
Lecture 18: 21 March, 2024

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning

January–April 2024



Neural networks

Acyclic network of perceptrons with non-linear activation functions

Madhavan Mukund Lecture 18: 21 March, 2024 DMML Jan–Apr 2024 2 / 15

X

--InX



Neural networks

Without loss of generality,

Assume the network is layered

All paths from input to output have the same length

Each layer is fully connected to the previous one

Set weight to 0 if connection is not needed

Structure of an individual neuron

Input weights w1, . . . ,wm, bias b, output z , activation value a

Madhavan Mukund Lecture 18: 21 March, 2024 DMML Jan–Apr 2024 3 / 15



Neural networks

Without loss of generality,

Assume the network is layered

All paths from input to output have the same length

Each layer is fully connected to the previous one

Set weight to 0 if connection is not needed

Structure of an individual neuron

Input weights w1, . . . ,wm, bias b, output z , activation value a

Madhavan Mukund Lecture 18: 21 March, 2024 DMML Jan–Apr 2024 3 / 15



Notation

Layers ` 2 {1, 2, . . . , L}
Inputs are connected first hidden layer, layer 1

Layer L is the output layer

Layer ` has m` nodes 1, 2, . . . ,m`

Node k in layer ` has bias b`k , output z
`
k and activation value a`k

Weight on edge from node j in level `�1 to node k in level ` is w `
kj

Madhavan Mukund Lecture 18: 21 March, 2024 DMML Jan–Apr 2024 4 / 15

- assume a single mode



Notation

Layers ` 2 {1, 2, . . . , L}
Inputs are connected first hidden layer, layer 1

Layer L is the output layer

Layer ` has m` nodes 1, 2, . . . ,m`

Node k in layer ` has bias b`k , output z
`
k and activation value a`k

Weight on edge from node j in level `�1 to node k in level ` is w `
kj

Madhavan Mukund Lecture 18: 21 March, 2024 DMML Jan–Apr 2024 4 / 15

-l

i-m



Notation

Why the inversion of indices in the subscript w `
kj?

z`k = w `
k1a

`�1
1 + w `

k2a
`�1
2 + · · ·+ w `

km`�1
a`�1
m`�1

Let w `
k = (w `

k1,w
`
k2, . . . ,w

`
km`�1

)

and a`�1
= (a`�1

1 , a`�1
2 , . . . , a`�1

m`�1
)

Then z`k = w `
k · a`�1

Assume all layers have same number of nodes

Let m = max
`2{1.2,...,L}

m`

For any layer i , for k > mi , we set all of w `
kj , b

`
k , z

`
k , a

`
k to 0

Matrix formulation
2

664

z`1
z`2
· · ·
z`m

3

775 =

2

664

w `
1

w `
2

· · ·
w `

m

3

775

2

664

a`�1
1

a`�1
2
· · ·
a`�1
m

3

775

Madhavan Mukund Lecture 18: 21 March, 2024 DMML Jan–Apr 2024 5 / 15



Notation

Why the inversion of indices in the subscript w `
kj?

z`k = w `
k1a

`�1
1 + w `

k2a
`�1
2 + · · ·+ w `

km`�1
a`�1
m`�1

Let w `
k = (w `

k1,w
`
k2, . . . ,w

`
km`�1

)

and a`�1
= (a`�1

1 , a`�1
2 , . . . , a`�1

m`�1
)

Then z`k = w `
k · a`�1

Assume all layers have same number of nodes

Let m = max
`2{1.2,...,L}

m`

For any layer i , for k > mi , we set all of w `
kj , b

`
k , z

`
k , a

`
k to 0

Matrix formulation
2

664

z`1
z`2
· · ·
z`m

3

775 =

2

664

w `
1

w `
2

· · ·
w `

m

3

775

2

664

a`�1
1

a`�1
2
· · ·
a`�1
m

3

775

Madhavan Mukund Lecture 18: 21 March, 2024 DMML Jan–Apr 2024 5 / 15



Learning the parameters

Need to find optimum values for all weights w `
kj

Use gradient descent

Cost function C , partial derivatives
@C

@w `
kj

,
@C

@b`k

Assumptions about the cost function

1 For input x , C (x) is a function of only the output layer activation, aL

For instance, for training input (xi , yi ), sum-squared error is (yi � aLi )
2

Note that xi , yi are fixed values, only aLi is a variable

2 Total cost is average of individual input costs

Each input xi incurs cost C(xi ), total cost is
1
n

nX

i=1

C(xi )

