Lecture 25: 23 April, 2024

Madhavan Mukund
https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning January-April 2024

Markov Decision Process

Policy π Given s, choose a

Optimal policies and value functions

- Optimal policy $\pi_{*}, \pi_{*} \geq \pi$ for every π — always exists, but may not be unique

Optimal policies and value functions

■ Optimal policy $\pi_{*}, \pi_{*} \geq \pi$ for every π — always exists, but may not be unique

- Optimal state value function, $v_{*}(s) \triangleq \max _{\pi} v_{\pi}(s)=v_{\pi_{*}}(s)$
- Optimal action value function, $q_{*}(s, a) \triangleq \max _{\pi} q_{\pi}(s, a)=q_{\pi_{*}}(s, a)$
v_{π}
v_{π} at π_{k}

Optimal policies and value functions

■ Optimal policy $\pi_{*}, \pi_{*} \geq \pi$ for every π — always exists, but may not be unique

- Optimal state value function, $v_{*}(s) \triangleq \max _{\pi} v_{\pi}(s)=v_{\pi_{*}}(s)$
- Optimal action value function, $q_{*}(s, a) \triangleq \max _{\pi} q_{\pi}(s, a)=q_{\pi_{*}}(s, a)$
- Bellman optimality equation for v_{*}

$$
\begin{gathered}
v_{t}(s)=\operatorname{mot}_{2 \times 2} \sum_{s, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\gamma v_{s}\left(s^{\prime}\right)\right] \quad \text { not a linear operator, } \\
\text { Not LP }
\end{gathered}
$$

Optimal policies and value functions

■ Optimal policy $\pi_{*}, \pi_{*} \geq \pi$ for every π — always exists, but may not be unique

- Optimal state value function, $v_{*}(s) \triangleq \max _{\pi} v_{\pi}(s)=v_{\pi_{*}}(s)$
- Optimal action value function, $q_{*}(s, a) \triangleq \max _{\pi} q_{\pi}(s, a)=q_{\pi_{*}}(s, a)$
- Bellman optimality equation for v_{*}

$$
v_{*}(s)=\max _{a} \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\gamma v_{*}\left(s^{\prime}\right)\right]
$$

- Likewise, for action value function

$$
q_{*}(s, a)=\sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\max _{a^{\prime}} \gamma \boldsymbol{q}_{*}\left(s^{\prime}, a^{\prime}\right)\right]
$$

Optimal policies and value functions

■ Optimal policy $\pi_{*}, \pi_{*} \geq \pi$ for every π — always exists, but may not be unique

- Optimal state value function, $v_{*}(s) \triangleq \max _{\pi} v_{\pi}(s)=v_{\pi_{*}}(s)$
- Optimal action value function, $q_{*}(s, a) \triangleq \max _{\pi} q_{\pi}(s, a)=q_{\pi_{*}}(s, a)$
- Bellman optimality equation for v_{*}

$$
v_{*}(s)=\max _{a} \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\gamma v_{*}\left(s^{\prime}\right)\right]
$$

- Likewise, for action value function

$$
q_{*}(s, a)=\sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\max _{a^{\prime}} \gamma q_{*}\left(s^{\prime}, a^{\prime}\right)\right]
$$

■ For finite state MDPs, can solve explicitly for $v_{*}-n$ equations in n unknowns,

Optimal policies and value functions

■ Optimal policy $\pi_{*}, \pi_{*} \geq \pi$ for every π — always exists, but may not be unique

- Optimal state value function, $v_{*}(s) \triangleq \max _{\pi} v_{\pi}(s)=v_{\pi_{*}}(s)$
- Optimal action value function, $q_{*}(s, a) \triangleq \max _{\pi} q_{\pi}(s, a)=q_{\pi_{*}}(s, a)$
- Bellman optimality equation for v_{*}

$$
v_{*}(s)=\max _{a} \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\gamma v_{*}\left(s^{\prime}\right)\right]
$$

- Likewise, for action value function

$$
q_{*}(s, a)=\sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\max _{a^{\prime}} \gamma q_{*}\left(s^{\prime}, a^{\prime}\right)\right]
$$

■ For finite state MDPs, can solve explicitly for $v_{*}-n$ equations in n unknowns,
■ n large, computationally infeasible - use iterative methods to approximate v_{*}

