Lecture 24: 18 April, 2024

Madhavan Mukund https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning January–April 2024

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Reinforcement Learning Taskes requiring a sequence of actions Goal mented - Find the "treasure" Moves are uncertain Infinite task - balancing Bandit problem - "single state" estimation

Set of states *S*, actions *A*, rewards *R*

▶ < ∃ ▶</p>

Set of states S, actions A, rewards R

At time t, agent in state S_t selects action A_t, moves to state S_{t+1} and receives reward R_{t+1}
 Trajectory S₀, A₀, R₁, S₁, A₁, R₂, S₂,...

- Set of states S, actions A, rewards R
- At time t, agent in state S_t selects action A_t, moves to state S_{t+1} and receives reward R_{t+1}
 Trajectory S₀, A₀, R₁, S₁, A₁, R₂, S₂,...
- Probabilistic transition function: $p(s', r \mid s, a)$
 - Probability of moving to state s' with reward r if we choose a at s
 - For each (s, a), $\sum_{s'} \sum_{r} p(s', r \mid s, a) = 1$

2/10

- Set of states S. actions A. rewards R
- At time t, agent in state S_t selects action A_t , moves to state S_{t+1} and receives reward R_{t+1} Trajectory $S_0, A_0, R_1, S_1, A_1, R_2, S_2, \ldots$
- Probabilistic transition function: $p(s', r \mid s, a)$
 - Probability of moving to state s' with reward r if we choose a at s
 - For each (s, a), $\sum_{s'} \sum_{r} p(s', r \mid s, a) = 1$
 - Backup diagram

- Set of states *S*, actions *A*, rewards *R*
- At time t, agent in state S_t selects action A_t, moves to state S_{t+1} and receives reward R_{t+1}
 Trajectory S₀, A₀, R₁, S₁, A₁, R₂, S₂,...
- Probabilistic transition function: $p(s', r \mid s, a)$
 - Probability of moving to state s' with reward r if we choose a at s
 - For each (s, a), $\sum_{s'} \sum_{r} p(s', r \mid s, a) = 1$
 - Backup diagram
- Typically assume finite MDPs S, A and R are finite

Madhavan Mukund

Lecture 24: 18 April, 2024

2/10

MDP Example: Robot that collects empty cans

- State battery charge: high, low
- Actions: search for a can, wait for someone to bring can, recharge battery
 - No recharge when high

MDP Example: Robot that collects empty cans

- State battery charge: high, low
- Actions: search for a can, wait for someone to bring can, recharge battery
 - No recharge when high
- α, β, probabilities associated with change of battery state while searching

MDP Example: Robot that collects empty cans

- State battery charge: high, low
- Actions: search for a can, wait for someone to bring can, recharge battery
 - No recharge when high
- α, β, probabilities associated with change of battery state while searching
- 1 unit of reward per can collected
- r_{search} > r_{wait} cans collected while searching, waiting
- Negative reward for requiring rescue (low to high while searching)

Lecture 24: 18 April, 2024

3/10

How do we formalize long term rewards?

→ < ∃→

- How do we formalize long term rewards?
- Assume that each trajectory is a finite episode

< ∃ >

- How do we formalize long term rewards?
- Assume that each trajectory is a finite episode
- Episode with T steps, expected reward at time t: $G_t \stackrel{\triangle}{=} R_{t+1} + R_{t+2} + \cdots + R_T$
 - Each episode is independent: rewards are reset after each episode

- How do we formalize long term rewards?
- Assume that each trajectory is a finite episode
- Episode with T steps, expected reward at time t: $G_t \stackrel{\triangle}{=} R_{t+1} + R_{t+2} + \cdots + R_T$
 - Each episode is independent: rewards are reset after each episode
- In some situations, trajectories may be (potentially) infinite

Discounted rewards: $G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}, 0 \le \gamma \le 1$

