Lecture 24: 18 April, 2024

Madhavan Mukund
https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning January-April 2024

Reinforcement learning
Tasks requiring a sequence of actions
Cool rented - Find the "treasure"
Moves are uncertain
Infinite task - balancing
Bandit problem - "single state" estimation

Markov Decision Processes

- Set of states S, actions A, rewards R

Markov Decision Processes

- Set of states S, actions A, rewards R
- At time t, agent in state S_{t} selects action A_{t}, moves to state S_{t+1} and receives reward R_{t+1}
Trajectory $S_{0}, A_{0}, R_{1}, S_{1}, A_{1}, R_{2}, S_{2}, \ldots$
 Choice points

Markov Decision Processes

- Set of states S, actions A, rewards R
- At time t, agent in state S_{t} selects action A_{t}, moves to state S_{t+1} and receives reward R_{t+1}
Trajectory $S_{0}, A_{0}, R_{1}, S_{1}, A_{1}, R_{2}, S_{2}, \ldots$

- Probabilistic transition function:
$p\left(s^{\prime}, r \mid s, a\right)$
- Probability of moving to state s^{\prime} with reward r if we choose a at s
■ For each $(s, a), \sum_{s^{\prime}} \sum_{r} p\left(s^{\prime}, r \mid s, a\right)=1$

Markov Decision Processes

- Set of states S, actions A, rewards R
- At time t, agent in state S_{t} selects action A_{t}, moves to state S_{t+1} and receives reward R_{t+1}
Trajectory $S_{0}, A_{0}, R_{1}, S_{1}, A_{1}, R_{2}, S_{2}, \ldots$

- Probabilistic transition function:
$p\left(s^{\prime}, r \mid s, a\right)$
- Probability of moving to state s^{\prime} with reward r if we choose a at s

■ For each $(s, a), \sum_{s^{\prime}} \sum_{r} p\left(s^{\prime}, r \mid s, a\right)=1$

- Backup diagram

Markov Decision Processes

- Set of states S, actions A, rewards R
- At time t, agent in state S_{t} selects action A_{t}, moves to state S_{t+1} and receives reward R_{t+1}
Trajectory $S_{0}, A_{0}, R_{1}, S_{1}, A_{1}, R_{2}, S_{2}, \ldots$

- Probabilistic transition function: $p\left(s^{\prime}, r \mid s, a\right)$
- Probability of moving to state s^{\prime} with reward r if we choose a at s

■ For each $(s, a), \sum_{s^{\prime}} \sum_{r} p\left(s^{\prime}, r \mid s, a\right)=1$

- Backup diagram
- Typically assume finite MDPs - S, A and R are finite

MDP Example: Robot that collects empty cans

- State - battery charge: high, low
- Actions: search for a can, wait for someone to bring can, recharge battery

■ No recharge when high

MDP Example: Robot that collects empty cans

■ State - battery charge: high, low

- Actions: search for a can, wait for someone to bring can, recharge battery
- No recharge when high
- α, β, probabilities associated with change of battery state while searching

MDP Example: Robot that collects empty cans

■ State - battery charge: high, low

- Actions: search for a can, wait for someone to bring can, recharge battery
- No recharge when high
- α, β, probabilities associated with change of battery state while searching
- 1 unit of reward per can collected
- $r_{\text {search }}>r_{\text {wait }}$ - cans collected while searching, waiting
- Negative reward for requiring rescue (low to high while searching)

Long term rewards

■ How do we formalize long term rewards?

Long term rewards

- How do we formalize long term rewards?