Policy evaluation

■ Given a policy π, compute its state value function v_{π}

Policy evaluation

- Given a policy π, compute its state value function v_{π}
- Bellman equations: $v_{\pi}(s)=\sum_{a} \pi(a \mid s) \sum_{s^{\prime}} \sum_{r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\gamma v_{\pi}\left(s^{\prime}\right)\right]$
- For MDP with n states, n equations in n unknowns

■ Can solve to get v_{π}, but computationally infeasible for large n

Policy evaluation

- Given a policy π, compute its state value function v_{π}
- Bellman equations: $v_{\pi}(s)=\sum_{a} \pi(a \mid s) \sum_{s^{\prime}} \sum_{r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\gamma v_{\pi}\left(s^{\prime}\right)\right]$
- For MDP with n states, n equations in n unknowns

■ Can solve to get v_{π}, but computationally infeasible for large n

- Instead, use the Bellman equations as update rules

Policy evaluation

- Given a policy π, compute its state value function v_{π}
- Bellman equations: $v_{\pi}(s)=\sum_{a} \pi(a \mid s) \sum_{s^{\prime}} \sum_{r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\gamma v_{\pi}\left(s^{\prime}\right)\right]$
- For MDP with n states, n equations in n unknowns

■ Can solve to get v_{π}, but computationally infeasible for large n

- Instead, use the Bellman equations as update rules

■ Initialize $v_{\pi}^{0}(s)$: set $v_{\pi}^{0}($ term $)=0$ for terminal state term, arbitrary values for other s

Policy evaluation

- Given a policy π, compute its state value function v_{π}

■ Bellman equations: $v_{\pi}(s)=\sum_{a} \pi(a \mid s) \sum_{s^{\prime}} \sum_{r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\gamma v_{\pi}\left(s^{\prime}\right)\right]$

- For MDP with n states, n equations in n unknowns
- Can solve to get v_{π}, but computationally infeasible for large n

■ Instead, use the Bellman equations as update rules

- Initialize $v_{\pi}^{0}(s)$: set v_{π}^{0} (term) $=0$ for terminal state term, arbitrary values for other s

■ Update v_{π}^{k} to v_{π}^{k+1} using: $v_{\pi}^{k+1}(s)=\sum_{a} \pi(a \mid s) \sum_{s^{\prime}} \sum_{r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\gamma v_{\pi}^{k}\left(s^{\prime}\right)\right]$

Policy evaluation

■ Given a policy π, compute its state value function v_{π}
■ Bellman equations: $v_{\pi}(s)=\sum_{a} \pi(a \mid s) \sum_{s^{\prime}} \sum_{r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\gamma v_{\pi}\left(s^{\prime}\right)\right]$

- For MDP with n states, n equations in n unknowns
- Can solve to get v_{π}, but computationally infeasible for large n

■ Instead, use the Bellman equations as update rules

- Initialize $v_{\pi}^{0}(s)$: set v_{π}^{0} (term) $=0$ for terminal state term, arbitrary values for other s

■ Update v_{π}^{k} to v_{π}^{k+1} using: $v_{\pi}^{k+1}(s)=\sum_{a} \pi(a \mid s) \sum_{s^{\prime}} \sum_{r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\gamma v_{\pi}^{k}\left(s^{\prime}\right)\right]$

- Stop when incremental change $\Delta=\left|v_{\pi}^{k+1}-v_{\pi}^{k}\right|$ is below threshold θ

Policy evaluation

Iterative Policy Evaluation, for estimating $V \approx v_{\pi}$
Input π, the policy to be evaluated
Algorithm parameter: a small threshold $\theta>0$ determining accuracy of estimation Initialize $V(s)$, for all $s \in \mathcal{S}^{+}$, arbitrarily except that $V($ terminal $)=0$