Inductive calculation of expected reward

 $G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} + \cdots$

- How do we formalize long term rewards?
- Assume that each trajectory is a finite episode
- Episode with T steps, expected reward at time t: $G_t \stackrel{\triangle}{=} R_{t+1} + R_{t+2} + \cdots + R_T$
 - Each episode is independent: rewards are reset after each episode
- In some situations, trajectories may be (potentially) infinite

Discounted rewards: $G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}, 0 \le \gamma \le 1$

Inductive calculation of expected reward

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} + \cdots$$

= $R_{t+1} + \gamma (R_{t+2} + \gamma R_{t+3} + \gamma^2 R_{t+4} + \cdots)$

- How do we formalize long term rewards?
- Assume that each trajectory is a finite episode
- Episode with T steps, expected reward at time t: $G_t \stackrel{\triangle}{=} R_{t+1} + R_{t+2} + \cdots + R_T$
 - Each episode is independent: rewards are reset after each episode
- In some situations, trajectories may be (potentially) infinite
 - Discounted rewards: $G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots = \sum_{k=1}^{\infty} \gamma^k R_{t+k+1}, 0 \le \gamma \le 1$
- Inductive calculation of expected reward

$$G_{t} = R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} R_{t+4} + \cdots$$

= $R_{t+1} + \gamma (R_{t+2} + \gamma R_{t+3} + \gamma^{2} R_{t+4} + \cdots)$
= $R_{t+1} + \gamma G_{t+1}$

YC1 /

Can make all episodes infinite by adding a self-loop with reward 0

< ⊒ ▶

Can make all episodes infinite by adding a self-loop with reward 0

• Allow $\gamma = 1$ only if sum converges

Can make all episodes infinite by adding a self-loop with reward 0

Allow $\gamma = 1$ only if sum converges
Alternatively, $G_t \stackrel{\triangle}{=} \sum_{k=t+1}^{T} \gamma^{k-t-1} R_k$,

where we allow $T = \infty$ and $\gamma = 1$, but not both at the same time

Can make all episodes infinite by adding a self-loop with reward 0

- Allow $\gamma = 1$ only if sum converges
- Alternatively, $G_t \stackrel{\triangle}{=} \sum_{k=t+1}^{l} \gamma^{k-t-1} R_k$,

where we allow $T = \infty$ and $\gamma = 1$, but not both at the same time

If
$$T = \infty$$
, $R_k = +1$ for each k , $\gamma < 1$, then $G_t = \frac{1}{1 - \gamma}$

• A policy π describes how the agent chooses actions at a state

• $\pi(a \mid s)$ — probability of choosing *a* in state *s*, $\sum \pi(a \mid s) = 1$

6/10

• A policy π describes how the agent chooses actions at a state

•
$$\pi(a \mid s)$$
 — probability of choosing *a* in state *s*, $\sum_{a} \pi(a \mid s) = 1$

State value function at s, following policy π

$$\mathbf{v}_{\pi}(s) \stackrel{\triangle}{=} \mathbb{E}_{\pi}[G_t \mid S_t = s] = \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s\right]$$

 \blacksquare A policy π describes how the agent chooses actions at a state

•
$$\pi(a \mid s)$$
 — probability of choosing *a* in state *s*, $\sum_{a} \pi(a \mid s) = 1$

• State value function at s, following policy π

$$v_{\pi}(s) \stackrel{\Delta}{=} \mathbb{E}_{\pi}[G_t \mid S_t = s] = \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s\right]$$

Action value function on choosing a at s and then following policy π

$$q_{\pi}(s,a) \stackrel{\triangle}{=} \mathbb{E}_{\pi}[G_t \mid S_t = s, A_t = a] = \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s, A_t = a \right]$$

• Note that
$$v_{\pi}(s) = \sum_{a} \pi(a \mid s) q_{\pi}(s, a)$$

Goal is to find an optimal policy, that maximizes state/action value at every state

Madhavan Mukund

•
$$v_{\pi}(s) \stackrel{\triangle}{=} \mathbb{E}_{\pi}[G_t \mid S_t = s]$$

(4) 医(1) (4) 医(1)

< □ > < 同

•
$$v_{\pi}(s) \stackrel{\triangle}{=} \mathbb{E}_{\pi}[G_t \mid S_t = s]$$

= $\mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1} \mid S_t = s]$

Image: A matrix

▶ ★ 臣 ▶ ★ 臣 ▶ ...

