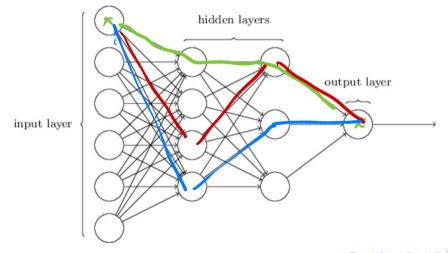
Lecture 18: 21 March, 2024

Madhavan Mukund https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning January–April 2024

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Acyclic network of perceptrons with non-linear activation functions



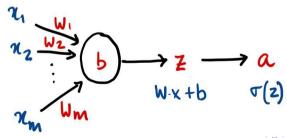
Neural networks

- Without loss of generality,
 - Assume the network is layered
 - All paths from input to output have the same length
 - Each layer is fully connected to the previous one
 - Set weight to 0 if connection is not needed

Neural networks

- Without loss of generality,
 - Assume the network is layered
 - All paths from input to output have the same length
 - Each layer is fully connected to the previous one
 - Set weight to 0 if connection is not needed
- Structure of an individual neuron

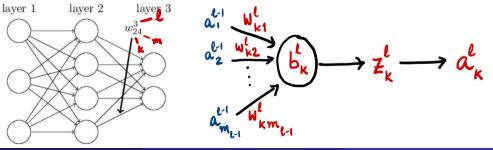
Input weights w_1, \ldots, w_m , bias b, output z, activation value a



Layers l∈ {1,2,...,L}
Inputs are connected first hidden layer, layer 1
Layer L is the output layer Assume A single node
Layer l has m_l nodes 1,2,...,m_l

Image: A test in te

- Layers $\ell \in \{1, 2, ..., L\}$
 - \blacksquare Inputs are connected first hidden layer, layer 1
 - Layer L is the output layer
- Layer ℓ has m_ℓ nodes $1, 2, \ldots, m_\ell$
- Node k in layer ℓ has bias b_k^{ℓ} , output z_k^{ℓ} and activation value a_k^{ℓ}
- Weight on edge from node j in level $\ell-1$ to node k in level ℓ is w_{ki}^{ℓ}



- Why the inversion of indices in the subscript w_{ki}^{ℓ} ?
 - $z_{k}^{\ell} = w_{k1}^{\ell} a_{1}^{\ell-1} + w_{k2}^{\ell} a_{2}^{\ell-1} + \dots + w_{km_{\ell-1}}^{\ell} a_{m_{\ell-1}}^{\ell-1}$ $Let \ \overline{w}_{k}^{\ell} = (w_{k1}^{\ell}, w_{k2}^{\ell}, \dots, w_{km_{\ell-1}}^{\ell})$

and
$$\overline{a}^{\ell-1} = (a_1^{\ell-1}, a_2^{\ell-1}, \dots, a_{m_{\ell-1}}^{\ell-1})$$

Then $z_k^{\ell} = \overline{w}_k^{\ell} \cdot \overline{a}^{\ell-1}$

► 4 Ξ ►

3

- Why the inversion of indices in the subscript w_{ki}^{ℓ} ?
 - $z_k^{\ell} = w_{k1}^{\ell} a_1^{\ell-1} + w_{k2}^{\ell} a_2^{\ell-1} + \cdots + w_{km_{\ell-1}}^{\ell} a_{m_{\ell-1}}^{\ell-1}$
 - Let $\overline{w}_{k}^{\ell} = (w_{k1}^{\ell}, w_{k2}^{\ell}, \dots, w_{km_{\ell-1}}^{\ell})$ and $\overline{a}^{\ell-1} = (a_{1}^{\ell-1}, a_{2}^{\ell-1}, \dots, a_{m_{\ell-1}}^{\ell-1})$ Then $z_{k}^{\ell} = \overline{w}_{k}^{\ell} \cdot \overline{a}^{\ell-1}$
- Assume all layers have same number of nodes
 - Let $m = \max_{\ell \in \{1,2,\ldots,L\}} m_\ell$
 - For any layer *i*, for $k > m_i$, we set all of $w_{kj}^{\ell}, b_k^{\ell}, z_k^{\ell}, a_k^{\ell}$ to 0
- Matrix formulation

$$\begin{bmatrix} \overline{z}_1^{\ell} \\ \overline{z}_2^{\ell} \\ \cdots \\ \overline{z}_m^{\ell} \end{bmatrix} = \begin{bmatrix} \overline{w}_1^{\ell} \\ \overline{w}_2^{\ell} \\ \cdots \\ \overline{w}_m^{\ell} \end{bmatrix} \begin{bmatrix} a_1^{\ell-1} \\ a_2^{\ell-1} \\ \cdots \\ a_m^{\ell-1} \end{bmatrix}$$

