Lecture 13: 22 February, 2022

Madhavan Mukund
https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning January-April 2024

The curse of dimensionality

- ML data is often high dimensional - especially images
- A 1000×1000 pixel image has 10^{6} features

The curse of dimensionality

■ ML data is often high dimensional - especially images

- A 1000×1000 pixel image has 10^{6} features

■ Data behaves very differently in high dimensions

- $2 D$ unit square, 0.4% probability of being near the border (within 0.001)

The curse of dimensionality
■ ML data is often high dimensional - especially images

- A 1000×1000 pixel image has 10^{6} features
- Data behaves very differently in high dimensions
- $2 D$ unit square, 0.4% probability of being near the border (within 0.001)
- $10^{4} D$ hypercube, 99.999999% probability of being near the border

$$
\begin{aligned}
& 1-(0.998)^{n} \\
& n=10^{6}=0.99 \sim 98
\end{aligned}
$$

The curse of dimensionality

■ ML data is often high dimensional - especially images

- A 1000×1000 pixel image has 10^{6} features

■ Data behaves very differently in high dimensions

- $2 D$ unit square, 0.4% probability of being near the border (within 0.001)
- $10^{4} \mathrm{D}$ hypercube, 99.999999% probability of being near the border
- Distances between items

The curse of dimensionality

■ ML data is often high dimensional - especially images

- A 1000×1000 pixel image has 10^{6} features

■ Data behaves very differently in high dimensions

- $2 D$ unit square, 0.4% probability of being near the border (within 0.001)
- $10^{4} \mathrm{D}$ hypercube, 99.999999% probability of being near the border
- Distances between items
- $2 D$ unit square, mean distance between 2 random points is 0.52

The curse of dimensionality

■ ML data is often high dimensional - especially images

- A 1000×1000 pixel image has 10^{6} features

■ Data behaves very differently in high dimensions

- $2 D$ unit square, 0.4% probability of being near the border (within 0.001)
- $10^{4} \mathrm{D}$ hypercube, 99.999999% probability of being near the border
- Distances between items
- $2 D$ unit square, mean distance between 2 random points is 0.52
- 3D unit cube, mean distance between 2 random points is 0.66

The curse of dimensionality

■ ML data is often high dimensional - especially images

- A 1000×1000 pixel image has 10^{6} features
- Data behaves very differently in high dimensions
- $2 D$ unit square, 0.4% probability of being near the border (within 0.001)
- $10^{4} \mathrm{D}$ hypercube, 99.999999% probability of being near the border
- Distances between items
- $2 D$ unit square, mean distance between 2 random points is 0.52
- 3D unit cube, mean distance between 2 random points is 0.66
- $10^{6} \mathrm{D}$ unit hypercube, mean distance between 2 random points is approximately 408.25

The curse of dimensionality

■ ML data is often high dimensional - especially images

- A 1000×1000 pixel image has 10^{6} features

■ Data behaves very differently in high dimensions

- $2 D$ unit square, 0.4% probability of being near the border (within 0.001)
- $10^{4} \mathrm{D}$ hypercube, 99.999999% probability of being near the border
- Distances between items
- $2 D$ unit square, mean distance between 2 random points is 0.52
- 3D unit cube, mean distance between 2 random points is 0.66
- $10^{6} \mathrm{D}$ unit hypercube, mean distance between 2 random points is approximately 408.25
- There's a lot of "space" in higher dimensions!
- Higher danger of overfitting

Dimensionality reduction

■ Remove unimportant features by projecting to a smaller dimension

Dimensionality reduction

■ Remove unimportant features by projecting to a smaller dimension

- Example: project blue points in 3D to black points in 2D plane

Dimensionality reduction

■ Remove unimportant features by projecting to a smaller dimension

- Example: project blue points in 3D to black points in 2D plane
- Principal Component Analysis transform d-dimensional input to k-dimensional input, preserving essential features

Singular Value Decomposition (SVD)

$$
\begin{aligned}
& \text { - Input matrix } M \text {, dimensions } n \times d-\text { data } \quad \text { now }=1 \begin{array}{l}
\text { item } \\
\\
\text { - Rows are items, columns are features }
\end{array} \\
& n \times k
\end{aligned}
$$