■ Assume that each trajectory is a finite episode

Long term rewards

- How do we formalize long term rewards?
- Assume that each trajectory is a finite episode
- Episode with T steps, expected reward at time $t: G_{t} \triangleq R_{t+1}+R_{t+2}+\cdots+R_{T}$
- Each episode is independent: rewards are reset after each episode

Long term rewards

■ How do we formalize long term rewards?
■ Assume that each trajectory is a finite episode
■ Episode with T steps, expected reward at time $t: G_{t} \triangleq R_{t+1}+R_{t+2}+\cdots+R_{T}$

- Each episode is independent: rewards are reset after each episode
- In some situations, trajectories may be (potentially) infinite
- Discounted rewards: $G_{t}=R_{t+1}+\gamma R_{t+2}+\gamma^{2} R_{t+3}+\cdots=\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1}, 0 \leq \gamma \leq 1$
- Inductive calculation of expected reward $G_{t}=R_{t+1}+\gamma R_{t+2}+\gamma^{2} R_{t+3}+\gamma^{3} R_{t+4}+\cdots$

Long term rewards

■ How do we formalize long term rewards?
■ Assume that each trajectory is a finite episode
■ Episode with T steps, expected reward at time $t: G_{t} \triangleq R_{t+1}+R_{t+2}+\cdots+R_{T}$

- Each episode is independent: rewards are reset after each episode
- In some situations, trajectories may be (potentially) infinite
- Discounted rewards: $G_{t}=R_{t+1}+\gamma R_{t+2}+\gamma^{2} R_{t+3}+\cdots=\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1}, 0 \leq \gamma \leq 1$
- Inductive calculation of expected reward

$$
\begin{aligned}
G_{t} & =R_{t+1}+\gamma R_{t+2}+\gamma^{2} R_{t+3}+\gamma^{3} R_{t+4}+\cdots \\
& =R_{t+1}+\gamma\left(R_{t+2}+\gamma R_{t+3}+\gamma^{2} R_{t+4}+\cdots\right)
\end{aligned}
$$

Long term rewards

■ How do we formalize long term rewards?
■ Assume that each trajectory is a finite episode
■ Episode with T steps, expected reward at time $t: G_{t} \triangleq R_{t+1}+R_{t+2}+\cdots+R_{T}$

- Each episode is independent: rewards are reset after each episode

■ In some situations, trajectories may be (potentially) infinite

- Discounted rewards: $G_{t}=R_{t+1}+\gamma R_{t+2}+\gamma^{2} R_{t+3}+\cdots=\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1}, 0 \leq \gamma \leq 1$
- Inductive calculation of expected reward

$$
\begin{aligned}
G_{t} & =R_{t+1}+\gamma R_{t+2}+\gamma^{2} R_{t+3}+\gamma^{3} R_{t+4}+\cdots \\
& =R_{t+1}+\gamma\left(R_{t+2}+\gamma R_{t+3}+\gamma^{2} R_{t+4}+\cdots\right) \\
& =R_{t+1}+\gamma G_{t+1}
\end{aligned}
$$

Long term rewards

- Can make all episodes infinite by adding a self-loop with reward 0

$$
\left(S _ { 0 } \xrightarrow { R _ { 1 } = + 1 } \left(S _ { 1 } \xrightarrow { R _ { 2 } = + 1 } \left(S_{2} \xrightarrow{R_{3}=+1} \square \begin{array}{l}
R_{4}=0 \\
R_{5}=0 \\
\vdots \\
\vdots
\end{array}\right.\right.\right.
$$

Long term rewards

- Can make all episodes infinite by adding a self-loop with reward 0

■ Allow $\gamma=1$ only if sum converges

Long term rewards

- Can make all episodes infinite by adding a self-loop with reward 0

- Allow $\gamma=1$ only if sum converges
- Alternatively, $G_{t} \triangleq \sum_{k=t+1}^{T} \gamma^{k-t-1} R_{k}$,
where we allow $T=\infty$ and $\gamma=1$, but not both at the same time

Long term rewards

■ Can make all episodes infinite by adding a self-loop with reward 0

- Allow $\gamma=1$ only if sum converges
- Alternatively, $G_{t} \triangleq \sum_{k=t+1}^{T} \gamma^{k-t-1} R_{k}$,
where we allow $T=\infty$ and $\gamma=1$, but not both at the same time
- If $T=\infty, R_{k}=+1$ for each $k, \gamma<1$, then $G_{t}=\frac{1}{1-\gamma}$

Policies and value functions

- A policy π describes how the agent chooses actions at a state
- $\pi(a \mid s)$ - probability of choosing a in state $s, \sum_{a} \pi(a \mid s)=1$

