Lecture 19: 26 March, 2024

Madhavan Mukund
https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning January-April 2024

Conditional probabilities

■ Boolean variables $x_{1}, x_{2}, \ldots, x_{n}$

Conditional probabilities

■ Boolean variables $x_{1}, x_{2}, \ldots, x_{n}$

- Joint probabilities $P\left(v_{1}, v_{2}, \ldots, v_{n}\right)$
- 2^{n} combinations of $x_{1}, x_{2}, \ldots, x_{n}$
- $2^{n}-1$ parameters

Conditional probabilities

■ Boolean variables $x_{1}, x_{2}, \ldots, x_{n}$

- Joint probabilities $P\left(v_{1}, v_{2}, \ldots, v_{n}\right)$
- 2^{n} combinations of $x_{1}, x_{2}, \ldots, x_{n}$

■ $2^{n}-1$ parameters
■ Naïve Bayes assumption - complete independence

- $P\left(x_{i}=1\right)$ for each x_{i}
- n parameters

Conditional probabilities

■ Boolean variables $x_{1}, x_{2}, \ldots, x_{n}$

- Joint probabilities $P\left(v_{1}, v_{2}, \ldots, v_{n}\right)$
- 2^{n} combinations of $x_{1}, x_{2}, \ldots, x_{n}$

■ $2^{n}-1$ parameters

- Naïve Bayes assumption - complete independence
- $P\left(x_{i}=1\right)$ for each x_{i}
- n parameters

■ Can we strive for something in between?

- "Local" dependencies between some variables

Probabilistic graphical models - Judea Pearl, Turing Award 2011

- Represent local dependencies using directed graph
- Each node has a local (conditional) probability table

Probabilistic graphical models - Judea Pearl, Turing Award 2011

- Represent local dependencies using directed graph
- Each node has a local (conditional) probability table
- Example: Burglar alarm
- Pearl's house has a burglar alarm

■ Neighbours John and Mary call if they hear the alarm

Probabilistic graphical models - Judea Pearl, Turing Award 2011

- Represent local dependencies using directed graph
- Each node has a local (conditional) probability table
- Example: Burglar alarm
- Pearl's house has a burglar alarm
- Neighbours John and Mary call if they hear the alarm
- John is prone to mistaking ambulances etc for the alarm

Probabilistic graphical models - Judea Pearl, Turing Award 2011

- Represent local dependencies using directed graph
- Each node has a local (conditional) probability table
- Example: Burglar alarm
- Pearl's house has a burglar alarm

■ Neighbours John and Mary call if they hear the alarm

- John is prone to mistaking ambulances etc for the alarm
- Mary listens to loud music and sometimes fails to hear the alarm

Probabilistic graphical models - Judea Pearl, Turing Award 2011

- Represent local dependencies using directed graph
- Each node has a local (conditional) probability table
- Example: Burglar alarm
- Pearl's house has a burglar alarm

■ Neighbours John and Mary call if they hear the alarm

- John is prone to mistaking ambulances etc for the alarm
- Mary listens to loud music and
 sometimes fails to hear the alarm
- The alarm may also be triggered by an earthquake (California!)

Probabilistic graphical models

- Graph is a DAG, no cyclic dependencies

"Causality" assumption

Probabilistic graphical models

■ Graph is a DAG, no cyclic dependencies

■ Fundamental assumption:
A node is conditionally independent of non-descendants, given its parents

Student example

- Example due to Nir Friedman and Daphne Koller
- Student asks teacher for a reference letter
- Teacher has forgotten the student, so letter is entirely based on student's grade in the course

Evaluating a network

■ John and Mary call Pearl. What is the probability that there has been a burglary?