Singular Value Decomposition (SVD)

- Input matrix M, dimensions $n \times d$
- Rows are items, columns are features
- Decompose M as $U D V^{\top}$
- D is a $k \times k$ diagonal matrix, positive real entries

new
- U is $n \times k, V$ is $d \times k$ dimension
- Columns of U, V are orthonormal - unit vectors, mutually orthogonal
d dimensional vector x in some basis

$$
\text { Tepresuat in new basis }\left\langle v_{1}, \ldots, v_{d}\right\rangle
$$

$$
x \mapsto\left\langle x \cdot v_{1}, x-v_{2}, \ldots, x-v_{d}\right\rangle
$$

Singular Value Decomposition (SVD)

- Input matrix M, dimensions $n \times d$
- Rows are items, columns are features
- Decompose M as UDV ${ }^{\top}$
- D is a $k \times k$ diagonal matrix, positive real entries

- U is $n \times k, V$ is $d \times k$
- Columns of U, V are orthonormal - unit vectors, mutually orthogonal
- Interpretation
- Columns of V correspond to new abstract features
 nak. knk.

Singular Value Decomposition (SVD)

- Input matrix M, dimensions $n \times d$
- Rows are items, columns are features
- Decompose M as $U D V^{\top}$
- D is a $k \times k$ diagonal matrix, positive real entries
- U is $n \times k, V$ is $d \times k$
- Columns of U, V are orthonormal - unit vectors, mutually orthogonal
- Interpretation
- Columns of V correspond to new abstract features
- Rows of U describe decomposition of terms across features

Singular Value Decomposition (SVD)

- Input matrix M, dimensions $n \times d$

■ Rows are items, columns are features

- Decompose M as $U D V^{\top}$

■ D is a $k \times k$ diagonal matrix, positive real entries

- U is $n \times k, V$ is $d \times k$
- Columns of U, V are orthonormal - unit vectors, mutually orthogonal
- Interpretation
- Columns of V correspond to new abstract features
- Rows of U describe decomposition of terms across features
- $M=\sum_{i} D_{i i}\left(\boldsymbol{u}_{i} \cdot \boldsymbol{v}_{i}^{\top}\right)$

Singular Value Decomposition (SVD)

- Input matrix M, dimensions $n \times d$

■ Rows are items, columns are features

- Decompose M as $U D V^{\top}$

■ D is a $k \times k$ diagonal matrix, positive real entries

- U is $n \times k, V$ is $d \times k$

■ Columns of U, V are orthonormal - unit vectors, mutually orthogonal

- Interpretation
- Columns of V correspond to new abstract features

■ Rows of U describe decomposition of terms across features

- $M=\sum_{i} D_{i i}\left(\boldsymbol{u}_{i} \cdot \boldsymbol{v}_{i}^{\top}\right)$
- For columns \boldsymbol{u}_{i} of U and \boldsymbol{v}_{i} of $V, \boldsymbol{u}_{i} \cdot \boldsymbol{v}_{i}^{\top}$ is an $n \times d$ matrix, like M

$$
n_{x} \mid 1 \times d
$$

Singular Value Decomposition (SVD)

- Input matrix M, dimensions $n \times d$

■ Rows are items, columns are features

- Decompose M as $U D V^{\top}$

■ D is a $k \times k$ diagonal matrix, positive real entries

- U is $n \times k, V$ is $d \times k$
- Columns of U, V are orthonormal - unit vectors, mutually orthogonal
- Interpretation
- Columns of V correspond to new abstract features
- Rows of U describe decomposition of terms across features
- $M=\sum_{i} D_{i i}\left(\boldsymbol{u}_{i} \cdot \boldsymbol{v}_{i}^{\top}\right)$
- For columns \boldsymbol{u}_{i} of U and \boldsymbol{v}_{i} of $V, \boldsymbol{u}_{i} \cdot \boldsymbol{v}_{i}^{\top}$ is an $n \times d$ matrix, like M
- $\boldsymbol{u}_{i} \cdot \boldsymbol{v}_{i}^{\top}$ describes components of rows of M along direction \boldsymbol{v}_{i}