3

•
$$v_{\pi}(s) \stackrel{\triangle}{=} \mathbb{E}_{\pi}[G_t \mid S_t = s]$$

 $= \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1} \mid S_t = s]$
 $= \sum_{a} \pi(a \mid s) \sum_{s'} \sum_{r} p(s', r \mid s, a) [r + \gamma \mathbb{E}_{\pi}[G_{t+1} \mid S_{t+1} = s']]$

DMML Jan-Apr 2024

•
$$v_{\pi}(s) \stackrel{\Delta}{=} \mathbb{E}_{\pi}[G_t \mid S_t = s]$$

 $= \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1} \mid S_t = s]$
 $= \sum_a \pi(a \mid s) \sum_{s'} \sum_r p(s', r \mid s, a) [r + \gamma \mathbb{E}_{\pi}[G_{t+1} \mid S_{t+1} = s']]$
 $= \sum_a \pi(a \mid s) \sum_{s'} \sum_r p(s', r \mid s, a) [r + \gamma v_{\pi}(s')]$

DMML Jan-Apr 2024

(4) 医(1) (4) 医(1)

< □ > < 同

•
$$v_{\pi}(s) \stackrel{\Delta}{=} \mathbb{E}_{\pi}[G_t \mid S_t = s]$$

 $= \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1} \mid S_t = s]$
 $= \sum_a \pi(a \mid s) \sum_{s'} \sum_r p(s', r \mid s, a) [r + \gamma \mathbb{E}_{\pi}[G_{t+1} \mid S_{t+1} = s']]$
 $= \sum_a \pi(a \mid s) \sum_{s'} \sum_r p(s', r \mid s, a) [r + \gamma v_{\pi}(s')]$

Bellman equation relates state value at *s* to state values at successors of *s*

• Value function v_{π} is unique solution to the equation

Actions in each cell are {N,S,E,W}, with usual interpretation

▶ < ∃ ▶</p>

- Actions in each cell are $\{N,S,E,W\}$, with usual interpretation
- Reward is 0, except at boundaries
- Colliding with boundary position unchanged, reward -1

< ∃→

- Actions in each cell are {N,S,E,W}, with usual interpretation
- Reward is 0, except at boundaries
- Colliding with boundary position unchanged, reward -1
- Special squares A and B all four actions move as indicated, with rewards +10 and +5, respectively

- Actions in each cell are {N,S,E,W}, with usual interpretation
- Reward is 0, except at boundaries
- Colliding with boundary position unchanged, reward -1
- Special squares A and B all four actions move as indicated, with rewards +10 and +5, respectively
- Policy π choose each action with uniform probability 0.25

- Actions in each cell are {N,S,E,W}, with usual interpretation
- Reward is 0, except at boundaries
- Colliding with boundary position unchanged, reward -1
- Special squares A and B all four actions move as indicated, with rewards +10 and +5, respectively
- Policy π choose each action with uniform probability 0.25
- Solving Bellman equations, we obtain v_{π} for each square

3.3	8.8	4.4	5.3	1.5
1.5	3.0	2.3	1.9	0.5
0.1	0.7	0.7	0.4	-0.4
-1.0	-0.4	-0.4	-0.6	-1.2
-1.9	-1.3	-1.2	-1.4	-2.0

- Actions in each cell are {N,S,E,W}, with usual interpretation
- Reward is 0, except at boundaries
- Colliding with boundary position unchanged, reward -1
- Special squares A and B all four actions move as indicated, with rewards +10 and +5, respectively
- Policy π choose each action with uniform probability 0.25
- Solving Bellman equations, we obtain v_{π} for each square
- Values at boundary are negative

