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Markov Decision Process
-

St -> At-> StH

S - states
↑
-

Rt+I

A - actions
agent
chooses

p(s', r/s ,a)

Policy Th Given s
,
choose a



Optimal policies and value functions

Optimal policy ⇡⇤, ⇡⇤ � ⇡ for every ⇡ — always exists, but may not be unique

Optimal state value function, v⇤(s)
4
= max

⇡
v⇡(s) = v⇡⇤(s)

Optimal action value function, q⇤(s, a)
4
= max

⇡
q⇡(s, a) = q⇡⇤(s, a)

Bellman optimality equation for v⇤

v⇤(s) = max
a

X

s0,r

p(s 0, r | s, a)[r + �v⇤(s
0)]

Likewise, for action value function

q⇤(s, a) =
X

s0,r

p(s 0, r | s, a)[r +max
a0

�q⇤(s
0, a0)]

For finite state MDPs, can solve explicitly for v⇤ — n equations in n unknowns,

n large, computationally infeasible — use iterative methods to approximate v⇤
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Policy evaluation

Given a policy ⇡, compute its state value function v⇡

Bellman equations: v⇡(s) =
X

a

⇡(a | s)
X

s0

X

r

p(s 0, r | s, a)
⇥
r + �v⇡(s

0)
⇤

For MDP with n states, n equations in n unknowns

Can solve to get v⇡, but computationally infeasible for large n

Instead, use the Bellman equations as update rules

Initialize v0
⇡(s): set v

0
⇡(term) = 0 for terminal state term, arbitrary values for other s

Update vk
⇡ to vk+1

⇡ using: vk+1
⇡ (s) =

X

a

⇡(a | s)
X

s0

X

r

p(s 0, r | s, a)
⇥
r + �vk

⇡(s
0)
⇤

Stop when incremental change � = |vk+1
⇡ � vk

⇡ | is below threshold ✓
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Policy evaluation
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Policy evaluation example
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Moves deterministic

Hitting boundary - no

change of position



Policy improvement

Assume a deterministic policy ⇡

Using v⇡, can we find a better policy ⇡0?

Is there a state s where we can substitute ⇡(s) by a better choice a?

q⇡(s, a) = E[Rt+1 + �v⇡(St+1) | St = s,At = a]

=
X

s0,r

p(s 0, r | s, a)
⇥
r + �v⇡(s

0)
⇤

If q⇡(s, a) > v⇡(s), modify ⇡ so that ⇡(s) = a

The new policy ⇡0 is strictly better
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Policy improvement

Policy Improvement Theorem

For deterministic policies ⇡, ⇡0:

If q⇡(s,⇡0(s)) � v⇡(s) for all s, then ⇡0 � ⇡,

If ⇡0 � ⇡ and q⇡(s,⇡0(s)) > v⇡(s) for some s, then v⇡0(s) > v⇡(s).

Proof of the theorem is not di�cult for deterministic policies

The theorem extends to probabilistic policies also

Provides a basis to iteratively improve the policy
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Policy iteration

Start with a random policy ⇡0

Use policy evaluation to compute v⇡0

Use policy improvement to construct a better policy ⇡1

Policy iteration: Alternate between policy evaluation and policy improvement

⇡0
evaluate�����! v⇡0

improve����! ⇡1
evaluate�����! v⇡1

improve����! ⇡2
evaluate�����! · · ·

Finite MDPs — can improve ⇡ only finitely many times,

Must converge to optimal policy

Nested iteration — each policy evaluation is itself an iteration

Speed up by using v⇡i as initial state to compute v⇡i+1
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Policy iteration
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Optimizing Policy Iteration
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Value iteration

Policy iteration — policy evaluation requires a nested iteration

A partial computation of v⇡k is su�cent to proceed towards ⇡⇤, v⇤

Even a single iteration in the computation of v⇡k will do

Combine policy improvement and one step update at each state

Value iteration

v⇡k+1(s, a) = max
a

E[Rt+1 + �v⇡k (St+1) | St = s,At = a]

= max
a

X

s0,r

p(s 0, r | s, a)
⇥
r + �v⇡k (s

0)
⇤

Again, stop when incremental change � = |v⇡k+1 � v⇡k | is below threshold ✓
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Dynamic programming

In the literature, policy iteration and value iteration are referred to as dynamic
programming methods

Requires knowledge of the model — p(s 0, r | s, a)

How to combine policy evaluation and policy improvement is flexible

Value iteration is policy iteration with policy evaluation truncated to a single step

Generalized policy iteration — simultaneously maintain and update approximations of
⇡⇤ and v⇤

Asynchronous dynamic programming for large state spaces
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