Singular vectors

■ Unit vectors passing through the origin

Singular vectors

■ Unit vectors passing through the origin

- Want to find "best" k singular vectors to represent feature space

Singular vectors

■ Unit vectors passing through the origin

- Want to find "best" k singular vectors to represent feature space
- Suppose we project
$\boldsymbol{a}_{i}=\left(a_{i 1}, a_{i 2}, \ldots, a_{i d}\right)$ onto v through origin

Singular vectors

■ Unit vectors passing through the origin

- Want to find "best" k singular vectors to represent feature space
- Suppose we project
$a_{i}=\left(a_{i 1}, a_{i 2}, \ldots, a_{i d}\right)$ onto v through origin

- Minimizing distance of a_{i} from v is equivalent to maximizing the projection of a_{i} onto v
- Length of the projection is $a_{i} \cdot v$

Singular vectors ...

- Sum of squares of lengths of projections of all rows in M onto $v-|M v|^{2}$

Singular vectors ...

- Sum of squares of lengths of projections of all rows in M onto $v-|M v|^{2}$
- First singular vector - unit vector through origin that maximizes the sum of projections of all rows in M

$$
\boldsymbol{v}_{1}=\arg \max _{|\boldsymbol{v}|=1}|M \boldsymbol{v}|
$$

Singular vectors . . .

- Sum of squares of lengths of projections of all rows in M onto $v-|M v|^{2}$
- First singular vector - unit vector through origin that maximizes the sum of projections of all rows in M

$$
\boldsymbol{v}_{1}=\arg \max _{|\boldsymbol{v}|=1}|M \boldsymbol{v}|
$$

- Second singular vector - unit vector through origin, perpendicular to v_{1}, that maximizes the sum of projections of all rows in M

$$
v_{2}=\arg {\underset{v a x}{v \perp v_{1}:|v|=1}}_{\max ^{=}|M v|} \quad \text { Eonstract }
$$

Singular vectors ...

- Sum of squares of lengths of projections of all rows in M onto $v-|M v|^{2}$
- First singular vector - unit vector through origin that maximizes the sum of projections of all rows in M

$$
\mathbf{v}_{1}=\arg \max _{\mid \boldsymbol{v}=1}|M \boldsymbol{v}|
$$

$$
\left|M_{v_{1}}\right| \geq\left|M_{v_{2}}\right| \geq\left|M_{v_{s}}\right|
$$

- Second singular vector - unit vector through origin, perpendicular to v_{1}, that maximizes the sum of projections of all rows in M

$$
\mathbf{v}_{2}=\arg \max _{\boldsymbol{v} \perp \mathbf{v}_{1} ;|\boldsymbol{v}|=1}|M \boldsymbol{v}|
$$

- Third singular vector - unit vector through origin, perpendicular to $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}$, that maximizes the sum of projections of all rows in M

$$
\mathbf{v}_{3}=\arg \max _{\boldsymbol{v} \perp v_{1}, v_{2} ;|\boldsymbol{v}|=1}|M \boldsymbol{v}|
$$

Singular vectors ...

- With each singular vector \boldsymbol{v}_{j}, associated singular value is $\sigma_{j}=\left|M \boldsymbol{v}_{j}\right|$

Singular vectors . . .

- With each singular vector \boldsymbol{v}_{j}, associated singular value is $\sigma_{j}=\left|M \boldsymbol{v}_{j}\right|$

■ Repeat r times till $\max _{\boldsymbol{v} \perp \boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{r} ;|\boldsymbol{v}|=1}|M \boldsymbol{v}|=0$

- r turns out to be the rank of M
- Vectors $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{r}\right\}$ are orthonormal right singular vectors

Singular vectors . . .

- With each singular vector \boldsymbol{v}_{j}, associated singular value is $\sigma_{j}=\left|M \boldsymbol{v}_{j}\right|$

■ Repeat r times till $\max _{\boldsymbol{v} \perp \boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{r} ;|\boldsymbol{v}|=1}|M \boldsymbol{v}|=0$

- r turns out to be the rank of M
- Vectors $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{r}\right\}$ are orthonormal right singular vectors

■ Our greedy strategy provably produces "best-fit" dimension r subspace for M

- Dimension r subspace that maximizes content of M projected onto it

Singular vectors . . .