Evaluating a network

■ John and Mary call Pearl. What is the probability that there has been a burglary?
■ $P(b, m, j)$, where b : burglary, j : John calls, m: Mary calls

Evaluating a network

■ John and Mary call Pearl. What is the probability that there has been a burglary?
■ $P(b, m, j)$, where b : burglary, j : John calls, m: Mary calls

- $P(b, m, j)=\sum_{a=0}^{1} \sum_{e=0}^{1} P(b, j, m, a, e)$, where a: alarm rings, e: earthquake

Evaluating a network

■ John and Mary call Pearl. What is the probability that there has been a burglary?
■ $P(b, m, j)$, where b : burglary, j : John calls, m: Mary calls

- $P(b, m, j)=\sum_{a=0}^{1} \sum_{e=0}^{1} P(b, j, m, a, e)$, where a: alarm rings, e: earthquake

■ Bayes Rule: $P(A, B)=P(A \mid B) P(B)$

Evaluating a network

■ John and Mary call Pearl. What is the probability that there has been a burglary?
■ $P(b, m, j)$, where b : burglary, j : John calls, m: Mary calls

- $P(b, m, j)=\sum_{a=0}^{1} \sum_{e=0}^{1} P(b, j, m, a, e)$, where a: alarm rings, e: earthquake $P(\boldsymbol{\tau} b, m, j)$

■ Bayes Rule: $P(A, B)=P(A \mid B) P(B)$
■ $P\left(x_{1}, x_{2}, \ldots, x_{n}\right)=P\left(x_{1} \mid x_{2}, x_{3}, \ldots, x_{n}\right) P\left(x_{2}, x_{3}, \ldots, x_{n}\right)$

Evaluating a network

■ John and Mary call Pearl. What is the probability that there has been a burglary?
■ $P(b, m, j)$, where b : burglary, j : John calls, m: Mary calls

- $P(b, m, j)=\sum_{a=0}^{1} \sum_{e=0}^{1} P(b, j, m, a, e)$, where a: alarm rings, e: earthquake

■ Bayes Rule: $P(A, B)=P(A \mid B) P(B)$

- $P\left(x_{1}, x_{2}, \ldots, x_{n}\right)=P\left(x_{1} \mid x_{2}, x_{3}, \ldots, x_{n}\right) P\left(x_{2}, x_{3}, \ldots, x_{n}\right)$
- Applied recursively, this gives us the chain rule

$$
P\left(x_{1}, x_{2}, \ldots, x_{n}\right)=P\left(x_{1} \mid x_{2}, \ldots, x_{n}\right) P\left(x_{2} \mid x_{3}, \ldots, x_{n}\right) \cdots P\left(x_{n-1} \mid x_{n}\right) P\left(x_{n}\right)
$$

Evaluating a network

- $P\left(x_{1}, x_{2}, \ldots, x_{n}\right)=P\left(x_{1} \mid x_{2}, \ldots, x_{n}\right) P\left(x_{2} \mid x_{3}, \ldots, x_{n}\right) \cdots P\left(x_{n-1} \mid x_{n}\right) P\left(x_{n}\right)$

Evaluating a network

- $P\left(x_{1}, x_{2}, \ldots, x_{n}\right)=P\left(x_{1} \mid x_{2}, \ldots, x_{n}\right) P\left(x_{2} \mid x_{3}, \ldots, x_{n}\right) \cdots P\left(x_{n-1} \mid x_{n}\right) P\left(x_{n}\right)$

■ Can choose any ordering of $x_{1}, x_{2}, \ldots, x_{n}$

Evaluating a network
■ $P\left(x_{1}, x_{2}, \ldots, x_{n}\right)=P\left(x_{1} \mid x_{2}, \ldots, x_{n}\right) P\left(x_{2} \mid x_{3}, \ldots, x_{n}\right) \cdots P\left(x_{n-1} \mid x_{n}\right) P\left(x_{n}\right)$

- Can choose any ordering of $x_{1}, x_{2}, \ldots, x_{n} \downarrow$
- Use topological ordering in a Bayesian network