5/15

- Need to find optimum values for all weights w_{ki}^{ℓ}
- Use gradient descent
 - Cost function *C*, partial derivatives $\frac{\partial C}{\partial w_{k_i}^{\ell}}$, $\frac{\partial C}{\partial b_k^{\ell}}$

- Need to find optimum values for all weights w_{ki}^{ℓ}
- Use gradient descent
 - Cost function *C*, partial derivatives $\frac{\partial C}{\partial w_{k_i}^{\ell}}$, $\frac{\partial C}{\partial b_k^{\ell}}$
- Assumptions about the cost function

- Need to find optimum values for all weights w_{ki}^{ℓ}
- Use gradient descent
 - Cost function *C*, partial derivatives $\frac{\partial C}{\partial w_{ki}^{\ell}}$, $\frac{\partial C}{\partial b_{k}^{\ell}}$
- Assumptions about the cost function
 - **1** For input x, C(x) is a function of only the output layer activation, a^{L}
 - For instance, for training input (x_i, y_i) , sum-squared error is $(y_i a_i^L)^2$
 - Note that x_i , y_i are fixed values, only a_i^L is a variable

6/15

- Need to find optimum values for all weights w_{ki}^{ℓ}
- Use gradient descent
 - Cost function *C*, partial derivatives $\frac{\partial C}{\partial w_{ki}^{\ell}}$, $\frac{\partial C}{\partial b_{k}^{\ell}}$
- Assumptions about the cost function
 - **1** For input x, C(x) is a function of only the output layer activation, a^{L}
 - For instance, for training input (x_i, y_i) , sum-squared error is $(y_i a_i^L)^2$
 - Note that x_i , y_i are fixed values, only a_i^L is a variable
 - 2 Total cost is average of individual input costs
 - Each input x_i incurs cost $C(x_i)$, total cost is $\frac{1}{n} \sum_{i=1}^{n} C(x_i)$

For instance, mean sum-squared error
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - a_i^L)^2$$

- Assumptions about the cost function
 - **1** For input x, C(x) is a function of only the output layer activation, a^{L}
 - 2 Total cost is average of individual input costs
- With these assumptions:
 - We can write $\frac{\partial C}{\partial w_{ki}^{\ell}}$, $\frac{\partial C}{\partial b_{k}^{\ell}}$ in terms of individual $\frac{\partial a_{i}^{L}}{\partial w_{ki}^{\ell}}$, $\frac{\partial a_{i}^{L}}{\partial b_{k}^{\ell}}$
 - Can extrapolate change in individual cost C(x) to change in overall cost C stochastic gradient descent

C=g(a) a-- 4(w)

- Assumptions about the cost function
 - **1** For input x, C(x) is a function of only the output layer activation, a^{L}
 - 2 Total cost is average of individual input costs
- With these assumptions:
 - We can write $\frac{\partial C}{\partial w_{kj}^{\ell}}$, $\frac{\partial C}{\partial b_k^{\ell}}$ in terms of individual $\frac{\partial a_i^L}{\partial w_{kj}^{\ell}}$, $\frac{\partial a_i^L}{\partial b_k^{\ell}}$

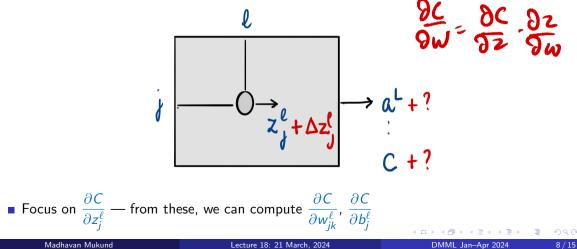
Can extrapolate change in individual cost C(x) to change in overall cost C — stochastic gradient descent

- Complex dependency of C on w_{kj}^{ℓ} , b_k^{ℓ}
 - Many intermediate layers
 - Many paths through these layers
- Use chain rule to decompose into local dependencies

•
$$y = g(f(x)) \Rightarrow \frac{\partial g}{\partial x} = \frac{\partial g}{\partial f} \frac{\partial g}{\partial x}$$

Calculating dependencies

• If we perturb the output z_j^{ℓ} at node *j* in layer ℓ , what is the impact on final output, overall cost?