- With each singular vector \boldsymbol{v}_{j}, associated singular value is $\sigma_{j}=\left|M \boldsymbol{v}_{j}\right|$

■ Repeat r times till $\max _{\boldsymbol{v} \perp \boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{\boldsymbol{r}} ;|\boldsymbol{v}|=1}|M \boldsymbol{v}|=0$

- r turns out to be the rank of M
- Vectors $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{r}\right\}$ are orthonormal right singular vectors

■ Our greedy strategy provably produces "best-fit" dimension r subspace for M

- Dimension r subspace that maximizes content of M projected onto it
- Corresponding left singular vectors are given by $\boldsymbol{u}_{i}=\frac{1}{\sigma_{i}} M \boldsymbol{v}_{i}$

Singular vectors . . .

- With each singular vector \boldsymbol{v}_{j}, associated singular value is $\sigma_{j}=\left|M v_{j}\right|$

■ Repeat r times till $\max _{\boldsymbol{v} \perp \boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{\boldsymbol{r}} ;|\boldsymbol{v}|=1}|M \boldsymbol{v}|=0$

- r turns out to be the rank of M
- Vectors $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{r}\right\}$ are orthonormal right singular vectors

■ Our greedy strategy provably produces "best-fit" dimension r subspace for M

- Dimension r subspace that maximizes content of M projected onto it
- Corresponding left singular vectors are given by $\boldsymbol{u}_{i}=\frac{1}{\sigma_{i}} M \boldsymbol{v}_{i}$

■ Can show that $\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{r}\right\}$ are also orthonormal

Singular Value Decomposition

■ M, dimension $n \times d$, of rank r uniquely decomposes as $M=U D V^{\top}$

- $V=\left[\begin{array}{llll}\boldsymbol{v}_{1} & \boldsymbol{v}_{2} & \cdots & \boldsymbol{v}_{r}\end{array}\right]$ are the right singular vectors
- D is a diagonal matrix with $D[i, i]=\sigma_{i}$, the singular values
- $U=\left[\begin{array}{llll}\boldsymbol{u}_{1} & \boldsymbol{u}_{2} & \cdots & \boldsymbol{u}_{r}\end{array}\right]$ are the left singular vectors

Rank- k approximation

- M has rank r, SVD gives rank r decomposition

Rank-k approximation

- M has rank r, SVD gives rank r decomposition

■ Singular values are non-increasing - $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}$

Rank-k approximation

- M has rank r, SVD gives rank r decomposition
- Singular values are non-increasing - $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}$
- Suppose we retain only k largest ones

Rank-k approximation

- M has rank r, SVD gives rank r decomposition
- Singular values are non-increasing - $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}$
- Suppose we retain only k largest ones
- We have
- Matrix of first k right singular vectors $V_{k}=\left[\begin{array}{llll}\boldsymbol{v}_{1} & v_{2} & \cdots & v_{k}\end{array}\right]$,

■ Corresponding singular values $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}$

- Matrix of k left singular vectors $U_{k}=\left[\begin{array}{llll}\boldsymbol{u}_{1} & \boldsymbol{u}_{2} & \cdots & \boldsymbol{u}_{k}\end{array}\right]$
- Let D_{k} be the $k \times k$ diagonal matrix with entries $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}$
- Then $U_{k} D_{k} V_{k}^{\top}$ is the best fit rank- k approximation of M

Rank-k approximation

- M has rank r, SVD gives rank r decomposition
- Singular values are non-increasing - $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}$

■ Suppose we retain only k largest ones

- We have

■ Matrix of first k right singular vectors $V_{k}=\left[\begin{array}{llll}\boldsymbol{v}_{1} & v_{2} & \cdots & v_{k}\end{array}\right]$,

- Corresponding singular values $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}$

■ Matrix of k left singular vectors $U_{k}=\left[\begin{array}{llll}\boldsymbol{u}_{1} & \boldsymbol{u}_{2} & \cdots & \boldsymbol{u}_{k}\end{array}\right]$
■ Let D_{k} be the $k \times k$ diagonal matrix with entries $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}$