Loop:
$\Delta \leftarrow 0$
Loop for each $s \in \mathcal{S}$:

$$
\begin{aligned}
& v \leftarrow V(s) \\
& V(s) \leftarrow \sum_{a} \pi(a \mid s) \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\gamma V\left(s^{\prime}\right)\right] \\
& \Delta \leftarrow \max (\Delta,|v-V(s)|)
\end{aligned}
$$

until $\Delta<\theta$

Policy evaluation example

Moves dekermimstie
Hilting boundary - no

$$
k=1
$$

0.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	0.0

$$
k=10
$$

0.0	-6.1	-8.4	-9.0
-6.1	-7.7	-8.4	-8.4
-8.4	-8.4	-7.7	-6.1
-9.0	-8.4	-6.1	0.0

$$
k=2 \quad \begin{array}{|l|l|l|l|}
\hline 0.0 & -1.7 & -2.0 & -2.0 \\
\hline-1.7 & -2.0 & -2.0 & -2.0 \\
\hline-2.0 & -2.0 & -2.0 & -1.7 \\
\hline-2.0 & -2.0 & -1.7 & 0.0 \\
\hline
\end{array} \quad k=\infty
$$

0.0	-14.	-20.	-22.
-14.	-18.	-20.	-20
-20.	-20.	-18.	-14.
-22.	-20.	-14.	0.0

Policy improvement

- Assume a deterministic policy π
- Using v_{π}, can we find a better policy π^{\prime} ?

Policy improvement

- Assume a deterministic policy π
- Using v_{π}, can we find a better policy π^{\prime} ?

■ Is there a state s where we can substitute $\pi(s)$ by a better choice a ?

Policy improvement

- Assume a deterministic policy π
- Using v_{π}, can we find a better policy π^{\prime} ?
- Is there a state s where we can substitut $\pi(s)$ by a better choice a ?
- $q_{\pi}(s, a)=\mathbb{E}\left[R_{t+1}+\gamma v_{\pi}\left(S_{t+1}\right) \mid S_{t}=\int A_{t}=a\right]$

$$
\left.=\sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\gamma \mathcal{O}^{\prime} s^{\prime}\right)\right]
$$

Policy improvement

- Assume a deterministic policy π
- Using v_{π}, can we find a better policy π^{\prime} ?
- Is there a state s where we can substitute $\pi(s)$ by a better choice a ?

■ $q_{\pi}(s, a)=\mathbb{E}\left[R_{t+1}+\gamma v_{\pi}\left(S_{t+1}\right) \mid S_{t}=s, A_{t}=a\right]$

$$
=\sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\gamma v_{\pi}\left(s^{\prime}\right)\right]
$$

- If $q_{\pi}(s, a)>v_{\pi}(s)$, modify π so that $\pi(s)=a$

Policy improvement

- Assume a deterministic policy π

■ Using v_{π}, can we find a better policy π^{\prime} ?

- Is there a state s where we can substitute $\pi(s)$ by a better choice a ?

■ $q_{\pi}(s, a)=\mathbb{E}\left[R_{t+1}+\gamma v_{\pi}\left(S_{t+1}\right) \mid S_{t}=s, A_{t}=a\right]$

$$
=\sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\gamma v_{\pi}\left(s^{\prime}\right)\right]
$$

- If $q_{\pi}(s, a)>v_{\pi}(s)$, modify π so that $\pi(s)=a$
- The new policy π^{\prime} is strictly better

Policy improvement

Policy Improvement Theorem

For deterministic policies π, π^{\prime} :

- If $q_{\pi}\left(s, \pi^{\prime}(s)\right) \geq v_{\pi}(s)$ for all s, then $\pi^{\prime} \geq \pi$,
- If $\pi^{\prime} \geq \pi$ and $q_{\pi}\left(s, \pi^{\prime}(s)\right)>v_{\pi}(s)$ for some s, then $v_{\pi^{\prime}}(s)>v_{\pi}(s)$.

Policy improvement

Policy Improvement Theorem

For deterministic policies π, π^{\prime} :

- If $q_{\pi}\left(s, \pi^{\prime}(s)\right) \geq v_{\pi}(s)$ for all s, then $\pi^{\prime} \geq \pi$,
- If $\pi^{\prime} \geq \pi$ and $q_{\pi}\left(s, \pi^{\prime}(s)\right)>v_{\pi}(s)$ for some s, then $v_{\pi^{\prime}}(s)>v_{\pi}(s)$.
- Proof of the theorem is not difficult for deterministic policies

Policy improvement

Policy Improvement Theorem

For deterministic policies π, π^{\prime} :