3.3	8.8	4.4	5.3	1.5
1.5	3.0	2.3	1.9	0.5
0.1	0.7	0.7	0.4	-0.4
-1.0	-0.4	-0.4	-0.6	-1.2
-1.9	-1.3	-1.2	-1.4	-2.0

- Actions in each cell are {N,S,E,W}, with usual interpretation
- Reward is 0, except at boundaries
- Colliding with boundary position unchanged, reward -1
- Special squares A and B all four actions move as indicated, with rewards +10 and +5, respectively
- Policy π choose each action with uniform probability 0.25
- Solving Bellman equations, we obtain v_{π} for each square
- Values at boundary are negative
- Value at A is less than 10 because next move takes agent to boundary square with negative value

3.3	8.8	4.4	5.3	1.5
1.5	3.0	2.3	1.9	0.5
0.1	0.7	0.7	0.4	-0.4
-1.0	-0.4	-0.4	-0.6	-1.2
-1.9	-1.3	-1.2	-1.4	-2.0

- Actions in each cell are {N,S,E,W}, with usual interpretation
- Reward is 0, except at boundaries
- Colliding with boundary position unchanged, reward -1
- Special squares A and B all four actions move as indicated, with rewards +10 and +5, respectively
- Policy π choose each action with uniform probability 0.25
- Solving Bellman equations, we obtain v_{π} for each square
- Values at boundary are negative
- Value at A is less than 10 because next move takes agent to boundary square with negative value
- Value at B is more than 5 because next move is to a square with positive value

3.3	8.8	4.4	5.3	1.5
1.5	3.0	2.3	1.9	0.5
0.1	0.7	0.7	0.4	-0.4
-1.0	-0.4	-0.4	-0.6	-1.2
-1.9	-1.3	-1.2	-1.4	-2.0

8/10

• Compare policies π , π' : $\pi \ge \pi'$ if $v_{\pi}(s) \ge v_{\pi'}(s)$ for every state s

< ⊒ ▶

- Compare policies π , π' : $\pi \geq \pi'$ if $v_{\pi}(s) \geq v_{\pi'}(s)$ for every state s
- Optimal policy π_* , $\pi_* \geq \pi$ for every π
 - Always exists, but may not be unique

- Compare policies π , π' : $\pi \geq \pi'$ if $v_{\pi}(s) \geq v_{\pi'}(s)$ for every state s
- Optimal policy π_* , $\pi_* \geq \pi$ for every π
 - Always exists, but may not be unique
- Optimal state value function, $v_*(s) \stackrel{\triangle}{=} \max_{\pi} v_{\pi}(s) = v_{\pi_*}(s)$

- Compare policies π , π' : $\pi \geq \pi'$ if $v_{\pi}(s) \geq v_{\pi'}(s)$ for every state s
- Optimal policy π_* , $\pi_* \geq \pi$ for every π
 - Always exists, but may not be unique
- Optimal state value function, $v_*(s) \stackrel{\bigtriangleup}{=} \max_{\pi} v_{\pi}(s) = v_{\pi_*}(s)$
- Optimal action value function, $q_*(s,a) \stackrel{\triangle}{=} \max_{\pi} q_{\pi}(s,a) = q_{\pi_*}(s,a)$

- Compare policies π , π' : $\pi \geq \pi'$ if $v_{\pi}(s) \geq v_{\pi'}(s)$ for every state s
- Optimal policy π_* , $\pi_* \geq \pi$ for every π
 - Always exists, but may not be unique
- Optimal state value function, $v_*(s) \stackrel{\triangle}{=} \max_{\pi} v_{\pi}(s) = v_{\pi_*}(s)$
- Optimal action value function, $q_*(s, a) \stackrel{\triangle}{=} \max_{\pi} q_{\pi}(s, a) = q_{\pi_*}(s, a)$
- Bellman optimality equation for v_*