Computing partial derivatives

- Use chain rule to run backpropagation algorithm
 - Given an input, execute the network from left to right to compute all outputs
 - Using the chain rule, work backwards from right to left to compute all values of $\frac{\partial C}{\partial z_i^\ell}$

Compute
$$\frac{\partial C}{\partial z_{k}^{e}}, \frac{\partial C}{\partial w_{kj}^{e}}, \frac{\partial C}{\partial b_{k}^{e}}$$

3

Let δ_j^ℓ denote $\displaystyle rac{\partial \mathcal{C}}{\partial z_j^\ell}$ Base Case $\ell = L, \, \delta_i^L$ • Chain rule: $\frac{\partial C}{\partial z_j^L} = \frac{\partial C}{\partial a_j^L} \frac{\partial a_j^L}{\partial z_j^L}$ ▶ ∢ ⊒ - E Madhavan Mukund Lecture 18: 21 March. 2024 DMML Jan-Apr 2024 10 / 15

Let δ_j^ℓ denote $\frac{\partial C}{\partial z_j^\ell}$

Base Case

 $\ell = L, \, \delta_j^L$

Chain rule:
$$\frac{\partial C}{\partial z_j^L} = \frac{\partial C}{\partial a_j^L} \frac{\partial a_j^L}{\partial z_j^L}$$
For instance, if $C = \frac{1}{n} \sum_{i=1}^n (y_i - a_i^L)^2$, then $\frac{\partial C}{\partial a_j^L} = \frac{1}{n} (2(y_j - a_j^L)(-1)) = \frac{2}{n} (a_j^L - y_j)$

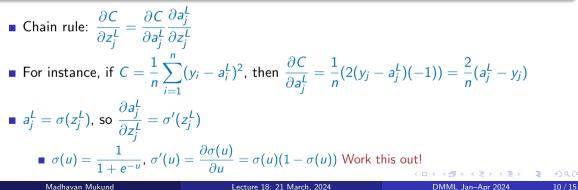
▶ < ⊒ ▶

Let δ_j^{ℓ} denote $\frac{\partial C}{\partial z_i^{\ell}}$ - from MSE Base Case $\ell = L, \, \delta_i^L$ • Chain rule: $\frac{\partial C}{\partial z_j^L} = \frac{\partial C}{\partial a_i^L} \frac{\partial a_j^L}{\partial z_i^L}$ • For instance, if $C = \frac{1}{n} \sum_{i=1}^{n} (y_i - a_i^L)^2$, then $\frac{\partial C}{\partial a_i^L} = \frac{1}{n} (2(y_j - a_j^L)(-1)) = \frac{2}{n} (a_j^L - y_j)$ • $a_j^L = \sigma(z_j^L)$, so $\frac{\partial a_j^L}{\partial z_i^L} = \sigma'(z_j^L)$

Let δ_j^{ℓ} denote $\frac{\partial C}{\partial z_i^{\ell}}$

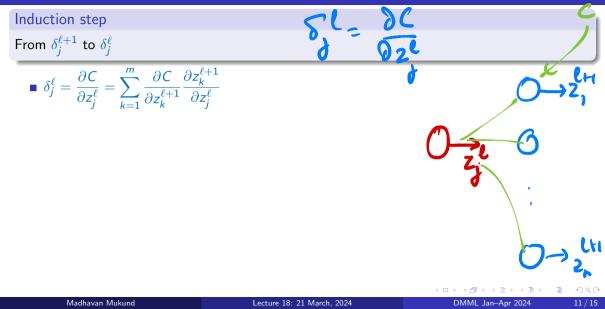
Base Case

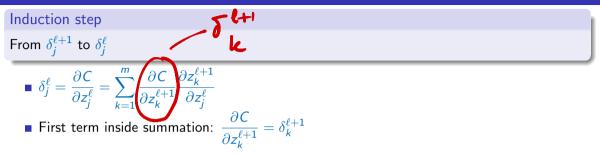
 $\ell = L, \, \delta_i^L$



Madhavan Mukund

11 / 15





< E

Induction step

From $\delta_j^{\ell+1}$ to δ_j^{ℓ}

•
$$\delta_j^{\ell} = \frac{\partial C}{\partial z_j^{\ell}} = \sum_{k=1}^m \frac{\partial C}{\partial z_k^{\ell+1}} \frac{\partial z_k^{\ell+1}}{\partial z_j^{\ell}}$$