For instance, mean sum-squared error
1
n

nX

i=1

(yi � aLi )
2

Madhavan Mukund Lecture 18: 21 March, 2024 DMML Jan–Apr 2024 6 / 15



Learning the parameters

Need to find optimum values for all weights w `
kj

Use gradient descent

Cost function C , partial derivatives
@C

@w `
kj

,
@C

@b`k

Assumptions about the cost function

1 For input x , C (x) is a function of only the output layer activation, aL

For instance, for training input (xi , yi ), sum-squared error is (yi � aLi )
2

Note that xi , yi are fixed values, only aLi is a variable

2 Total cost is average of individual input costs

Each input xi incurs cost C(xi ), total cost is
1
n

nX

i=1

C(xi )

For instance, mean sum-squared error
1
n

nX

i=1

(yi � aLi )
2

Madhavan Mukund Lecture 18: 21 March, 2024 DMML Jan–Apr 2024 6 / 15



Learning the parameters

Need to find optimum values for all weights w `
kj

Use gradient descent

Cost function C , partial derivatives
@C

@w `
kj

,
@C

@b`k

Assumptions about the cost function

1 For input x , C (x) is a function of only the output layer activation, aL

For instance, for training input (xi , yi ), sum-squared error is (yi � aLi )
2

Note that xi , yi are fixed values, only aLi is a variable

2 Total cost is average of individual input costs

Each input xi incurs cost C(xi ), total cost is
1
n

nX

i=1

C(xi )

For instance, mean sum-squared error
1
n

nX

i=1

(yi � aLi )
2

Madhavan Mukund Lecture 18: 21 March, 2024 DMML Jan–Apr 2024 6 / 15



Learning the parameters

Need to find optimum values for all weights w `
kj

Use gradient descent

Cost function C , partial derivatives
@C

@w `
kj

,
@C

@b`k

Assumptions about the cost function

1 For input x , C (x) is a function of only the output layer activation, aL

For instance, for training input (xi , yi ), sum-squared error is (yi � aLi )
2

Note that xi , yi are fixed values, only aLi is a variable

2 Total cost is average of individual input costs

Each input xi incurs cost C(xi ), total cost is
1
n

nX

i=1

C(xi )

For instance, mean sum-squared error
1
n

nX

i=1

(yi � aLi )
2

Madhavan Mukund Lecture 18: 21 March, 2024 DMML Jan–Apr 2024 6 / 15



Learning the parameters

Assumptions about the cost function

1 For input x , C (x) is a function of only the output layer activation, aL

2 Total cost is average of individual input costs

With these assumptions:

We can write
@C

@w `
kj

,
@C

@b`k
in terms of individual

@aLi
@w `

kj

,
@aLi
@b`k

Can extrapolate change in individual cost C (x) to change in overall cost C — stochastic

gradient descent

Complex dependency of C on w `
kj , b

`
k

Many intermediate layers

Many paths through these layers

Use chain rule to decompose into local dependencies

y = g(f (x)) ) @g

@x
=

@g

@f

@f

@x

Madhavan Mukund Lecture 18: 21 March, 2024 DMML Jan–Apr 2024 7 / 15

c= g(a)
a- Y(n)



Learning the parameters

Assumptions about the cost function

1 For input x , C (x) is a function of only the output layer activation, aL

2 Total cost is average of individual input costs

With these assumptions:

We can write
@C

@w `
kj

,
@C

@b`k
in terms of individual

@aLi
@w `

kj

,
@aLi
@b`k

Can extrapolate change in individual cost C (x) to change in overall cost C — stochastic

gradient descent

Complex dependency of C on w `
kj , b

`
k

Many intermediate layers

Many paths through these layers

Use chain rule to decompose into local dependencies

y = g(f (x)) ) @g

@x
=

@g

@f

@f

@x
Madhavan Mukund Lecture 18: 21 March, 2024 DMML Jan–Apr 2024 7 / 15



Calculating dependencies

If we perturb the output z`j at node j in layer `, what is the impact on final output,

overall cost?

Focus on
@C

@z`j
— from these, we can compute

@C

@w `
jk

,
@C

@b`j
Madhavan Mukund Lecture 18: 21 March, 2024 DMML Jan–Apr 2024 8 / 15

=Goa



Computing partial derivatives

Use chain rule to run backpropagation algorithm

Given an input, execute the network from left to right to compute all outputs

Using the chain rule, work backwards from right to left to compute all values of
@C

@z`j

Madhavan Mukund Lecture 18: 21 March, 2024 DMML Jan–Apr 2024 9 / 15



Applying the chain rule

Let �`j denote
@C

@z`j

Base Case

` = L, �Lj

Chain rule:
@C

@zLj
=

@C

@aLj

@aLj
@zLj

For instance, if C =
1

n

nX

i=1

(yi � aLi )
2
, then

@C

@aLj
=

1

n
(2(yj � aLj )(�1)) =

2

n
(aLj � yj)

aLj = �(zLj ), so
@aLj
@zLj

= �0
(zLj )

�(u) =
1

1 + e�u
, �0

(u) =
@�(u)

@u
= �(u)(1� �(u)) Work this out!

Madhavan Mukund Lecture 18: 21 March, 2024 DMML Jan–Apr 2024 10 / 15

0O



Applying the chain rule

Let �`j denote
@C

@z`j

Base Case

` = L, �Lj

Chain rule:
@C

@zLj
=

@C

@aLj

@aLj
@zLj

For instance, if C =
1

n

nX

i=1

(yi � aLi )
2
, then

@C

@aLj
=

1

n
(2(yj � aLj )(�1)) =

2

n
(aLj � yj)

aLj = �(zLj ), so
@aLj
@zLj

= �0
(zLj )

�(u) =
1

1 + e�u
, �0

(u) =
@�(u)

@u
= �(u)(1� �(u)) Work this out!

Madhavan Mukund Lecture 18: 21 March, 2024 DMML Jan–Apr 2024 10 / 15

4 .

L "Known

=-zi-a"



Applying the chain rule

Let �`j denote
@C

@z`j

Base Case

` = L, �Lj

Chain rule:
@C

@zLj
=

@C

@aLj

@aLj
@zLj

For instance, if C =
1

n

nX

i=1

(yi � aLi )
2
, then

@C

@aLj
=

1

n
(2(yj � aLj )(�1)) =

2

n
(aLj � yj)

aLj = �(zLj ), so
@aLj
@zLj

= �0
(zLj )

�(u) =
1

1 + e�u
, �0

(u) =
@�(u)

@u
= �(u)(1� �(u)) Work this out!

Madhavan Mukund Lecture 18: 21 March, 2024 DMML Jan–Apr 2024 10 / 15



Applying the chain rule

Let �`j denote
@C

@z`j

Base Case

` = L, �Lj

Chain rule:
@C

@zLj
=

@C

@aLj

@aLj
@zLj

For instance, if C =
1

n

nX

i=1

(yi � aLi )
2
, then

@C

@aLj
=

1

n
(2(yj � aLj )(�1)) =

2

n
(aLj � yj)

aLj = �(zLj ), so
@aLj
@zLj

= �0
(zLj )

�(u) =
1

1 + e�u
, �0

(u) =
@�(u)

@u
= �(u)(1� �(u)) Work this out!