Policies and value functions

- A policy π describes how the agent chooses actions at a state

■ $\pi(a \mid s)$ — probability of choosing a in state $s, \sum_{a} \pi(a \mid s)=1$

- State value function at s, following policy π

$$
v_{\pi}(s) \triangleq \mathbb{E}_{\pi}\left[G_{t} \mid S_{t}=s\right]=\mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \mid S_{t}=s\right]
$$

Policies and value functions

- A policy π describes how the agent chooses actions at a state $\pi(a \mid s)$ - probability of choosing a in state $s, \sum_{a} \pi(a \mid s)=1$
- State value function at s, following policy π

$$
v_{\pi}(s) \triangleq \mathbb{E}_{\pi}\left[G_{t} S_{t}=s\right]=\mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \mid S_{t}=s\right]
$$

- Action value function on choosing a at s and then following policy π

$$
q_{\pi}(s, a) \triangleq \mathbb{E}_{\pi}\left[G_{t} \mid S_{t}=\left\{, A_{t}=a\right]=\mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \mid S_{t}=s, A_{t}=a\right]\right.
$$

- Note that $v_{\pi}(s)=\sum_{a} \pi(a \mid s) \gamma_{\pi}(s, a)$

$$
p(s, r \mid s, a)
$$

Policies and value functions

- A policy π describes how the agent chooses actions at a state

■ $\pi(a \mid s)$ — probability of choosing a in state $s, \sum_{a} \pi(a \mid s)=1$

- State value function at s, following policy π

$$
v_{\pi}(s) \triangleq \mathbb{E}_{\pi}\left[G_{t} \mid S_{t}=s\right]=\mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \mid S_{t}=s\right]
$$

- Action value function on choosing a at s and then following policy π

$$
q_{\pi}(s, a) \triangleq \mathbb{E}_{\pi}\left[G_{t} \mid S_{t}=s, A_{t}=a\right]=\mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \mid S_{t}=s, A_{t}=a\right]
$$

- Note that $v_{\pi}(s)=\sum_{a} \pi(a \mid s) q_{\pi}(s, a)$

■ Goal is to find an optimal policy, that maximizes state/action value at every state

Bellman equation

- $v_{\pi}(s) \triangleq \mathbb{E}_{\pi}\left[G_{t} \mid S_{t}=s\right]$

Bellman equation

■ $v_{\pi}(s) \triangleq \mathbb{E}_{\pi}\left[G_{t} \mid S_{t}=s\right]$

$$
=\mathbb{E}_{\pi}\left[R_{t+1}+\gamma G_{t+1} \mid S_{t}=s\right]
$$

Bellman equation

$$
\begin{aligned}
v_{\pi}(s) & \triangleq \mathbb{E}_{\pi}\left[G_{t} \mid S_{t}=s\right] \\
& =\mathbb{E}_{\pi}\left[R_{t+1}+\gamma G_{t+1} \mid S_{t}=s\right] \\
& =\sum_{a} \pi(a \mid s) \sum_{s^{\prime}} \sum_{r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\gamma \mathbb{E}_{\pi}\left[G_{t+1} \mid S_{t+1}=s^{\prime}\right]\right]
\end{aligned}
$$

Bellman equation

$$
\begin{aligned}
■ v_{\pi}(s) & \triangleq \mathbb{E}_{\pi}\left[G_{t} \mid S_{t}=s\right] \\
& =\mathbb{E}_{\pi}\left[R_{t+1}+\gamma G_{t+1} \mid S_{t}=s\right] \\
& =\sum_{a} \pi(a \mid s) \sum_{s^{\prime}} \sum_{r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\gamma \frac{\left.\mathbb{E}_{\pi}\left[G_{t+1} \mid S_{t+1}=s^{\prime}\right]\right]}{}\right. \\
& =\sum_{a} \pi(a \mid s) \sum_{s^{\prime}} \sum_{r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\gamma v_{\pi}\left(s^{\prime}\right)\right]
\end{aligned}
$$