• First term inside summation: $\frac{\partial C}{\partial z_k^{\ell+1}} = \delta_k^{\ell+1}$
• Second term: $z_k^{\ell+1} = \sum_{i=1}^m w_{ki}^{\ell+1} a_i^{\ell} + b_k^{\ell+1} = \sum_{i=1}^m w_{ki}^{\ell+1} \sigma(z_i^{\ell}) + b_k^{\ell+1}$

3

Induction step

From $\delta_j^{\ell+1}$ to δ_j^{ℓ}

$$\delta_{j}^{\ell} = \frac{\partial C}{\partial z_{j}^{\ell}} = \sum_{k=1}^{m} \frac{\partial C}{\partial z_{k}^{\ell+1}} \frac{\partial z_{k}^{\ell+1}}{\partial z_{j}^{\ell}}$$

= First term inside summation: $\frac{\partial C}{\partial z_{k}^{\ell+1}} = \delta_{k}^{\ell+1}$
= Second term: $z_{k}^{\ell+1} = \sum_{i=1}^{m} w_{ki}^{\ell+1} a_{i}^{\ell} + b_{k}^{\ell+1} = \sum_{i=1}^{m} w_{ki}^{\ell+1} \sigma(z_{i}^{\ell}) + b_{k}^{\ell+1}$
= For $i \neq j$, $\frac{\partial}{\partial z_{j}^{\ell}} [w_{ki}^{\ell+1} \sigma(z_{i}^{\ell}) + b_{k}^{\ell+1}] = 0$

▶ ★ 臣 ▶ ★ 臣 ▶

Induction step

From $\delta_j^{\ell+1}$ to δ_j^{ℓ}

$$\delta_{j}^{\ell} = \frac{\partial C}{\partial z_{j}^{\ell}} = \sum_{k=1}^{m} \frac{\partial C}{\partial z_{k}^{\ell+1}} \frac{\partial z_{k}^{\ell+1}}{\partial z_{j}^{\ell}}$$

First term inside summation: $\frac{\partial C}{\partial z_{k}^{\ell+1}} = \delta_{k}^{\ell+1}$
Second term: $z_{k}^{\ell+1} = \sum_{i=1}^{m} w_{ki}^{\ell+1} a_{i}^{\ell} + b_{k}^{\ell+1} = \sum_{i=1}^{m} w_{ki}^{\ell+1} \sigma(z_{i}^{\ell}) + b_{k}^{\ell+1}$
For $i \neq j$, $\frac{\partial}{\partial z_{j}^{\ell}} [w_{ki}^{\ell+1} \sigma(z_{i}^{\ell}) + b_{k}^{\ell+1}] = 0$
For $i = j$, $\frac{\partial}{\partial z_{i}^{\ell}} [w_{kj}^{\ell+1} \sigma(z_{j}^{\ell}) + b_{k}^{\ell+1}] = w_{kj}^{\ell+1} \sigma'(z_{j}^{\ell})$

▶ < ∃ ▶</p>

Induction step

From $\delta_i^{\ell+1}$ to δ_i^{ℓ}

$$\delta_{j}^{\ell} = \frac{\partial C}{\partial z_{j}^{\ell}} = \sum_{k=1}^{m} \frac{\partial C}{\partial z_{k}^{\ell+1}} \frac{\partial z_{k}^{\ell+1}}{\partial z_{j}^{\ell}}$$

First term inside summation: $\frac{\partial C}{\partial z_{k}^{\ell+1}} = \delta_{k}^{\ell+1}$
Second term: $z_{k}^{\ell+1} = \sum_{i=1}^{m} w_{ki}^{\ell+1} a_{i}^{\ell} + b_{k}^{\ell+1} = \sum_{i=1}^{m} w_{ki}^{\ell+1} \sigma(z_{i}^{\ell}) + b_{k}^{\ell+1}$
For $i \neq j$, $\frac{\partial}{\partial z_{j}^{\ell}} [w_{ki}^{\ell+1} \sigma(z_{i}^{\ell}) + b_{k}^{\ell+1}] = 0$
For $i = j$, $\frac{\partial}{\partial z_{j}^{\ell}} [w_{kj}^{\ell+1} \sigma(z_{j}^{\ell}) + b_{k}^{\ell+1}] = w_{kj}^{\ell+1} \sigma'(z_{j}^{\ell})$
So $\frac{\partial z_{k}^{\ell+1}}{\partial z^{\ell}} = w_{kj}^{\ell+1} \sigma'(z_{j}^{\ell})$