- If $q_{\pi}\left(s, \pi^{\prime}(s)\right) \geq v_{\pi}(s)$ for all s, then $\pi^{\prime} \geq \pi$,
- If $\pi^{\prime} \geq \pi$ and $q_{\pi}\left(s, \pi^{\prime}(s)\right)>v_{\pi}(s)$ for some s, then $v_{\pi^{\prime}}(s)>v_{\pi}(s)$.
- Proof of the theorem is not difficult for deterministic policies
- The theorem extends to probabilistic policies also

Policy improvement

Policy Improvement Theorem

For deterministic policies π, π^{\prime} :

- If $q_{\pi}\left(s, \pi^{\prime}(s)\right) \geq v_{\pi}(s)$ for all s, then $\pi^{\prime} \geq \pi$,
- If $\pi^{\prime} \geq \pi$ and $q_{\pi}\left(s, \pi^{\prime}(s)\right)>v_{\pi}(s)$ for some s, then $v_{\pi^{\prime}}(s)>v_{\pi}(s)$.
- Proof of the theorem is not difficult for deterministic policies
- The theorem extends to probabilistic policies also

■ Provides a basis to iteratively improve the policy

Policy iteration

- Start with a random policy π_{0}

Policy iteration

- Start with a random policy π_{0}
- Use policy evaluation to compute $v_{\pi_{0}}$

Policy iteration

- Start with a random policy π_{0}
- Use policy evaluation to compute $v_{\pi_{0}}$
- Use policy improvement to construct a better policy π_{1}

Policy iteration

- Start with a random policy π_{0}
- Use policy evaluation to compute $v_{\pi_{0}}$
- Use policy improvement to construct a better policy π_{1}
- Policy iteration: Alternate between policy evaluation and policy improvement $\pi_{0} \xrightarrow{\text { evaluate }} v_{\pi_{0}} \xrightarrow{\text { improve }} \pi_{1} \xrightarrow{\text { evaluate }} v_{\pi_{1}} \xrightarrow{\text { improve }} \pi_{2} \xrightarrow{\text { evaluate }} \cdots$

Policy iteration

- Start with a random policy π_{0}
- Use policy evaluation to compute $v_{\pi_{0}}$
- Use policy improvement to construct a better policy π_{1}

■ Policy iteration: Alternate between policy evaluation and policy improvement $\pi_{0} \xrightarrow{\text { evaluate }} v_{\pi_{0}} \xrightarrow{\text { improve }} \pi_{1} \xrightarrow{\text { evaluate }} v_{\pi_{1}} \xrightarrow{\text { improve }} \pi_{2} \xrightarrow{\text { evaluate }} \cdots \xrightarrow{\text { improve }} \pi_{*} \xrightarrow{\text { evaluate }} v_{\pi_{*}}$

■ Finite MDPs - can improve π only finitely many times,

- Must converge to optimal policy

Policy iteration

- Start with a random policy π_{0}
- Use policy evaluation to compute $v_{\pi_{0}}$
- Use policy improvement to construct a better policy π_{1}

■ Policy iteration: Alternate between policy evaluation and policy improvement $\pi_{0} \xrightarrow{\text { evaluate }} v_{\pi_{0}} \xrightarrow{\text { improve }} \pi_{1} \xrightarrow{\text { evaluate }} v_{\pi_{1}} \xrightarrow{\text { improve }} \pi_{2} \xrightarrow{\text { evaluate }} \cdots \xrightarrow{\text { improve }} \pi_{*} \xrightarrow{\text { evaluate }} v_{\pi_{*}}$

■ Finite MDPs - can improve π only finitely many times,

- Must converge to optimal policy

■ Nested iteration - each policy evaluation is itself an iteration
■ Speed up by using $v_{\pi_{i}}$ as initial state to compute $v_{\pi_{i+1}}$

Policy iteration

Policy Iteration (using iterative policy evaluation) for estimating $\pi \approx \pi_{*}$

1. Initialization
$V(s) \in \mathbb{R}$ and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in \mathcal{S}$
2. Policy Evaluation