 $v_*(s) = \max_a q_{\pi_*}(s,a)$

- Compare policies π , π' : $\pi \geq \pi'$ if $v_{\pi}(s) \geq v_{\pi'}(s)$ for every state s
- Optimal policy π_* , $\pi_* \geq \pi$ for every π
 - Always exists, but may not be unique
- Optimal state value function, $v_*(s) \stackrel{\triangle}{=} \max_{\pi} v_{\pi}(s) = v_{\pi_*}(s)$
- Optimal action value function, $q_*(s,a) \stackrel{\triangle}{=} \max_{\pi} q_{\pi}(s,a) = q_{\pi_*}(s,a)$
- Bellman optimality equation for v_*

$$egin{aligned} v_*(s) &= \max_a q_{\pi_*}(s,a) \ &= \max_a \mathbb{E}_{\pi_*}[G_t \mid S_t = s, A_t = a] \end{aligned}$$

- Compare policies π , π' : $\pi \geq \pi'$ if $v_{\pi}(s) \geq v_{\pi'}(s)$ for every state s
- Optimal policy π_* , $\pi_* \geq \pi$ for every π
 - Always exists, but may not be unique
- Optimal state value function, $v_*(s) \stackrel{\triangle}{=} \max_{\pi} v_{\pi}(s) = v_{\pi_*}(s)$
- Optimal action value function, $q_*(s, a) \stackrel{\triangle}{=} \max_{\pi} q_{\pi}(s, a) = q_{\pi_*}(s, a)$
- Bellman optimality equation for v_*

$$v_*(s) = \max_{a} q_{\pi_*}(s, a) \\ = \max_{a} \mathbb{E}_{\pi_*}[G_t \mid S_t = s, A_t = a] \\ = \max_{a} \mathbb{E}_{\pi_*}[R_{t+1} + \gamma G_{t+1} \mid S_t = s, A_t = a]$$

- Compare policies π , π' : $\pi \geq \pi'$ if $v_{\pi}(s) \geq v_{\pi'}(s)$ for every state s
- Optimal policy π_* , $\pi_* \geq \pi$ for every π
 - Always exists, but may not be unique
- Optimal state value function, $v_*(s) \stackrel{\triangle}{=} \max_{\pi} v_{\pi}(s) = v_{\pi_*}(s)$
- Optimal action value function, $q_*(s, a) \stackrel{\triangle}{=} \max_{\pi} q_{\pi}(s, a) = q_{\pi_*}(s, a)$
- Bellman optimality equation for v_*

$$v_*(s) = \max_{a} q_{\pi_*}(s, a)$$

= $\max_{a} \mathbb{E}_{\pi_*}[G_t \mid S_t = s, A_t = a]$
= $\max_{a} \mathbb{E}_{\pi_*}[R_{t+1} + \gamma G_{t+1} \mid S_t = s, A_t = a]$
= $\max_{a} \mathbb{E}[R_{t+1} + \gamma v_*(S_{t+1}) \mid S_t = s, A_t = a]$

- Compare policies π , π' : $\pi \geq \pi'$ if $v_{\pi}(s) \geq v_{\pi'}(s)$ for every state s
- Optimal policy π_* , $\pi_* \geq \pi$ for every π
 - Always exists, but may not be unique
- Optimal state value function, $v_*(s) \stackrel{\triangle}{=} \max_{\pi} v_{\pi}(s) = v_{\pi_*}(s)$
- Optimal action value function, $q_*(s,a) \stackrel{\triangle}{=} \max_{\pi} q_{\pi}(s,a) = q_{\pi_*}(s,a)$
- Bellman optimality equation for v_*

$$v_*(s) = \max_{a} q_{\pi_*}(s, a)$$

= $\max_{a} \mathbb{E}_{\pi_*}[G_t \mid S_t = s, A_t = a]$
= $\max_{a} \mathbb{E}_{\pi_*}[R_{t+1} + \gamma G_{t+1} \mid S_t = s, A_t = a]$
= $\max_{a} \mathbb{E}[R_{t+1} + \gamma v_*(S_{t+1}) \mid S_t = s, A_t = a]$
= $\max_{a} \sum_{s', r} p(s', r \mid s, a)[r + \gamma v_*(s')]$

