Lecture 6: 25 January, 2024

Madhavan Mukund
https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning January-April 2024

Finding the best fit line

- Training input is

$$
\begin{aligned}
& \text { Training input is } \\
& \left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}
\end{aligned}
$$

$$
J(\theta)=\frac{1}{2} \sum_{i=1}^{n}\left(h_{\theta}\left(x_{i}\right)-y_{i}\right)^{2}
$$

- Essentially, the sum squared error (SSE)

■ Divide by n, mean squared error (MSE)

Minimizing SSE

- Write x_{i} as row vector $\left[\begin{array}{llll}1 & x_{i}^{1} & \cdots & x_{i}^{k}\end{array}\right]$
$\boldsymbol{\bullet}=\left[\begin{array}{c}1 \\ 1 \\ 1 \\ 1 \\ 1\end{array} \begin{array}{ccc}x_{1}^{1} & \cdots & x_{1}^{k} \\ x_{2}^{1} & \cdots & x_{2}^{k} \\ & \cdots & \\ x_{i}^{1} & \cdots & x_{i}^{k} \\ & \cdots & \\ x_{n}^{1} & \cdots & x_{n}^{k}\end{array}\right], y=\left[\begin{array}{c}y_{1} \\ y_{2} \\ \cdots \\ y_{i} \\ \cdots \\ y_{n}\end{array}\right]$
$X \theta$
- Write θ as column vector, $\theta^{T}=\left[\begin{array}{llll}\theta_{0} & \theta_{1} & \cdots & \theta_{k}\end{array}\right]$
- $J(\theta)=\frac{1}{2} \sum_{i=1}^{n}\left(h_{\theta}\left(x_{i}\right)-y_{i}\right)^{2}=\frac{1}{2}(X \theta-y)^{T}(X \theta-y)$

■ Minimize $J(\theta)$ - set $\nabla_{\theta} J(\theta)=0$

Minimizing SSE iteratively

- Normal equation $\theta=\left(X^{\top} X\right)^{-1} X^{\top} y$ is a closed form solution

■ Computational challenges

- Matrix inversion $\left(X^{\top} X\right)^{-1}$ is expensive, also need invertibility
- Iterative approach, make an initial guess

Minimizing SSE iteratively

- Normal equation $\theta=\left(X^{\top} X\right)^{-1} X^{\top} y$ is a closed form solution

■ Computational challenges

- Matrix inversion $\left(X^{\top} X\right)^{-1}$ is expensive, also need invertibility
- Iterative approach, make an initial guess
- Adjust each parameter against gradient
- $\theta_{i}=\theta_{i}-\alpha \frac{\partial}{\partial \theta_{i}} J(\theta)$

Minimizing SSE iteratively

- Normal equation $\theta=\left(X^{\top} X\right)^{-1} X^{\top} y$ is a closed form solution
- Computational challenges
- Matrix inversion $\left(X^{\top} X\right)^{-1}$ is expensive, also need invertibility
- Iterative approach, make an initial guess
- Adjust each parameter against gradient
- $\theta_{i}=\theta_{i}-\alpha \frac{\partial}{\partial \theta_{i}} J(\theta)$

Minimizing SSE iteratively

- Normal equation $\theta=\left(X^{\top} X\right)^{-1} X^{\top} y$ is a closed form solution

$\nabla_{0} J=0$

■ Computational challenges

- Matrix inversion $\left(X^{\top} X\right)^{-1}$ is expensive, also need invertibility
- Iterative approach, make an initial guess
- Adjust each parameter against gradient
- $\theta_{i}=\theta_{i}-\alpha \frac{\partial}{\partial \theta_{i}} J(\theta)$
- Stop when we converge
- Gradient descent

Regression and SSE loss

- Training input is $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$
- Outputs are noisy samples from a linear function

■ $y_{i}=\theta^{\top} x_{i}+\epsilon$

Regression and SSE loss

- Training input is $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$
- Outputs are noisy samples from a linear function

