayesian network

Need to choose node ordering wisely to

get a compact Bayesian network

Ordering MaryCalls, JohnCalls, Alarm,

Burglary, Earthquake produces this

network

Ordering MaryCalls, JohnCalls,
Earthquake, Burglary, Alarm is even

worse

Causal model (causes to e↵ects) works

better than diagnostic model (e↵ects to

causes)
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Complexity of exact inference

Exact inference of Bayesian networks is NP-complete

Boolean formula in Conjunctive Normal Form (CNF)

Boolean variables {u1, u2, . . . , un}
A literal `i is either ui or ¬ui

A clause is a disjunction of literals `j1 _ `j2 _ · · · _ `jk

A CNF formula is a conjunction of clauses C1 ^ C2 ^ · · · ^ Cm

SAT — given a formula in CNF, is there an assignment to variables that makes the

formula true?

3-SAT — SAT where each clause has exactly 3 literals

Both SAT and 3-SAT are NP-complete

No known e�cient algorithm — try all possible valuations
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Reducing 3-SAT to exact inference

Convert a 3-CNF formula into a Bayesian network

Top layer: one node for each variable ui

Middle layer: one node for each clause Cj

Parents are three variables whose literals are in Cj

Conditional probability table for Cj has 8 rows, for

all possible valuations of 3 variables

P(Cj = 1) = 0 for row where each input literal is

false, P(Cj = 1) = 1 for remaining 7 rows

Bottom row builds up C1 ^ · · · ^ Cm one clause at a

time

P(Y = 1) > 0 i↵ original 3-CNF formula is

satisfiable
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