Madhavan Mukund Lecture 18: 21 March, 2024 DMML Jan–Apr 2024 10 / 15

from MSE
--o



Applying the chain rule

Let �`j denote
@C

@z`j

Base Case

` = L, �Lj

Chain rule:
@C

@zLj
=

@C

@aLj

@aLj
@zLj

For instance, if C =
1

n

nX

i=1

(yi � aLi )
2
, then

@C

@aLj
=

1

n
(2(yj � aLj )(�1)) =

2

n
(aLj � yj)

aLj = �(zLj ), so
@aLj
@zLj

= �0
(zLj )

�(u) =
1

1 + e�u
, �0

(u) =
@�(u)

@u
= �(u)(1� �(u)) Work this out!

Madhavan Mukund Lecture 18: 21 March, 2024 DMML Jan–Apr 2024 10 / 15



Applying the chain rule

Induction step

From �`+1
j to �`j

�`j =
@C

@z`j
=

mX

k=1

@C

@z`+1
k

@z`+1
k

@z`j

First term inside summation:
@C

@z`+1
k

= �`+1
k

Second term: z`+1
k =

mX

i=1

w `+1
ki a`i + b`+1

k =

mX

i=1

w `+1
ki �(z`i ) + b`+1

k

For i 6= j ,
@

@z`j
[w `+1

ki �(z`i ) + b`+1
k ] = 0

For i = j ,
@

@z`j
[w `+1

kj �(z`j ) + b`+1
k ] = w `+1

kj �0
(z`j )

So
@z`+1

k

@z`j
= w `+1

kj �0
(z`j )

Madhavan Mukund Lecture 18: 21 March, 2024 DMML Jan–Apr 2024 11 / 15

O- Fig



Applying the chain rule

Induction step

From �`+1
j to �`j

�`j =
@C

@z`j
=

mX

k=1

@C

@z`+1
k

@z`+1
k

@z`j

First term inside summation:
@C

@z`+1
k

= �`+1
k

Second term: z`+1
k =

mX

i=1

w `+1
ki a`i + b`+1

k =

mX

i=1

w `+1
ki �(z`i ) + b`+1

k

For i 6= j ,
@

@z`j
[w `+1

ki �(z`i ) + b`+1
k ] = 0

For i = j ,
@

@z`j
[w `+1

kj �(z`j ) + b`+1
k ] = w `+1

kj �0
(z`j )

So
@z`+1

k

@z`j
= w `+1

kj �0
(z`j )

Madhavan Mukund Lecture 18: 21 March, 2024 DMML Jan–Apr 2024 11 / 15

if=oe o
-
-O

O



Applying the chain rule

Induction step

From �`+1
j to �`j

�`j =
@C

@z`j
=

mX

k=1

@C

@z`+1
k

@z`+1
k

@z`j

First term inside summation:
@C

@z`+1
k

= �`+1
k

Second term: z`+1
k =

mX

i=1

w `+1
ki a`i + b`+1

k =

mX

i=1

w `+1
ki �(z`i ) + b`+1

k

For i 6= j ,
@

@z`j
[w `+1

ki �(z`i ) + b`+1
k ] = 0

For i = j ,
@

@z`j
[w `+1

kj �(z`j ) + b`+1
k ] = w `+1

kj �0
(z`j )

So
@z`+1

k

@z`j
= w `+1

kj �0
(z`j )

Madhavan Mukund Lecture 18: 21 March, 2024 DMML Jan–Apr 2024 11 / 15

jewi



Applying the chain rule

Induction step

From �`+1
j to �`j

�`j =
@C

@z`j
=

mX

k=1

@C

@z`+1
k

@z`+1
k

@z`j

First term inside summation:
@C

@z`+1
k

= �`+1
k

Second term: z`+1
k =

mX

i=1

w `+1
ki a`i + b`+1

k =

mX

i=1

w `+1
ki �(z`i ) + b`+1

k

For i 6= j ,
@

@z`j
[w `+1

ki �(z`i ) + b`+1
k ] = 0

For i = j ,
@

@z`j
[w `+1

kj �(z`j ) + b`+1
k ] = w `+1

kj �0
(z`j )