Evaluating a network
■ $P\left(x_{1}, x_{2}, \ldots, x_{n}\right)=P\left(x_{1} \mid x_{2}, \ldots, x_{n}\right) P\left(x_{2} \mid x_{3}, \ldots, x_{n}\right) \ldots P\left(x_{n-1} \mid x_{n}\right) P\left(x_{n}\right)$

- Can choose any ordering of $x_{1}, x_{2}, \ldots, x_{n}$

■ Use topological ordering in a Bayesian network

$$
J, m, a, b, e
$$

- $P(m, j, a, b, e)=\quad$ 」 m, a , b, e
$P(m \mid j, a, b, e) P(j \mid a, b, e) P(a \mid b, e) P(b \mid e) P(e)$

$$
\begin{aligned}
& \lambda_{1} m, a, e, b \\
& m_{j}, a, e, b
\end{aligned}
$$

Evaluating a network

■ $P\left(x_{1}, x_{2}, \ldots, x_{n}\right)=P\left(x_{1} \mid x_{2}, \ldots, x_{n}\right) P\left(x_{2} \mid x_{3}, \ldots, x_{n}\right) \cdots P\left(x_{n-1} \mid x_{n}\right) P\left(x_{n}\right)$
■ Can choose any ordering of $x_{1}, x_{2}, \ldots, x_{n}$
■ Use topological ordering in a Bayesian network

- $P(m, j, a, b, e)=$
 $=P(m \mid a) P(j \mid a) P(a \mid b, e) P(b) P(e)$

Evaluating a network

■ $P\left(x_{1}, x_{2}, \ldots, x_{n}\right)=P\left(x_{1} \mid x_{2}, \ldots, x_{n}\right) P\left(x_{2} \mid x_{3}, \ldots, x_{n}\right) \cdots P\left(x_{n-1} \mid x_{n}\right) P\left(x_{n}\right)$
■ Can choose any ordering of $x_{1}, x_{2}, \ldots, x_{n}$

- Use topological ordering in a Bayesian network
- $P(m, j, a, b, e)=$
$P(m \mid j, a, b, e) P(j \mid a, b, e) P(a \mid b, e) P(b \mid e) P(e)$
$=P(m \mid a) P(j \mid a) P(a \mid b, e) P(b) P(e)$
- $P(m, j, b)=$
$\sum^{1} \sum^{1} P(m \mid a) P(j \mid a) P(a \mid b, e) P(b) P(e)$

Evaluating a network

■ $P\left(x_{1}, x_{2}, \ldots, x_{n}\right)=P\left(x_{1} \mid x_{2}, \ldots, x_{n}\right) P\left(x_{2} \mid x_{3}, \ldots, x_{n}\right) \cdots P\left(x_{n-1} \mid x_{n}\right) P\left(x_{n}\right)$
■ Can choose any ordering of $x_{1}, x_{2}, \ldots, x_{n}$

- Use topological ordering in a Bayesian network
- $P(m, j, a, b, e)=$
$P(m \mid j, a, b, e) P(j \mid a, b, e) P(a \mid b, e) P(b \mid e) P(e)$
$=P(m \mid a) P(j \mid a) P(a \mid b, e) P(b) P(e)$
- $P(m, j, b)=$

$$
\sum_{e=0}^{1} \sum_{a=0}^{1} P(m \mid a) P(j \mid a) P(a \mid b, e) P(b) P(e)
$$

Evaluating a network

- $P\left(x_{1}, x_{2}, \ldots, x_{n}\right)=P\left(x_{1} \mid x_{2}, \ldots, x_{n}\right) P\left(x_{2} \mid x_{3}, \ldots, x_{n}\right) \cdots P\left(x_{n-1} \mid x_{n}\right) P\left(x_{n}\right)$
- Can choose any ordering of $x_{1}, x_{2}, \ldots, x_{n}$
- Use topological ordering in a Bayesian network
- $P(m, j, a, b, e)=$
$P(m \mid j, a, b, e) P(j \mid a, b, e) P(a \mid b, e) P(b \mid e) P(e)$
$=P(m \mid a) P(j \mid a) P(a \mid b, e) P(b) P(e)$
- $P(m, j, b)$
$\sum_{e=0} \sum_{a=0} P(m \mid a) P(j \mid a) P(a \mid b, e) P(b) P(e)$