- Then $U_{k} D_{k} V_{k}^{\top}$ is the best fit rank- k approximation of M

- In other words, by truncating the SVD, we can focus on k most significant features implicit in M

PCA and variance

■ Interpret PCA in terms of preserving variance

PCA and variance

- Interpret PCA in terms of preserving variance

■ Different projections have different variance

PCA and variance

- Interpret PCA in terms of preserving variance
- Different projections have different variance

■ SVD orders projections in decreasing order of variance

PCA and variance

- Interpret PCA in terms of preserving variance

■ Different projections have different variance
■ SVD orders projections in decreasing order of variance

- Criterion for choosing when to stop

- Choose k so that a desired fraction of the variance is "explained"

Manifold learning

- Projection may not always help

Manifold learning

■ Projection may not always help
■ Swiss roll dataset

Manifold learning

- Projection may not always help
- Swiss roll dataset

■ Projection onto 2 dimesions is not useful

Manifold learning

■ Projection may not always help

- Swiss roll dataset

■ Projection onto 2 dimesions is not useful
■ Better to unroll the image

Manifold learning

- Projection may not always help
- Swiss roll dataset

■ Projection onto 2 dimesions is not useful
■ Better to unroll the image

- Discover the manifold along which the data lies

Locally linear embeddings (LLE)

■ Describe each point x_{i} as a linear combination of k nearest neighbours, assume weight 0 for other neighbours

Represent $\boldsymbol{x}_{\boldsymbol{i}} \boldsymbol{l}_{\boldsymbol{y}} \neq \sum_{j=1}^{m} w_{i j} x_{j}$

Locally linear embeddings (LLE)
■ Describe each point x_{i} as a linear combination of k nearest neighbours, assume weight 0 for other neighbours

$$
x_{i}=\sum_{j=1}^{m} w_{i j} x_{j}
$$

k out If m so all but k

- Choose weights to minimize the sum square distance

$$
\hat{W}=\underset{W}{\arg \min } \sum_{i=1}^{m}\left(\frac{x_{i}-\sum_{j=1}^{m} w_{i j} x_{j}}{\text { dusceranny }^{2}} W_{2}^{2}\right.
$$

Locally linear embeddings (LLE)

■ Describe each point x_{i} as a linear combination of k nearest neighbours, assume weight 0 for other neighbours

$$
x_{i}=\sum_{j=1}^{m} w_{i j} x_{j}
$$

- Choose weights to minimize the sum square distance

$$
\hat{W}=\underset{W}{\arg \min } \sum_{i=1}^{m}\left(x_{i}-\sum_{j=1}^{m} w_{i j} x_{j}\right)^{2}
$$

■ Normalize weights - captures "local" geometry upto rotation, reflection, scaling

Locally linear embeddings (LLE)

■ Describe each point x_{i} as a linear combination of k nearest neighbours, assume weight 0 for other neighbours

$$
x_{i}=\sum_{j=1}^{m} w_{i j} x_{j}
$$

- Choose weights to minimize the sum square distance

$$
\hat{W}=\underset{W}{\arg \min } \sum_{i=1}^{m}\left(x_{i}-\sum_{j=1}^{m} w_{i j} x_{j}\right)^{2}
$$

■ Normalize weights - captures "local" geometry upto rotation, reflection, scaling wn
■ Re-express each point in J dimensions

$$
\hat{z}=\underset{z}{\arg \min } \sum_{i=1}^{m}\left(z_{i}-\sum_{j=1}^{m} w_{i j} z_{j}\right)^{2} \text { nea abive }
$$

Locally linear embeddings (LLE)

Locally linear embeddings (LLE)

Locally linear embeddings (LLE)

LLE reconstruction preserves neighbourhood structure

Summary

- Singular Value Decomposition (SVD) finds best fit k-dimensional subspace for any matrix M
- Principal Component Analysis uses SVD for dimensionality reduction
- Unsupervised technique - often helps simplify the problem, but may not
- SVD/PCA can only compress features that have a linear relationship
- More general techniques based on neural networks - autoencoders