■ $y_{i}=\theta^{T} x_{i}+\epsilon$
■ $\epsilon \sim \mathcal{N}\left(0, \sigma^{2}\right):$ Gaussian noise, mean 0 , fixed variance σ^{2}
■ $y_{i} \sim \mathcal{N}\left(\mu_{i}, \sigma^{2}\right), \mu_{i}=\theta^{T} x_{i}$

$$
\mu=\theta(x)
$$

Regression and SSE loss

- Training input is $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$
- Outputs are noisy samples from a linear function

■ $y_{i}=\theta^{T} x_{i}+\epsilon$

- $\epsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)$: Gaussian noise, mean 0 , fixed variance σ^{2}
- $y_{i} \sim \mathcal{N}\left(\mu_{i}, \sigma^{2}\right), \mu_{i}=\theta^{T} x_{i}$
- Model gives us an estimate for θ, so regression learns μ_{i} for each x_{i}

Regression and SSE loss

- Training input is $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$
- Outputs are noisy samples from a linear function

■ $y_{i}=\theta^{T} x_{i}+\epsilon$

- $\epsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)$: Gaussian noise, mean 0 , fixed variance σ^{2}
- $y_{i} \sim \mathcal{N}\left(\mu_{i}, \sigma^{2}\right), \mu_{i}=\theta^{T} x_{i}$
- Model gives us an estimate for θ, so regression learns μ_{i} for each x_{i}
- How good is our estimate?

Regression and SSE loss

- Training input is $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$
- Outputs are noisy samples from a linear function
- $y_{i}=\theta^{T} x_{i}+\epsilon$
- $\epsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)$: Gaussian noise, mean 0 , fixed variance σ^{2}
- $y_{i} \sim \mathcal{N}\left(\mu_{i}, \sigma^{2}\right), \mu_{i}=\theta^{T} x_{i}$
- Model gives us an estimate for θ, so regression learns μ_{i} for each x_{i}
- How good is our estimate?
- Likelihood - probability of current observation given θ

$$
\mathcal{L}(\theta)=\prod_{i=1}^{n} P\left(y_{i} \mid x_{i} ; \theta\right)
$$

Likelihood

- How good is our estimate?

Likelihood

- How good is our estimate?
- Want Maximum Likelihood Estimator (MLE)
- Find θ that maximizes $\mathcal{L}(\theta)=\prod_{i=1}^{n} P\left(y_{i} \mid x_{i} ; \theta\right)$

Coin toss
7 heads out of 10 heads probability P tare " $(1-p)$

$$
\begin{gathered}
\max _{P} \text { 3. }\binom{10}{7} \underbrace{P^{7}(1-P)^{3}}_{\pi} \\
L=0.7
\end{gathered}
$$

Likelihood

- How good is our estimate?

■ Want Maximum Likelihood Estimator (MLE)
■ Find θ that maximizes $\mathcal{L}(\theta)=\prod_{i=1}^{n} P\left(y_{i} \mid x_{i} ; \theta\right)$

- Equivalently, maximize log likelihood

$$
\ell(\theta)=\log \left(\prod_{i=1}^{n} P\left(y_{i} \mid x_{i} ; \theta\right)\right)=\sum_{i=1}^{n} \log \left(P\left(y_{i} \mid x_{i} ; \theta\right)\right)
$$

- Easier to work with summation than product

Log likelihood and SSE loss

$$
\begin{gathered}
\text { - } y_{i}=\mathcal{N}\left(\mu_{i}, \sigma^{2}\right) \text {, so } P\left(y_{i} \mid x_{i} ; \theta\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\left(y-\mu_{i}^{\prime}\right)^{2}}{2 \sigma^{2}}}\left\langle\mu_{i}\right. \\
y_{i} \in \mathcal{N}\left(\mu_{i}, \sigma^{2}\right)<\mu_{i} \\
\mu_{\iota}=\theta_{x_{i}}^{\top}
\end{gathered}
$$