- $P(m, j, b)=P(b) \sum_{e=0}^{1} P(e) \sum_{a=0}^{1} P(m \mid a) P(j \mid a) P(a \mid b, e)$

Evaluation tree

Designing the Bayesian network

■ Need to choose node ordering wisely to get a compact Bayesian network

Designing the Bayesian network

- Need to choose node ordering wisely to get a compact Bayesian network

■ Ordering MaryCalls, JohnCalls, Alarm, Burglary, Earthquake produces this network

Designing the Bayesian network

- Need to choose node ordering wisely to get a compact Bayesian network

■ Ordering MaryCalls, JohnCalls, Alarm, Burglary, Earthquake produces this network

- Ordering MaryCalls, JohnCalls, Earthquake, Burglary, Alarm is even worse

Designing the Bayesian network

- Need to choose node ordering wisely to get a compact Bayesian network

■ Ordering MaryCalls, JohnCalls, Alarm, Burglary, Earthquake produces this network

- Ordering MaryCalls, JohnCalls, Earthquake, Burglary, Alarm is even worse
- Causal model (causes to effects) works better than diagnostic model (effects to causes)

Complexity of exact inference

■ Exact inference of Bayesian networks is NP-complete

Complexity of exact inference

- Exact inference of Bayesian networks is NP-complete
- Boolean formula in Conjunctive Normal Form (CNF)
- Boolean variables $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ ©
- A literal ℓ_{i} is either u_{i} or $\neg u_{i}$

Guess \& Venfy efprouathy

An NP Complete complete
$p, 9, r$ Boolean
$p \wedge q$ and
$q \vee r$ or
$X_{1}(p \wedge q)$ not (p and q)
$\neg p \wedge \neg q, \neg p \vee q$

Complexity of exact inference

- Exact inference of Bayesian networks is NP-complete
- Boolean formula in Conjunctive Normal Form (CNF)
- Boolean variables $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$
- A literal ℓ_{i} is either u_{i} or $\neg u_{i}$
- A clause is a disjunction of literals $\ell_{j_{1}} \vee \ell_{j_{2}} \vee \cdots \vee \ell_{j_{k}}$

Complexity of exact inference

- Exact inference of Bayesian networks is NP-complete
- Boolean formula in Conjunctive Normal Form (CNF)
- Boolean variables $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$
- A literal ℓ_{i} is either u_{i} or $\neg u_{i}$
- A clause is a disjunction of literals $\ell_{j_{1}} \vee \ell_{j_{2}} \vee \cdots \vee \ell_{j_{k}}$
- A CNF formula is a conjunction of clauses $C_{1} \wedge C_{2} \wedge \cdots \wedge C_{m}$

$$
\stackrel{\downarrow}{l_{1} v l_{2} v-l_{n}} \quad l_{1}^{\prime} v l_{2}^{\prime} v-l_{m}^{\prime}
$$

Complexity of exact inference

■ Exact inference of Bayesian networks is NP-complete

- Boolean formula in Conjunctive Normal Form (CNF)
- Boolean variables $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$
- A literal ℓ_{i} is either u_{i} or $\neg u_{i}$
- A clause is a disjunction of literals $\ell_{j_{1}} \vee \ell_{j_{2}} \vee \cdots \vee \ell_{j_{k}}$
- A CNF formula is a conjunction of clauses $C_{1} \wedge C_{2} \wedge \cdots \wedge C_{m}$

■ SAT - given a formula in CNF, is there an assignment to variables that makes the formula true?