Bellman equation

- $v_{\pi}(s) \triangleq \mathbb{E}_{\pi}\left[G_{t} \mid S_{t}=s\right]$

$$
\begin{aligned}
& =\mathbb{E}_{\pi}\left[R_{t+1}+\gamma G_{t+1} \mid S_{t}=s\right] \\
& =\sum_{a} \pi(a \mid s) \sum_{s^{\prime}} \sum_{r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\gamma \mathbb{E}_{\pi}\left[G_{t+1} \mid S_{t+1}=s^{\prime}\right]\right] \\
& =\sum_{a} \pi(a \mid s) \sum_{s^{\prime}} \sum_{r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\gamma v_{\pi}\left(s^{\prime}\right)\right]
\end{aligned}
$$

- Bellman equation relates state value at s to state values at successors of s
- Value function v_{π} is unique solution to the equation

Gridworld Example

- Actions in each cell are $\{\mathrm{N}, \mathrm{S}, \mathrm{E}, \mathrm{W}\}$, with usual interpretation

Gridworld Example

- Actions in each cell are $\{\mathrm{N}, \mathrm{S}, \mathrm{E}, \mathrm{W}\}$, with usual interpretation
- Reward is 0 , except at boundaries
- Colliding with boundary - position unchanged, reward -1

	A		B	
			+5	
		+10	B^{\prime}	
	A^{\prime}			

Gridworld Example

■ Actions in each cell are $\{N, S, E, W\}$, with usual interpretation

- Reward is 0 , except at boundaries

■ Colliding with boundary - position unchanged, reward -1

- Special squares A and B - all four actions move as indicated, with rewards +10 and +5 , respectively

	A		B	
			+5	
		+10	B^{\prime}	
	A^{\prime}			

$\stackrel{\sim}{\sim}$

Gridworld Example

■ Actions in each cell are $\{N, S, E, W\}$, with usual interpretation

- Reward is 0, except at boundaries
- Colliding with boundary - position unchanged, reward -1
- Special squares A and B - all four actions move as indicated, with rewards +10 and +5 , respectively
■ Policy π — choose each action with uniform probability 0.25

	A		B	
			+5	
		+10	B^{\prime}	
	A^{\prime}			

$\xrightarrow[\sim]{\sim}$

Gridworld Example

■ Actions in each cell are $\{N, S, E, W\}$, with usual interpretation

- Reward is 0 , except at boundaries
- Colliding with boundary - position unchanged, reward -1
- Special squares A and B - all four actions move as indicated, with rewards +10 and +5 , respectively
■ Policy π — choose each action with uniform probability 0.25
■ Solving Bellman equations, we obtain v_{π} for each square

	A		B	
			+5	
		+10	B^{\prime}	
	A^{\prime}			

Actions,

3.3	8.8	4.4	5.3	1.5
1.5	3.0	2.3	1.9	0.5
0.1	0.7	0.7	0.4	-0.4
-1.0	-0.4	-0.4	-0.6	-1.2
-1.9	-1.3	-1.2	-1.4	-2.0

Gridworld Example

■ Actions in each cell are $\{N, S, E, W\}$, with usual interpretation

- Reward is 0 , except at boundaries
- Colliding with boundary - position unchanged, reward -1
- Special squares A and B - all four actions move as indicated, with rewards +10 and +5 , respectively
■ Policy π — choose each action with uniform probability 0.25
- Solving Bellman equations, we obtain v_{π} for each square

Actions,

- Values at boundary are negative

Gridworld Example

- Actions in each cell are $\{N, S, E, W\}$, with usual interpretation
- Reward is 0 , except at boundaries
- Colliding with boundary - position unchanged, reward -1
- Special squares A and B - all four actions move as indicated, with rewards +10 and +5 , respectively

■ Policy π — choose each action with uniform probability 0.25

- Solving Bellman equations, we obtain v_{π} for each square

Actions,

- Values at boundary are negative
- Value at A is less than 10 because next move takes agent to boundary square with negative value

Gridworld Example

- Actions in each cell are $\{N, S, E, W\}$, with usual interpretation
- Reward is 0 , except at boundaries
- Colliding with boundary - position unchanged, reward -1
- Special squares A and B - all four actions move as indicated, with rewards +10 and +5 , respectively