Log likelihood and SSE loss

- $y_{i}=\mathcal{N}\left(\mu_{i}, \sigma^{2}\right)$, so $P\left(y_{i}\left(x_{i} ; \theta\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\left(y_{i}-\mu_{i}\right)^{2}}{2 \sigma^{2}}}=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\left(y_{i}-\theta^{T} x_{i}\right)^{2}}{2 \sigma^{2}}}\right.$

Log likelihood and SSE loss

■ $y_{i}=\mathcal{N}\left(\mu_{i}, \sigma^{2}\right)$, so $P\left(y_{i} \mid x_{i} ; \theta\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\left(y-\mu_{i}\right)^{2}}{2 \sigma^{2}}}=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\left(y-\theta^{T} x_{i}\right)^{2}}{2 \sigma^{2}}}$

- Log likelihood
$\ell(\theta)=\sum_{i=1}^{n} \log \left(\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\left(y_{i}-\theta^{T} x_{i}\right)^{2}}{2 \sigma^{2}}}\right)$

Log likelihood and SSE loss

■ $y_{i}=\mathcal{N}\left(\mu_{i}, \sigma^{2}\right)$, so $P\left(y_{i} \mid x_{i} ; \theta\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\left(y-\mu_{i}\right)^{2}}{2 \sigma^{2}}}=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\left(y-\theta^{T} x_{i}\right)^{2}}{2 \sigma^{2}}}$

- Log likelihood (assuming natural logarithm) Maximize

$$
\ell(\theta)=\sum_{i=1}^{n} \log \left(\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{\boldsymbol{\theta}^{\left(y-\theta^{T} x_{x_{i}}\right)^{2}}}\right)=n \log \left(\frac{1}{\sqrt{2 \pi \sigma^{2}}}\right)-\sum_{i=1}^{n} \frac{\left(y-\theta^{T} x_{i}\right)^{2}}{2 \sigma^{2}}
$$

Log likelihood and SSE loss

- $y_{i}=\mathcal{N}\left(\mu_{i}, \sigma^{2}\right)$, so $P\left(y_{i} \mid x_{i} ; \theta\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\left(y-\mu_{i}\right)^{2}}{2 \sigma^{2}}}=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\left(y-\theta^{T} x_{i}\right)^{2}}{2 \sigma^{2}}}$
- Log likelihood (assuming natural logarithm)

$$
\ell(\theta)=\sum_{i=1}^{n} \log \left(\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\left(y-\theta^{T} x_{i}\right)^{2}}{2 \sigma^{2}}}\right)=n \log \left(\frac{1}{\sqrt{2 \pi \sigma^{2}}}\right)-\sum_{i=1}^{n} \frac{\left(y-\theta^{T} x_{i}\right)^{2}}{2 \sigma^{2}}
$$

- To maximize $\ell(\theta)$ with respect to θ, ignore all terms that do not depend on θ

Log likelihood and SSE loss

■ $y_{i}=\mathcal{N}\left(\mu_{i}, \sigma^{2}\right)$, so $P\left(y_{i} \mid x_{i} ; \theta\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\left(y-\mu_{i}\right)^{2}}{2 \sigma^{2}}}=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\left(y-\theta^{\top} x_{i}\right)^{2}}{2 \sigma^{2}}}$

- Log likelihood (assuming natural logarithm)

$$
\ell(\theta)=\sum_{i=1}^{n} \log \left(\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\left(y-\theta^{\top} x_{i}\right)^{2}}{2 \sigma^{2}}}\right)=n \log \left(\frac{1}{\sqrt{2 \pi \sigma^{2}}}\right)-\sum_{i=1}^{n} \frac{\left(y-\theta^{T} x_{i}\right)^{2}}{2 \sigma^{2}}
$$

- To maximize $\ell(\theta)$ with respect to θ, ignore all terms that do not depend on θ
- Optimum value of θ is given by

$$
\hat{\theta}_{\mathrm{MSE}}=\underset{\theta}{\arg \max }\left[-\sum_{i=1}^{n}\left(y_{i}-\theta^{T} x_{i}\right)^{2}\right]
$$