So
@z`+1

k

@z`j
= w `+1

kj �0
(z`j )

Madhavan Mukund Lecture 18: 21 March, 2024 DMML Jan–Apr 2024 11 / 15

*



Applying the chain rule

Induction step

From �`+1
j to �`j

�`j =
@C

@z`j
=

mX

k=1

@C

@z`+1
k

@z`+1
k

@z`j

First term inside summation:
@C

@z`+1
k

= �`+1
k

Second term: z`+1
k =

mX

i=1

w `+1
ki a`i + b`+1

k =

mX

i=1

w `+1
ki �(z`i ) + b`+1

k

For i 6= j ,
@

@z`j
[w `+1

ki �(z`i ) + b`+1
k ] = 0

For i = j ,
@

@z`j
[w `+1

kj �(z`j ) + b`+1
k ] = w `+1

kj �0
(z`j )

So
@z`+1

k

@z`j
= w `+1

kj �0
(z`j )

Madhavan Mukund Lecture 18: 21 March, 2024 DMML Jan–Apr 2024 11 / 15



Applying the chain rule

Induction step

From �`+1
j to �`j

�`j =
@C

@z`j
=

mX

k=1

@C

@z`+1
k

@z`+1
k

@z`j

First term inside summation:
@C

@z`+1
k

= �`+1
k

Second term: z`+1
k =

mX

i=1

w `+1
ki a`i + b`+1

k =

mX

i=1

w `+1
ki �(z`i ) + b`+1

k

For i 6= j ,
@

@z`j
[w `+1

ki �(z`i ) + b`+1
k ] = 0

For i = j ,
@

@z`j
[w `+1

kj �(z`j ) + b`+1
k ] = w `+1

kj �0
(z`j )

So
@z`+1

k

@z`j
= w `+1

kj �0
(z`j )

Madhavan Mukund Lecture 18: 21 March, 2024 DMML Jan–Apr 2024 11 / 15



Applying the chain rule

Induction step

From �`+1
j to �`j

�`j =
@C

@z`j
=

mX

k=1

@C

@z`+1
k

@z`+1
k

@z`j

First term inside summation:
@C

@z`+1
k

= �`+1
k

Second term: z`+1
k =

mX

i=1

w `+1
ki a`i + b`+1

k =

mX

i=1

w `+1
ki �(z`i ) + b`+1

k

For i 6= j ,
@

@z`j
[w `+1

ki �(z`i ) + b`+1
k ] = 0

For i = j ,
@

@z`j
[w `+1

kj �(z`j ) + b`+1
k ] = w `+1

kj �0
(z`j )

So
@z`+1

k

@z`j
= w `+1

kj �0
(z`j )