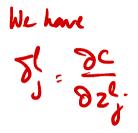
Madhavan Mukund

→

э

11 / 15

What we actually need to compute are $\frac{\partial C}{\partial w_{kj}^{\ell}}$, $\frac{\partial C}{\partial b_k^{\ell}}$



▶ < ∃ ▶</p>

What we actually need to compute are $\frac{\partial C}{\partial w_{ki}^{\ell}}$, $\frac{\partial C}{\partial b_k^{\ell}}$

• $\frac{\partial C}{\partial w_{kj}^{\ell}} = \frac{\partial C}{\partial z_k^{\ell}} \frac{\partial z_k^{\ell}}{\partial w_{kj}^{\ell}} = \delta_k^{\ell} \frac{\partial z_k^{r}}{\partial w_{kj}^{\ell}}$ • $\frac{\partial C}{\partial b_k^{\ell}} = \frac{\partial C}{\partial z_k^{\ell}} \frac{\partial \overline{z}_k^{r}}{\partial b_k^{\ell}} = \delta_k^{\ell} \frac{\partial z_k^{k}}{\partial b_k^{\ell}}$

2 = w-a +.5

What we actually need to compute are $\frac{\partial C}{\partial w_{ki}^{\ell}}$, $\frac{\partial C}{\partial b_{k}^{\ell}}$

$$\begin{aligned} \bullet \quad & \frac{\partial C}{\partial w_{kj}^{\ell}} = \frac{\partial C}{\partial z_k^{\ell}} \frac{\partial z_k^{\ell}}{\partial w_{kj}^{\ell}} = \delta_k^{\ell} \frac{\partial z_k^{\ell}}{\partial w_{kj}^{\ell}} \\ \bullet \quad & \frac{\partial C}{\partial b_k^{\ell}} = \frac{\partial C}{\partial z_k^{\ell}} \frac{\partial z_k^{\ell}}{\partial b_k^{\ell}} = \delta_k^{\ell} \frac{\partial z_k^{\ell}}{\partial b_k^{\ell}} \end{aligned}$$

We have already computed δ_k^{ℓ} , so what remains is $\frac{\partial z_k^{\ell}}{\partial w_{ki}^{\ell}}$, $\frac{\partial z_k^{\ell}}{\partial b_k^{\ell}}$

Madhavan Mukund

What we actually need to compute are $\frac{\partial C}{\partial w_{ki}^{\ell}}$, $\frac{\partial C}{\partial b_{k}^{\ell}}$

$$\frac{\partial C}{\partial w_{kj}^{\ell}} = \frac{\partial C}{\partial z_k^{\ell}} \frac{\partial z_k^{\ell}}{\partial w_{kj}^{\ell}} = \delta_k^{\ell} \frac{\partial z_k^{\ell}}{\partial w_{kj}^{\ell}}$$
$$\frac{\partial C}{\partial b_k^{\ell}} = \frac{\partial C}{\partial z_k^{\ell}} \frac{\partial z_k^{\ell}}{\partial b_k^{\ell}} = \delta_k^{\ell} \frac{\partial z_k^{\ell}}{\partial b_k^{\ell}}$$

We have already computed δ_k^{ℓ} , so what remains is $\frac{\partial z_k^{\ell}}{\partial w_{ki}^{\ell}}$, $\frac{\partial z_k^{\ell}}{\partial b_k^{\ell}}$

Since
$$z_k^{\ell} = \sum_{i=1}^m w_{ki}^{\ell} a_i^{\ell-1} + b_k^{\ell}$$
, it follows that
$$\frac{\partial z_k^{\ell}}{\partial w_{kj}^{\ell}} = a_j^{\ell-1} - \text{terms with } i \neq j \text{ vanish}$$

What we actually need to compute are $\frac{\partial C}{\partial w_{ki}^{\ell}}$, $\frac{\partial C}{\partial b_k^{\ell}}$

$$\frac{\partial C}{\partial w_{kj}^{\ell}} = \frac{\partial C}{\partial z_k^{\ell}} \frac{\partial z_k^{\ell}}{\partial w_{kj}^{\ell}} = \delta_k^{\ell} \frac{\partial z_k^{\ell}}{\partial w_{kj}^{\ell}}$$
$$\frac{\partial C}{\partial b_k^{\ell}} = \frac{\partial C}{\partial z_k^{\ell}} \frac{\partial z_k^{\ell}}{\partial b_k^{\ell}} = \delta_k^{\ell} \frac{\partial z_k^{\ell}}{\partial b_k^{\ell}}$$