■ Policy π — choose each action with uniform probability 0.25

- Solving Bellman equations, we obtain v_{π} for each square
- Values at boundary are negative
- Value at A is less than 10 because next move takes agent to boundary square with negative value
- Value at B is more than 5 because next move is to a square with positive value

Actions」

3.3	8.8	4.4	5.3	1.5
1.5	3.0	2.3	1.9	0.5
0.1	0.7	0.7	0.4	-0.4
-1.0	-0.4	-0.4	-0.6	-1.2
-1.9	-1.3	-1.2	-1.4	-2.0

Optimal policies and value functions

■ Compare policies $\pi, \pi^{\prime}: \pi \geq \pi^{\prime}$ if $v_{\pi}(s) \geq v_{\pi^{\prime}}(s)$ for every state s

Optimal policies and value functions

■ Compare policies $\pi, \pi^{\prime}: \pi \geq \pi^{\prime}$ if $v_{\pi}(s) \geq v_{\pi^{\prime}}(s)$ for every state s
■ Optimal policy $\pi_{*}, \pi_{*} \geq \pi$ for every π

- Always exists, but may not be unique

Optimal policies and value functions

■ Compare policies $\pi, \pi^{\prime}: \pi \geq \pi^{\prime}$ if $v_{\pi}(s) \geq v_{\pi^{\prime}}(s)$ for every state s
■ Optimal policy $\pi_{*}, \pi_{*} \geq \pi$ for every π

- Always exists, but may not be unique
- Optimal state value function, $v_{*}(s) \triangleq \max _{\pi} v_{\pi}(s)=v_{\pi_{*}}(s)$

Optimal policies and value functions

- Compare policies $\pi, \pi^{\prime}: \pi \geq \pi^{\prime}$ if $v_{\pi}(s) \geq v_{\pi^{\prime}}(s)$ for every state s

■ Optimal policy $\pi_{*}, \pi_{*} \geq \pi$ for every π

- Always exists, but may not be unique
- Optimal state value function, $v_{*}(s) \triangleq \max _{\pi} v_{\pi}(s)=v_{\pi_{*}}(s)$

■ Optimal action value function, $q_{*}(s, a) \triangleq \max _{\pi} q_{\pi}(s, a)=q_{\pi_{*}}(s, a)$

Optimal policies and value functions

■ Compare policies $\pi, \pi^{\prime}: \pi \geq \pi^{\prime}$ if $v_{\pi}(s) \geq v_{\pi^{\prime}}(s)$ for every state s
■ Optimal policy $\pi_{*}, \pi_{*} \geq \pi$ for every π

- Always exists, but may not be unique
- Optimal state value function, $v_{*}(s) \triangleq \max _{\pi} v_{\pi}(s)=v_{\pi_{*}}(s)$

■ Optimal action value function, $q_{*}(s, a) \triangleq \max _{\pi} q_{\pi}(s, a)=q_{\pi_{*}}(s, a)$

- Bellman optimality equation for v_{*}

$$
v_{*}(s)=\max _{a} q_{\pi_{*}}(s, a)
$$

Optimal policies and value functions

■ Compare policies $\pi, \pi^{\prime}: \pi \geq \pi^{\prime}$ if $v_{\pi}(s) \geq v_{\pi^{\prime}}(s)$ for every state s
■ Optimal policy $\pi_{*}, \pi_{*} \geq \pi$ for every π

- Always exists, but may not be unique
- Optimal state value function, $v_{*}(s) \triangleq \max _{\pi} v_{\pi}(s)=v_{\pi_{*}}(s)$

■ Optimal action value function, $q_{*}(s, a) \triangleq \max _{\pi} q_{\pi}(s, a)=q_{\pi_{*}}(s, a)$

- Bellman optimality equation for v_{*}

$$
\begin{aligned}
v_{*}(s) & =\max _{a} q_{\pi_{*}}(s, a) \\
& =\max _{a} \mathbb{E}_{\pi_{*}}\left[G_{t} \mid S_{t}=s, A_{t}=a\right]
\end{aligned}
$$