Loop:
$\Delta \leftarrow 0$
Loop for each $s \in S$:

$$
v \leftarrow V(s)
$$

$$
V(s) \leftarrow \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, \pi(s)\right)\left[r+\gamma V\left(s^{\prime}\right)\right]
$$

$$
\Delta \leftarrow \max (\Delta,|v-V(s)|)
$$

until $\Delta<\theta$ (a small positive number determining the accuracy of estimation)
3. Policy Improvement
policy-stable \leftarrow true
For each $s \in \mathcal{S}$:
old-action $\leftarrow \pi(s)$
$\pi(s) \leftarrow \arg \max _{a} \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\gamma V\left(s^{\prime}\right)\right]$
If old-action $\neq \pi(s)$, then policy-stable \leftarrow false
If policy-stable, then stop and return $V \approx v_{*}$ and $\pi \approx \pi_{*}$; else go to 2

Optimizing Policy Iteration

Value iteration

- Policy iteration - policy evaluation requires a nested iteration

Value iteration

- Policy iteration - policy evaluation requires a nested iteration

■ A partial computation of $v_{\pi_{k}}$ is sufficent to proceed towards π_{*}, v_{*}

Value iteration

- Policy iteration - policy evaluation requires a nested iteration
- A partial computation of $v_{\pi_{k}}$ is sufficent to proceed towards π_{*}, v_{*}
- Even a single iteration in the computation of $v_{\pi_{k}}$ will do

Value iteration

- Policy iteration - policy evaluation requires a nested iteration
- A partial computation of $v_{\pi_{k}}$ is sufficent to proceed towards π_{*}, v_{*}
- Even a single iteration in the computation of $v_{\pi_{k}}$ will do
- Combine policy improvement and one step update at each state

Value iteration

- Policy iteration - policy evaluation requires a nested iteration
- A partial computation of $v_{\pi_{k}}$ is sufficent to proceed towards π_{*}, v_{*}
- Even a single iteration in the computation of $v_{\pi_{k}}$ will do
- Combine policy improvement and one step update at each state
- Value iteration

$$
\begin{aligned}
v_{\pi_{k+1}}(s, a) & =\max _{a} \mathbb{E}\left[R_{t+1}+\gamma v_{\pi_{k}}\left(S_{t+1}\right) \mid S_{t}=s, A_{t}=a\right] \\
& =\max _{a} \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\gamma v_{\pi_{k}}\left(s^{\prime}\right)\right]
\end{aligned}
$$

Value iteration

- Policy iteration - policy evaluation requires a nested iteration
- A partial computation of $v_{\pi_{k}}$ is sufficent to proceed towards π_{*}, v_{*}
- Even a single iteration in the computation of $v_{\pi_{k}}$ will do
- Combine policy improvement and one step update at each state
- Value iteration

$$
\begin{aligned}
v_{\pi_{k+1}}(s, a) & =\max _{a} \mathbb{E}\left[R_{t+1}+\gamma v_{\pi_{k}}\left(S_{t+1}\right) \mid S_{t}=s, A_{t}=a\right] \\
& =\max _{a} \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\gamma v_{\pi_{k}}\left(s^{\prime}\right)\right]
\end{aligned}
$$

- Again, stop when incremental change $\Delta=\left|v_{\pi_{k+1}}-v_{\pi_{k}}\right|$ is below threshold θ

Dynamic programming

■ In the literature, policy iteration and value iteration are referred to as dynamic programming methods

Dynamic programming

■ In the literature, policy iteration and value iteration are referred to as dynamic programming methods

■ Requires knowledge of the model - $p\left(s^{\prime}, r \mid s, a\right)$

Dynamic programming

■ In the literature, policy iteration and value iteration are referred to as dynamic programming methods

- Requires knowledge of the model - $p\left(s^{\prime}, r \mid s, a\right)$

■ How to combine policy evaluation and policy improvement is flexible

- Value iteration is policy iteration with policy evaluation truncated to a single step
- Generalized policy iteration - simultaneously maintain and update approximations of π_{*} and v_{*}

Dynamic programming

■ In the literature, policy iteration and value iteration are referred to as dynamic programming methods

- Requires knowledge of the model - $p\left(s^{\prime}, r \mid s, a\right)$
- How to combine policy evaluation and policy improvement is flexible
- Value iteration is policy iteration with policy evaluation truncated to a single step
- Generalized policy iteration - simultaneously maintain and update approximations of π_{*} and v_{*}

■ Asynchronous dynamic programming for large state spaces