We have already computed δ_k^{ℓ} , so what remains is $\frac{\partial z_k^{\ell}}{\partial w_{\nu_i}^{\ell}}$, $\frac{\partial z_k^{\ell}}{\partial b_{\nu}^{\ell}}$

• Since
$$z_k^{\ell} = \sum_{i=1}^m w_{ki}^{\ell} a_i^{\ell-1} + b_k^{\ell}$$
, it follows that
• $\frac{\partial z_k^{\ell}}{\partial w_{kj}^{\ell}} = a_j^{\ell-1}$ — terms with $i \neq j$ vanish
• $\frac{\partial z_k^{\ell}}{\partial b_k^{\ell}} = 1$ — terms with $i \neq j$ vanish

Madhavan Mukund

э

12/15

Backpropagation

- In the forward pass, compute all z_k^{ℓ} , a_k^{ℓ}
- In the backward pass, compute all δ_k^{ℓ} , from which we can get all $\frac{\partial C}{\partial w_{ki}^{\ell}}$, $\frac{\partial C}{\partial b_k^{\ell}}$
- Increment each parameter by a step Δ in the direction opposite the gradient

Backpropagation

- In the forward pass, compute all z_k^{ℓ} , a_k^{ℓ}
- In the backward pass, compute all δ_k^{ℓ} , from which we can get all $\frac{\partial C}{\partial w_{kj}^{\ell}}$, $\frac{\partial C}{\partial b_k^{\ell}}$
- Increment each parameter by a step Δ in the direction opposite the gradient

Typically, partition the training data into groups (mini batches)

- Update parameters after each mini batch stochastic gradient descent
- **Epoch** one pass through the entire training data

Challenges

Backpropagation dates from mid-1980's

Learning representations by back-propagating errors David E. Rumelhart, Geoffrey E. Hinton and Ronald J. Williams *Nature*, **323**, 533–536 (1986)

Challenges

Backpropagation dates from mid-1980's

Learning representations by back-propagating errors David E. Rumelhart, Geoffrey E. Hinton and Ronald J. Williams *Nature*, **323**, 533–536 (1986)

 Computationally infeasible till advent of modern parallel hardware, GPUs for vector (tensor) calculations

Challenges

Backpropagation dates from mid-1980's

Learning representations by back-propagating errors David E. Rumelhart, Geoffrey E. Hinton and Ronald J. Williams *Nature*, **323**, 533–536 (1986)

- Computationally infeasible till advent of modern parallel hardware, GPUs for vector (tensor) calculations
- Vanishing gradient problem cascading derivatives make gradients in initial layers very small, convergence is slow
 - In rare cases, exploding gradient also occurs

- Many heuristics to speed up gradient descent
 - Dynamically vary step size
 - Dampen positive-negative oscillations

→

- Many heuristics to speed up gradient descent
 - Dynamically vary step size
 - Dampen positive-negative oscillations . . .
- Libraries implementing neural networks have several hyperparameters that can be tuned
 - Network structure: Number of layers, type of activation function RELU, tanh
 - Training: Mini-batch size, number of epochs
 - Heuristics: Choice of optimizer for gradient descent

- Many heuristics to speed up gradient descent
 - Dynamically vary step size
 - Dampen positive-negative oscillations . . .
- Libraries implementing neural networks have several hyperparameters that can be tuned
 - Network structure: Number of layers, type of activation function RELU, tanh
 - Training: Mini-batch size, number of epochs
 - Heuristics: Choice of optimizer for gradient descent
- Loss functions
 - As we have seen MSE is not a good choice
 - Cross entropy is better corresponds to finding MLE

- Many heuristics to speed up gradient descent
 - Dynamically vary step size
 - Dampen positive-negative oscillations . . .
- Libraries implementing neural networks have several hyperparameters that can be tuned
 - Network structure: Number of layers, type of activation function RELU, tanh
 - Training: Mini-batch size, number of epochs
 - Heuristics: Choice of optimizer for gradient descent
- Loss functions
 - As we have seen MSE is not a good choice
 - Cross entropy is better corresponds to finding MLE