Optimal policies and value functions

■ Compare policies $\pi, \pi^{\prime}: \pi \geq \pi^{\prime}$ if $v_{\pi}(s) \geq v_{\pi^{\prime}}(s)$ for every state s
■ Optimal policy $\pi_{*}, \pi_{*} \geq \pi$ for every π

- Always exists, but may not be unique
- Optimal state value function, $v_{*}(s) \triangleq \max _{\pi} v_{\pi}(s)=v_{\pi_{*}}(s)$

■ Optimal action value function, $q_{*}(s, a) \triangleq \max _{\pi} q_{\pi}(s, a)=q_{\pi_{*}}(s, a)$

- Bellman optimality equation for v_{*}

$$
\begin{aligned}
v_{*}(s) & =\max _{a} q_{\pi_{*}}(s, a) \\
& =\max _{a} \mathbb{E}_{\pi_{*}}\left[G_{t} \mid S_{t}=s, A_{t}=a\right] \\
& =\max _{a} \mathbb{E}_{\pi_{*}}\left[R_{t+1}+\gamma G_{t+1} \mid S_{t}=s, A_{t}=a\right]
\end{aligned}
$$

Optimal policies and value functions

■ Compare policies $\pi, \pi^{\prime}: \pi \geq \pi^{\prime}$ if $v_{\pi}(s) \geq v_{\pi^{\prime}}(s)$ for every state s
■ Optimal policy $\pi_{*}, \pi_{*} \geq \pi$ for every π

- Always exists, but may not be unique
- Optimal state value function, $v_{*}(s) \triangleq \max _{\pi} v_{\pi}(s)=v_{\pi_{*}}(s)$

■ Optimal action value function, $q_{*}(s, a) \triangleq \max _{\pi} q_{\pi}(s, a)=q_{\pi_{*}}(s, a)$

- Bellman optimality equation for v_{*}

$$
\begin{aligned}
v_{*}(s) & =\max _{a} q_{\pi_{*}}(s, a) \\
& =\max _{a} \mathbb{E}_{\pi_{*}}\left[G_{t} \mid S_{t}=s, A_{t}=a\right] \\
& =\max _{a} \mathbb{E}_{\pi_{*}}\left[R_{t+1}+\gamma G_{t+1} \mid S_{t}=s, A_{t}=a\right] \\
& =\max _{a} \mathbb{E}\left[R_{t+1}+\gamma v_{*}\left(S_{t+1}\right) \mid S_{t}=s, A_{t}=a\right]
\end{aligned}
$$

Optimal policies and value functions

- Compare policies $\pi, \pi^{\prime}: \pi \geq \pi^{\prime}$ if $v_{\pi}(s) \geq v_{\pi^{\prime}}(s)$ for every state s

■ Optimal policy $\pi_{*}, \pi_{*} \geq \pi$ for every π

- Always exists, but may not be unique
- Optimal state value function, $v_{*}(s) \triangleq \max _{\pi} v_{\pi}(s)=v_{\pi_{*}}(s)$

■ Optimal action value function, $q_{*}(s, a) \triangleq \max _{\pi} q_{\pi}(s, a)=q_{\pi_{*}}(s, a)$

- Bellman optimality equation for v_{*}

$$
\begin{aligned}
& v_{*}(s)=\max _{a} q_{\pi_{*}}(s, a) \\
&=\max _{a} \mathbb{E}_{\pi_{*}}\left[G_{t} \mid S_{t}=s, A_{t}=a\right] \\
&=\max _{a} \mathbb{E}_{\pi_{*}}\left[R_{t+1}+\gamma G_{t+1} \mid S_{t}=s, A_{t}=a\right] \\
&=\max _{a} \mathbb{E}\left[R_{t+1}+\gamma v_{*}\left(S_{t+1}\right) \mid S_{t}=s, A_{t}=a\right] \\
&=\max _{a} \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\gamma v_{*}\left(s^{\prime}\right)\right] \\
& \text { Madhavan Mukund }
\end{aligned}
$$