Log likelihood and SSE loss

■ $y_{i}=\mathcal{N}\left(\mu_{i}, \sigma^{2}\right)$, so $P\left(y_{i} \mid x_{i} ; \theta\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\left(y-\mu_{i}\right)^{2}}{2 \sigma^{2}}}=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\left(y-\theta^{T} x_{i}\right)^{2}}{2 \sigma^{2}}}$
■ Log likelihood (assuming natural logarithm)

$$
\ell(\theta)=\sum_{i=1}^{n} \log \left(\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\left(y-\theta^{\top} x_{i}\right)^{2}}{2 \sigma^{2}}}\right)=n \log \left(\frac{1}{\sqrt{2 \pi \sigma^{2}}}\right)-\sum_{i=1}^{n} \frac{\left(y-\theta^{T} x_{i}\right)^{2}}{2 \sigma^{2}}
$$

- To maximize $\ell(\theta)$ with respect to θ, ignore all terms that do not depend on θ
- Optimum value of θ is given by

$$
\hat{\theta}_{\text {MSE }}=\underset{\theta}{\arg \max }\left[-\sum_{i=1}^{n}\left(y_{i}-\theta^{T} x_{i}\right)^{2}\right]=\underset{\theta}{\arg \min }\left[\sum_{i=1}^{n}\left(y_{i}-\theta^{T} x_{i}\right)^{2}\right]
$$

Log likelihood and SSE loss

■ $y_{i}=\mathcal{N}\left(\mu_{i}, \sigma^{2}\right)$, so $P\left(y_{i} \mid x_{i} ; \theta\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\left(y-\mu_{i}\right)^{2}}{2 \sigma^{2}}}=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\left(y-\theta^{T} x_{i}\right)^{2}}{2 \sigma^{2}}}$
■ Log likelihood (assuming natural logarithm)

$$
\ell(\theta)=\sum_{i=1}^{n} \log \left(\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\left(y-\theta^{T} x_{i}\right)^{2}}{2 \sigma^{2}}}\right)=n \log \left(\frac{1}{\sqrt{2 \pi \sigma^{2}}}\right)-\sum_{i=1}^{n} \frac{\left(y-\theta^{T} x_{i}\right)^{2}}{2 \sigma^{2}}
$$

- To maximize $\ell(\theta)$ with respect to θ, ignore all terms that do not depend on θ
- Optimum value of θ is given by

$$
\hat{\theta}_{\mathrm{MSE}}=\underset{\theta}{\arg \max }\left[-\sum_{i=1}^{n}\left(y_{i}-\theta^{T} x_{i}\right)^{2}\right]=\underset{\theta}{\arg \min }\left[\sum_{i=1}^{n}\left(y_{i}-\theta^{T} x_{i}\right)^{2}\right]
$$

- Assuming data points are generated by linear function and then perturbed by Gaussian noise, SSE is the "correct" loss function to maximize likelihood

The non-linear case

- What if the relationship is not linear?

The non-linear case

- What if the relationship is not linear?
- Here the best possible explanation seems to be a quadratic

The non-linear case

- What if the relationship is not linear?
- Here the best possible explanation seems to be a quadratic
- Non-linear : cross dependencies

The non-linear case

- What if the relationship is not linear?
- Here the best possible explanation seems to be a quadratic
- Non-linear : cross dependencies

■ Input $x_{i}:\left(x_{i_{1}}, x_{i_{2}}\right)$

The non-linear case

- What if the relationship is not linear?
- Here the best possible explanation seems to be a quadratic

■ Non-linear: cross dependencies

■ Input $x_{i}:\left(x_{i_{1}}, x_{i_{2}}\right)$

- Quadratic dependencies:

$$
y=\theta_{0}+\theta_{1} x_{i_{1}}+\theta_{2} x_{i_{2}}+\theta_{11} x_{i_{1}}^{2}+\theta_{22} x_{i_{2}}^{2}+\theta_{12} x_{i_{1}} x_{i_{2}}
$$