- 3-SAT - SAT where each clause has exactly 3 literals

Complexity of exact inference

■ Exact inference of Bayesian networks is NP-complete

- Boolean formula in Conjunctive Normal Form (CNF)
- Boolean variables $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$
- A literal ℓ_{i} is either u_{i} or $\neg u_{i}$
- A clause is a disjunction of literals $\ell_{j_{1}} \vee \ell_{j_{2}} \vee \cdots \vee \ell_{j_{k}}$
- A CNF formula is a conjunction of clauses $C_{1} \wedge C_{2} \wedge \cdots \wedge C_{m}$
- SAT - given a formula in CNF, is there an assignment to variables that makes the formula true?
- 3-SAT - SAT where each clause has exactly 3 literals
- Both SAT and 3-SAT are NP-complete
- No known efficient algorithm - try all possible valuations

Reducing 3-SAT to exact inference

■ Convert a 3-CNF formula into a Bayesian network

$$
\left(c_{1} \wedge c_{2} \cap c_{3}\right.
$$

Reducing 3-SAT to exact inference

- Convert a 3-CNF formula into a Bayesian network
- Top layer: one node for each variable u_{i}

Reducing 3-SAT to exact inference

- Convert a 3-CNF formula into a Bayesian network
- Top layer: one node for each variable u_{i}
- Middle layer: one node for each clause C_{j}
- Parents are three variables whose literals are in C_{j}
- Conditional probability table for C_{j} has 8 rows, for all possible valuations of 3 variables
- $P\left(C_{j}=1\right)=0$ for row where each input literal is false, $P\left(C_{j}=1\right)=1$ for remaining 7 rows

(c)

$$
\left(\begin{array}{ccc}
v_{1}^{0} & v & \prime v_{2}^{\prime} \\
v & v_{2} & v_{3}
\end{array}\right)
$$

c_{1}

| v_{1} v_{2} v_{2} $P\left(c_{1}=T\right)$
 0 0 0 1
 \vdots
 0 1 1 0
 1
 \vdots
 |
| :--- | :--- | :--- | :--- |

Reducing 3-SAT to exact inference

- Convert a 3-CNF formula into a Bayesian network

■ Top layer: one node for each variable u_{i}

- Middle layer: one node for each clause C_{j}
- Parents are three variables whose literals are in C_{j}
- Conditional probability table for C_{j} has 8 rows, for all possible valuations of 3 variables
- $P\left(C_{j}=1\right)=0$ for row where each input literal is
 false, $P\left(C_{j}=1\right)=1$ for remaining 7 rows
- Bottom row builds up $C_{1} \wedge \cdots \wedge C_{m}$ one clause at a time

Reducing 3-SAT to exact inference

- Convert a 3-CNF formula into a Bayesian network

■ Top layer: one node for each variable u_{i}

- Middle layer: one node for each clause C_{j}
- Parents are three variables whose literals are in C_{j}
- Conditional probability table for C_{j} has 8 rows, for all possible valuations of 3 variables
- $P\left(C_{j}=1\right)=0$ for row where each input literal is false, $P\left(C_{j}=1\right)=1$ for remaining 7 rows

- Bottom row builds up $C_{1} \wedge \cdots \wedge C_{m}$ one clause at a time
- $P(Y=1)>0$ iff original 3-CNF formula is satisfiable

Reducing 3-SAT to exact inference

■ Convert a 3-CNF formula into a Bayesian network

- Top layer: one node for each variable u_{i}
- Middle layer: one node for each clause C_{j}
- Parents are three variables whose literals are in C_{j}
- Conditional probability table for C_{j} has 8 rows, for all possible valuations of 3 variables
- $P\left(C_{j}=1\right)=0$ for row where each input literal is
 false, $P\left(C_{j}=1\right)=1$ for remaining 7 rows
- Bottom row builds up $C_{1} \wedge \cdots \wedge C_{m}$ one clause at a time
- $P(Y=1)>0$ iff original 3-CNF formula is satisfiable

