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Reinforcement Learning
Tasks requiring a sequence of actions

Goal oriented - Find the "treasure"

Moves are uncertain

Infinite task-balancing
Bandit problem - "single state" estimation



Markov Decision Processes

Set of states S , actions A, rewards R

At time t, agent in state St selects action
At , moves to state St+1 and receives
reward Rt+1

Trajectory S0,A0,R1, S1,A1,R2, S2, . . .

Probabilistic transition function:
p(s 0, r | s, a)

Probability of moving to state s 0 with
reward r if we choose a at s

For each (s, a),
P

s0
P

r p(s
0, r | s, a) = 1

Backup diagram

Typically assume finite MDPs — S , A and
R are finite
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MDP Example: Robot that collects empty cans

State — battery charge: high, low

Actions: search for a can, wait for
someone to bring can, recharge battery

No recharge when high

↵, �, probabilities associated with change
of battery state while searching

1 unit of reward per can collected

rsearch > rwait — cans collected while
searching, waiting

Negative reward for requiring rescue (low
to high while searching)

Madhavan Mukund Lecture 24: 18 April, 2024 DMML Jan–Apr 2024 3 / 10



MDP Example: Robot that collects empty cans

State — battery charge: high, low

Actions: search for a can, wait for
someone to bring can, recharge battery

No recharge when high

↵, �, probabilities associated with change
of battery state while searching

1 unit of reward per can collected

rsearch > rwait — cans collected while
searching, waiting

Negative reward for requiring rescue (low
to high while searching)

Madhavan Mukund Lecture 24: 18 April, 2024 DMML Jan–Apr 2024 3 / 10



MDP Example: Robot that collects empty cans

State — battery charge: high, low

Actions: search for a can, wait for
someone to bring can, recharge battery

No recharge when high

↵, �, probabilities associated with change
of battery state while searching

1 unit of reward per can collected

rsearch > rwait — cans collected while
searching, waiting

Negative reward for requiring rescue (low
to high while searching)

Madhavan Mukund Lecture 24: 18 April, 2024 DMML Jan–Apr 2024 3 / 10



Long term rewards

How do we formalize long term rewards?

Assume that each trajectory is a finite episode

Episode with T steps, expected reward at time t: Gt
4
= Rt+1 + Rt+2 + · · ·+ RT

Each episode is independent: rewards are reset after each episode

In some situations, trajectories may be (potentially) infinite

Discounted rewards: Gt = Rt+1 + �Rt+2 + �2Rt+3 + · · · =
1X

k=0

�kRt+k+1, 0  �  1

Inductive calculation of expected reward

Gt = Rt+1 + �Rt+2 + �2Rt+3 + �3Rt+4 + · · ·
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Long term rewards

Can make all episodes infinite by adding a self-loop with reward 0

Allow � = 1 only if sum converges

Alternatively, Gt
4
=

TX

k=t+1

�k�t�1Rk ,

where we allow T = 1 and � = 1, but not both at the same time

If T = 1, Rk = +1 for each k , � < 1, then Gt =
1

1� �
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Policies and value functions

A policy ⇡ describes how the agent chooses actions at a state

⇡(a | s) — probability of choosing a in state s,
X

a

⇡(a | s) = 1

State value function at s, following policy ⇡

v⇡(s)
4
= E⇡[Gt | St = s] = E⇡

" 1X

k=0

�kRt+k+1 | St = s

#

Action value function on choosing a at s and then following policy ⇡

q⇡(s, a)
4
= E⇡[Gt | St = s,At = a] = E⇡

" 1X

k=0

�kRt+k+1 | St = s,At = a

#

Note that v⇡(s) =
X

a

⇡(a | s)q⇡(s, a)

Goal is to find an optimal policy, that maximizes state/action value at every state
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Bellman equation

v⇡(s)
4
= E⇡[Gt | St = s]

Bellman equation relates state value at s to state values at successors of s

Value function v⇡ is unique solution to the equation
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X

a

⇡(a | s)
X

s0

X

r

p(s 0, r | s, a)
⇥
r + �E⇡[Gt+1 | St+1 = s 0]

⇤
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Gridworld Example

Actions in each cell are {N,S,E,W}, with usual interpretation

Reward is 0, except at boundaries

Colliding with boundary — position unchanged, reward �1

Special squares A and B — all four actions move as
indicated, with rewards +10 and +5, respectively

Policy ⇡ — choose each action with uniform probability 0.25

Solving Bellman equations, we obtain v⇡ for each square

Values at boundary are negative

Value at A is less than 10 because next move takes agent to
boundary square with negative value

Value at B is more than 5 because next move is to a square
with positive value
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Optimal policies and value functions

Compare policies ⇡, ⇡0: ⇡ � ⇡0 if v⇡(s) � v⇡0(s) for every state s

Optimal policy ⇡⇤, ⇡⇤ � ⇡ for every ⇡
Always exists, but may not be unique

Optimal state value function, v⇤(s)
4
= max

⇡
v⇡(s) = v⇡⇤(s)

Optimal action value function, q⇤(s, a)
4
= max

⇡
q⇡(s, a) = q⇡⇤(s, a)

Bellman optimality equation for v⇤

v⇤(s) = max
a

q⇡⇤(s, a)
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Bellman optimality equations

v⇤(s) = max
a

E[Rt+1 + �v⇤(St+1) | St = s,At = a]

= max
a

X

s0,r

p(s 0, r | s, a)[r + �v⇤(s
0)]

Likewise, for action value function

q⇤(s, a) = E[Rt+1 + �max
a0

q⇤(St+1, a
0) | St = t,At = a]

=
X

s0,r

p(s 0, r | s, a)[r +max
a0

�q⇤(s
0, a0)]

For finite state MDPs, can solve explicitly for v⇤
n states, n equations in n unknowns, (assuming we know p)

However, n is usually large, computationally infeasible
State space of a game like chess or Go

Instead, we will explore iterative methods to approximate v⇤
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