The non-linear case

- Recall how we fit a line

$$
\left[\begin{array}{ll}
1 & x_{i}
\end{array}\right]\left[\begin{array}{l}
\theta_{0} \\
\theta_{1}
\end{array}\right]
$$

The non-linear case

- Recall how we fit a line

$$
\left[\begin{array}{ll}
1 & x_{i}
\end{array}\right]\left[\begin{array}{l}
\theta_{0} \\
\theta_{1}
\end{array}\right]
$$

- For quadratic, add new coefficients and expand parameters

$$
\left[\begin{array}{lll}
1 & x_{i} & x_{i}^{2}
\end{array}\right]\left[\begin{array}{l}
\theta_{0} \\
\theta_{1} \\
\theta_{2}
\end{array}\right]
$$

The non-linear case

■ Input $\left(x_{i_{1}}, x_{i_{2}}\right)$

The non-linear case

\square Input $\left(x_{i_{1}}, x_{i_{2}}\right)$

- For the general quadratic case, we add new derived "features'

$$
\begin{aligned}
& x_{i_{3}}=x_{i_{1}}^{2} \\
& x_{i_{4}}=x_{i_{2}}^{2} \\
& x_{i_{5}}=x_{i_{1}} x_{i_{2}}
\end{aligned}
$$

The non-linear case

■ Original input matrix
$\left[\begin{array}{ccc}1 & x_{1_{1}} & x_{1_{2}} \\ 1 & x_{2_{1}} & x_{2_{2}} \\ & \cdots & \\ 1 & x_{i_{1}} & x_{i_{2}} \\ & \cdots & \\ 1 & x_{n_{1}} & x_{2}\end{array}\right]$

The non-linear case

- Expanded input matrix

$$
\left[\begin{array}{cccccc}
& \boldsymbol{x}_{\mathbf{1}} & \boldsymbol{x}_{\mathbf{2}} & \boldsymbol{x}_{\mathbf{3}} & \boldsymbol{x}_{\mathbf{4}} & \boldsymbol{x}_{\mathbf{5}} \\
1 & x_{1_{1}} & x_{1_{2}} & x_{1_{1}}^{2} & x_{1_{2}}^{2} & x_{1_{1}} x_{1_{2}} \\
1 & x_{2_{1}} & x_{2_{2}} & x_{2_{1}}^{2} & x_{2_{2}^{2}} & x_{2_{1}} x_{2_{2}} \\
& \ldots & & & & \\
1 & x_{i_{1}} & x_{i_{2}} & x_{i_{1}}^{2} & x_{i_{2}}^{2} & x_{i_{1}} x_{i_{2}} \\
& \ldots & & x_{n_{2}} & x_{n_{1}}^{2} & x_{n_{2}}^{2} \\
1 & x_{n_{1}} x_{n_{2}}
\end{array}\right]
$$

The non-linear case

- Expanded input matrix
$\left[\begin{array}{cccccc}1 & x_{1_{1}} & x_{1_{2}} & x_{1_{1}}^{2} & x_{1_{2}}^{2} & x_{1_{1}} x_{1_{2}} \\ 1 & x_{2_{1}} & x_{2_{2}} & x_{2_{1}}^{2} & x_{2_{2}}^{2} & x_{2_{1}} x_{2_{2}} \\ & \ldots & & & \\ 1 & x_{i_{1}} & x_{i_{2}} & x_{i_{1}}^{2} & x_{i_{2}}^{2} & x_{i_{1}} x_{i_{2}} \\ & \ldots & & & \\ 1 & x_{n_{1}} & x_{n_{2}} & x_{n_{1}}^{2} & x_{n_{2}}^{2} & x_{n_{1}} x_{n_{2}}\end{array}\right]$