Bellman optimality equations

■ $v_{*}(s)=\max _{a} \mathbb{E}\left[R_{t+1}+\gamma v_{*}\left(S_{t+1}\right) \mid S_{t}=s, A_{t}=a\right]$

$$
=\max _{a} \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\gamma v_{*}\left(s^{\prime}\right)\right]
$$

Bellman optimality equations

- $v_{*}(s)=\max _{a} \mathbb{E}\left[R_{t+1}+\gamma v_{*}\left(S_{t+1}\right) \mid S_{t}=s, A_{t}=a\right]$

$$
=\max _{a}^{a} \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\gamma v_{*}\left(s^{\prime}\right)\right]
$$

- Likewise, for action value function

$$
\begin{aligned}
q_{*}(s, a) & =\mathbb{E}\left[R_{t+1}+\gamma \max _{a^{\prime}} q_{*}\left(S_{t+1}, a^{\prime}\right) \mid S_{t}=t, A_{t}=a\right] \\
& =\sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\max _{a^{\prime}} \gamma q_{*}\left(s^{\prime}, a^{\prime}\right)\right]
\end{aligned}
$$

Bellman optimality equations

- $v_{*}(s)=\max _{a} \mathbb{E}\left[R_{t+1}+\gamma v_{*}\left(S_{t+1}\right) \mid S_{t}=s, A_{t}=a\right]$

$$
=\max _{a}^{a} \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\gamma v_{*}\left(s^{\prime}\right)\right]
$$

- Likewise, for action value function

$$
\begin{aligned}
q_{*}(s, a) & =\mathbb{E}\left[R_{t+1}+\gamma \max _{a^{\prime}} q_{*}\left(S_{t+1}, a^{\prime}\right) \mid S_{t}=t, A_{t}=a\right] \\
& =\sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\max _{a^{\prime}} \gamma q_{*}\left(s^{\prime}, a^{\prime}\right)\right]
\end{aligned}
$$

■ For finite state MDPs, can solve explicitly for v_{*}

- n states, n equations in n unknowns, (assuming we know p)

Bellman optimality equations

- $v_{*}(s)=\max _{a} \mathbb{E}\left[R_{t+1}+\gamma v_{*}\left(S_{t+1}\right) \mid S_{t}=s, A_{t}=a\right]$

$$
=\max _{a}^{a} \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\gamma v_{*}\left(s^{\prime}\right)\right]
$$

- Likewise, for action value function

$$
\begin{aligned}
q_{*}(s, a) & =\mathbb{E}\left[R_{t+1}+\gamma \max _{a^{\prime}} q_{*}\left(S_{t+1}, a^{\prime}\right) \mid S_{t}=t, A_{t}=a\right] \\
& =\sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\max _{a^{\prime}} \gamma q_{*}\left(s^{\prime}, a^{\prime}\right)\right]
\end{aligned}
$$

■ For finite state MDPs, can solve explicitly for v_{*}

- n states, n equations in n unknowns, (assuming we know p)
- However, n is usually large, computationally infeasible
- State space of a game like chess or Go

Bellman optimality equations

- $v_{*}(s)=\max _{a} \mathbb{E}\left[R_{t+1}+\gamma v_{*}\left(S_{t+1}\right) \mid S_{t}=s, A_{t}=a\right]$

$$
=\max _{a}^{a} \sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\gamma v_{*}\left(s^{\prime}\right)\right]
$$

- Likewise, for action value function

$$
\begin{aligned}
q_{*}(s, a) & =\mathbb{E}\left[R_{t+1}+\gamma \max _{a^{\prime}} q_{*}\left(S_{t+1}, a^{\prime}\right) \mid S_{t}=t, A_{t}=a\right] \\
& =\sum_{s^{\prime}, r} p\left(s^{\prime}, r \mid s, a\right)\left[r+\max _{a^{\prime}} \gamma q_{*}\left(s^{\prime}, a^{\prime}\right)\right]
\end{aligned}
$$

■ For finite state MDPs, can solve explicitly for v_{*}

- n states, n equations in n unknowns, (assuming we know p)
- However, n is usually large, computationally infeasible
- State space of a game like chess or Go

■ Instead, we will explore iterative methods to approximate v_{*}