Madhavan Mukund Lecture 18: 21 March, 2024 DMML Jan–Apr 2024 11 / 15



Finishing touches

What we actually need to compute are
@C

@w `
kj

,
@C

@b`k

@C

@w `
kj

=
@C

@z`k

@z`k
@w `

kj

= �`k
@z`k
@w `

kj

@C

@b`k
=

@C

@z`k

@z`k
@b`k

= �`k
@z`k
@b`k

We have already computed �`k , so what remains is
@z`k
@w `

kj

,
@z`k
@b`k

Since z`k =

mX

i=1

w `
kia

`�1
i + b`k , it follows that

@z`k
@w `

kj

= a`�1
j — terms with i 6= j vanish

@z`k
@b`k

= 1 — terms with i 6= j vanish

Madhavan Mukund Lecture 18: 21 March, 2024 DMML Jan–Apr 2024 12 / 15

We have

5f : t



Finishing touches

What we actually need to compute are
@C

@w `
kj

,
@C

@b`k
@C

@w `
kj

=
@C

@z`k

@z`k
@w `

kj

= �`k
@z`k
@w `

kj

@C

@b`k
=

@C

@z`k

@z`k
@b`k

= �`k
@z`k
@b`k

We have already computed �`k , so what remains is
@z`k
@w `

kj

,
@z`k
@b`k

Since z`k =

mX

i=1

w `
kia

`�1
i + b`k , it follows that

@z`k
@w `

kj

= a`�1
j — terms with i 6= j vanish

@z`k
@b`k

= 1 — terms with i 6= j vanish

Madhavan Mukund Lecture 18: 21 March, 2024 DMML Jan–Apr 2024 12 / 15

OO-
-

--O 2 =w -a+b



Finishing touches

What we actually need to compute are
@C

@w `
kj

,
@C

@b`k
@C

@w `
kj

=
@C

@z`k

@z`k
@w `

kj

= �`k
@z`k
@w `

kj

@C

@b`k
=

@C

@z`k

@z`k
@b`k

= �`k
@z`k
@b`k

We have already computed �`k , so what remains is
@z`k
@w `

kj

,
@z`k
@b`k

Since z`k =

mX

i=1

w `
kia

`�1
i + b`k , it follows that

@z`k
@w `

kj

= a`�1
j — terms with i 6= j vanish

@z`k
@b`k

= 1 — terms with i 6= j vanish

Madhavan Mukund Lecture 18: 21 March, 2024 DMML Jan–Apr 2024 12 / 15



Finishing touches

What we actually need to compute are
@C

@w `
kj

,
@C

@b`k
@C

@w `
kj

=
@C

@z`k

@z`k
@w `

kj

= �`k
@z`k
@w `

kj

@C

@b`k
=

@C

@z`k

@z`k
@b`k

= �`k
@z`k
@b`k

We have already computed �`k , so what remains is
@z`k
@w `

kj

,
@z`k
@b`k

Since z`k =

mX

i=1

w `
kia

`�1
i + b`k , it follows that

@z`k
@w `

kj

= a`�1
j — terms with i 6= j vanish

@z`k
@b`k

= 1 — terms with i 6= j vanish

Madhavan Mukund Lecture 18: 21 March, 2024 DMML Jan–Apr 2024 12 / 15



Finishing touches

What we actually need to compute are
@C

@w `
kj

,
@C

@b`k
@C

@w `
kj

=
@C

@z`k

@z`k
@w `

kj

= �`k
@z`k
@w `

kj

@C

@b`k
=

@C

@z`k

@z`k
@b`k

= �`k
@z`k
@b`k

We have already computed �`k , so what remains is
@z`k
@w `

kj

,
@z`k
@b`k

Since z`k =

mX

i=1

w `
kia

`�1
i + b`k , it follows that

@z`k
@w `

kj

= a`�1
j — terms with i 6= j vanish

@z`k
@b`k

= 1 — terms with i 6= j vanish

Madhavan Mukund Lecture 18: 21 March, 2024 DMML Jan–Apr 2024 12 / 15



Backpropagation

In the forward pass, compute all z`k , a
`
k

In the backward pass, compute all �`k , from which we can get all
@C

@w `
kj

,
@C

@b`k

Increment each parameter by a step � in the direction opposite the gradient

Update parameters after each mini batch — stochastic gradient descent

Epoch — one pass through the entire training data

Madhavan Mukund Lecture 18: 21 March, 2024 DMML Jan–Apr 2024 13 / 15



Backpropagation

In the forward pass, compute all z`k , a
`
k

In the backward pass, compute all �`k , from which we can get all
@C

@w `
kj

,
@C

@b`k

Increment each parameter by a step � in the direction opposite the gradient

Typically, partition the training data into groups (mini batches)

Update parameters after each mini batch — stochastic gradient descent

Epoch — one pass through the entire training data

Madhavan Mukund Lecture 18: 21 March, 2024 DMML Jan–Apr 2024 13 / 15



Challenges

Backpropagation dates from mid-1980’s

Learning representations by back-propagating errors

David E. Rumelhart, Geo↵rey E. Hinton and Ronald J. Williams

Nature, 323, 533–536 (1986)