9/10

•
$$v_*(s) = \max_{a} \mathbb{E}[R_{t+1} + \gamma v_*(S_{t+1}) \mid S_t = s, A_t = a]$$

= $\max_{a} \sum_{s', r} p(s', r \mid s, a)[r + \gamma v_*(s')]$

▶ < ∃ ▶</p>

10/10

•
$$v_*(s) = \max_{a} \mathbb{E}[R_{t+1} + \gamma v_*(S_{t+1}) \mid S_t = s, A_t = a]$$

= $\max_{a} \sum_{s', r} p(s', r \mid s, a)[r + \gamma v_*(s')]$

Likewise, for action value function

$$q_*(s, a) = \mathbb{E}[R_{t+1} + \gamma \max_{a'} q_*(S_{t+1}, a') \mid S_t = t, A_t = a]$$

= $\sum_{s', r} p(s', r \mid s, a)[r + \max_{a'} \gamma q_*(s', a')]$

э

•
$$v_*(s) = \max_{a} \mathbb{E}[R_{t+1} + \gamma v_*(S_{t+1}) \mid S_t = s, A_t = a]$$

= $\max_{a} \sum_{s', r} p(s', r \mid s, a)[r + \gamma v_*(s')]$

Likewise, for action value function

$$q_*(s, a) = \mathbb{E}[R_{t+1} + \gamma \max_{a'} q_*(S_{t+1}, a') \mid S_t = t, A_t = a]$$

= $\sum_{s', r} p(s', r \mid s, a)[r + \max_{a'} \gamma q_*(s', a')]$

- For finite state MDPs, can solve explicitly for v_*
 - **n** states, *n* equations in *n* unknowns, (assuming we know p)

•
$$v_*(s) = \max_{a} \mathbb{E}[R_{t+1} + \gamma v_*(S_{t+1}) \mid S_t = s, A_t = a]$$

= $\max_{a} \sum_{s', r} p(s', r \mid s, a)[r + \gamma v_*(s')]$

Likewise, for action value function

$$q_*(s, a) = \mathbb{E}[R_{t+1} + \gamma \max_{a'} q_*(S_{t+1}, a') \mid S_t = t, A_t = a]$$

= $\sum_{s', r} p(s', r \mid s, a)[r + \max_{a'} \gamma q_*(s', a')]$

- For finite state MDPs, can solve explicitly for v_*
 - **n** states, *n* equations in *n* unknowns, (assuming we know p)
- However, n is usually large, computationally infeasible
 - State space of a game like chess or Go

•
$$v_*(s) = \max_{a} \mathbb{E}[R_{t+1} + \gamma v_*(S_{t+1}) \mid S_t = s, A_t = a]$$

= $\max_{a} \sum_{s', r} p(s', r \mid s, a)[r + \gamma v_*(s')]$

Likewise, for action value function

$$q_*(s, a) = \mathbb{E}[R_{t+1} + \gamma \max_{a'} q_*(S_{t+1}, a') \mid S_t = t, A_t = a]$$

= $\sum_{s', r} p(s', r \mid s, a)[r + \max_{a'} \gamma q_*(s', a')]$

- For finite state MDPs, can solve explicitly for v_*
 - **n** states, *n* equations in *n* unknowns, (assuming we know p)
- However, *n* is usually large, computationally infeasible
 - State space of a game like chess or Go
- Instead, we will explore iterative methods to approximate v_{*}

Madhavan Mukund

Lecture 24: 18 April, 2024