■ New columns are computed and filled in from original
 inputs

Exponential parameter blow-up

- Cubic derived features

$$
\begin{aligned}
& x_{i_{1}}^{3}, x_{i_{2}}^{3}, x_{i_{3}}^{3} \\
& x_{i_{1}}^{2} x_{i_{2}}, x_{i_{1}}^{2} x_{i_{3}} \\
& x_{i_{2}}^{2} x_{i_{1}}, x_{i_{2}}^{2} x_{i_{3}} \\
& x_{i_{3}}^{2} x_{i_{1}}, x_{i_{3}}^{2} x_{i_{2}} \\
& x_{i_{1}} x_{i_{2}} x_{i_{3}} \\
& x_{i_{1}}^{2}, x_{i_{2}}^{2}, x_{i_{3}}^{2} \\
& x_{i_{1}} x_{i_{2}}, x_{i_{1}} x_{i_{3}}, x_{i_{2}} x_{i_{3}} \\
& x_{i_{1}}, x_{i_{2}}, x_{i_{3}}
\end{aligned}
$$

Higher degree polynomials

- How complex a polynomial should we try?

Higher degree polynomials

- How complex a polynomial should we try?
- Aim for degree that minimizes SSE

Higher degree polynomials

- How complex a polynomial should we try?
- Aim for degree that minimizes SSE
- As degree increases, features explode exponentially

Overfitting

■ Need to be careful about adding higher degree terms

Overfitting

- Need to be careful about adding higher degree terms
- For n training points, can always fit polynomial of degree $(n-1)$ exactly

■ However, such a curve would not generalize well to new data points

Overfitting

- Need to be careful about adding higher degree terms
- For n training points, can always fit polynomial of degree $(n-1)$ exactly

■ However, such a curve would not generalize well to new data points

- Overfitting — model fits training data well, performs poorly on unseen data

Regularization

- Need to trade off SSE against curve complexity

Regularization

- Need to trade off SSE against curve complexity
- So far, the only cost has been SSE

Regularization

- Need to trade off SSE against curve complexity
- So far, the only cost has been SSE
- Add a cost related to parameters $\left(\theta_{0}, \theta_{1}, \ldots, \theta_{k}\right)$

Regularization

- Need to trade off SSE against curve complexity
- So far, the only cost has been SSE
- Add a cost related to parameters $\left(\theta_{0}, \theta_{1}, \ldots, \theta_{k}\right)$
- Minimize, for instance

$$
\frac{\frac{1}{2} \sum_{i=1}^{n}\left(z_{i}-y_{i}\right)^{2}}{\text { SSE }} \frac{\sum_{j=1}^{k} \theta_{j}^{2}}{\operatorname{Coeff} \text { cost }}
$$

Regularization

$$
\frac{1}{2} \sum_{i=1}^{n}\left(z_{i}-y_{i}\right)^{2}+\sum_{j=1}^{k} \theta_{j}^{2}
$$

- Second term penalizes curve complexity
- Variations on regularafization
- Ridge regression: $\sum_{j=1}^{k} \theta_{j}^{2}$
- LASSO regression: $\sum_{j=1}^{k}\left|\theta_{j}\right|$

- Elastic net regression: $\sum_{j=1}^{k} \lambda_{1}\left|\theta_{j}\right|+\lambda_{2} \theta_{j}^{2}$

The non-polynomial case

- Percentage of urban population as a function of per capita GDP
- Not clear what polynomial would be reasonable

The non-polynomial case

- Percentage of urban population as a function of per capita GDP
- Not clear what polynomial would be reasonable
- Take log of GDP
- Regression we are computing is
$y=\theta_{0}+\theta_{1} \log x_{1}$
$\left[\begin{array}{cc}1 & x_{1} \\ 1 & x_{2} \\ & i\end{array}\right] \rightarrow\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right.$

The non-polynomial case

- Reverse the relationship
- Plot per capita GDP in terms of percentage of urbanization
- Now we take log of the output variable $\log y=\theta_{0}+\theta_{1} x_{1}$
- Log-linear transformation

■ Earlier was linear-log

- Can also use log-log