Computationally infeasible till advent of modern parallel hardware, GPUs for vector

(tensor) calculations

Vanishing gradient problem — cascading derivatives make gradients in initial layers very

small, convergence is slow

In rare cases, exploding gradient also occurs

Madhavan Mukund Lecture 18: 21 March, 2024 DMML Jan–Apr 2024 14 / 15



Challenges

Backpropagation dates from mid-1980’s

Learning representations by back-propagating errors

David E. Rumelhart, Geo↵rey E. Hinton and Ronald J. Williams

Nature, 323, 533–536 (1986)

Computationally infeasible till advent of modern parallel hardware, GPUs for vector

(tensor) calculations

Vanishing gradient problem — cascading derivatives make gradients in initial layers very

small, convergence is slow

In rare cases, exploding gradient also occurs

Madhavan Mukund Lecture 18: 21 March, 2024 DMML Jan–Apr 2024 14 / 15



Challenges

Backpropagation dates from mid-1980’s

Learning representations by back-propagating errors

David E. Rumelhart, Geo↵rey E. Hinton and Ronald J. Williams

Nature, 323, 533–536 (1986)

Computationally infeasible till advent of modern parallel hardware, GPUs for vector

(tensor) calculations

Vanishing gradient problem — cascading derivatives make gradients in initial layers very

small, convergence is slow

In rare cases, exploding gradient also occurs

Madhavan Mukund Lecture 18: 21 March, 2024 DMML Jan–Apr 2024 14 / 15



Pragmatics

Many heuristics to speed up gradient descent

Dynamically vary step size

Dampen positive-negative oscillations . . .

Libraries implementing neural networks have several hyperparameters that can be tuned

Network structure: Number of layers, type of activation function — RELU, tanh

Training: Mini-batch size, number of epochs

Heuristics: Choice of optimizer for gradient descent

Loss functions

As we have seen MSE is not a good choice

Cross entropy is better — corresponds to finding MLE

Madhavan Mukund Lecture 18: 21 March, 2024 DMML Jan–Apr 2024 15 / 15



Pragmatics

Many heuristics to speed up gradient descent

Dynamically vary step size

Dampen positive-negative oscillations . . .

Libraries implementing neural networks have several hyperparameters that can be tuned

Network structure: Number of layers, type of activation function — RELU, tanh

Training: Mini-batch size, number of epochs

Heuristics: Choice of optimizer for gradient descent

Loss functions

As we have seen MSE is not a good choice

Cross entropy is better — corresponds to finding MLE

Madhavan Mukund Lecture 18: 21 March, 2024 DMML Jan–Apr 2024 15 / 15



Pragmatics

Many heuristics to speed up gradient descent

Dynamically vary step size

Dampen positive-negative oscillations . . .

Libraries implementing neural networks have several hyperparameters that can be tuned

Network structure: Number of layers, type of activation function — RELU, tanh

Training: Mini-batch size, number of epochs

Heuristics: Choice of optimizer for gradient descent

Loss functions

As we have seen MSE is not a good choice

Cross entropy is better — corresponds to finding MLE

Madhavan Mukund Lecture 18: 21 March, 2024 DMML Jan–Apr 2024 15 / 15



Pragmatics

Many heuristics to speed up gradient descent

Dynamically vary step size

Dampen positive-negative oscillations . . .

Libraries implementing neural networks have several hyperparameters that can be tuned

Network structure: Number of layers, type of activation function — RELU, tanh

Training: Mini-batch size, number of epochs

Heuristics: Choice of optimizer for gradient descent

Loss functions

As we have seen MSE is not a good choice

Cross entropy is better — corresponds to finding MLE

Madhavan Mukund Lecture 18: 21 March, 2024 DMML Jan–Apr 2024 15 / 15


