Lecture 24: 18 April, 2024

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning
January—April 2024



Revifovcement me"lﬂ
Teslu thuwij a~ 3‘1“““- “L athans
logh ciemted — Fird Pe Areasure”
Moves ot wncertmim
lnfrive asic - ‘aalma‘na
Baselals o - “swgle shke”  eshwahin,



Markov Decision Processes

m Set of states S, actions A, rewards R

Madhavan Mukund Lecture 24: 18 April, 2024 DMML Jan—Apr 2024



Markov Decision Processes

m Set of states S, actions A, rewards R Cod'rouq
m At time t, agent in state S; selects action
A, moves to state S; 1 and receives sgre| |revard fiin
reward R; 1 '

R
S.. | Environment |¢——

Trajectory So, Ao, R1,51,A1, R, S0, ... 5
LS \ Unconbolled
U«\ma. rblnk

Madhavan Mukund Lecture 24: 18 April, 2024 DMML Jan—Apr 2024



Markov Decision Processes

m Set of states S, actions A, rewards R

m At time t, agent in state S; selects action
A, moves to state S; ;1 and receives sae ;;‘W”" fiin
e = {omen ]
Siat nvironment |€¢————
Trajectory Sg, Ao, R1, 51, A1, R, 5o, . .. N .
m Probabilistic transition function:
p(s',r|s,a)

m Probability of moving to state s’ with
reward r if we choose a at s

m Foreach (s,a), > ., >, p(s',r]s,a)=1

Madhavan Mukund Lecture 24: 18 April, 2024 DMML Jan—Apr 2024



Markov Decision Processes

m Set of states S, actions A, rewards R

m At time t, agent in state S; selects action

A, moves to state S; ;1 and receives sae ;;‘W”" fiin

o = ewormen Jo—

Siat nvironment |<¢————

Trajectory Sg, Ao, R1, 51, A1, R, 5o, . .. N .
m Probabilistic transition function: S

p(s',r|s,a)

. . ) @
m Probability of moving to state s’ with Y e @

reward r if we choose a at s

1
m Foreach (s,a), > ., >, p(s',r]s,a)=1
. Yu 7 , TR Y s,
m Backup diagram Ya| \®
S\\ 5\1 5.,5 gll sLL 53 ] 5.52

Madhavan Mukund Lecture 24: 18 April, 2024 DMML Jan—Apr 2024



Markov Decision Processes

m Set of states S, actions A, rewards R

m At time t, agent in state S; selects action

A, moves to state S; ;1 and receives state | | reward

Sl RY

reward R; 1

Trajectory So, Ao, R1,51,A1, R, S0, ...

m Probabilistic transition function:
p(s',r|s,a)
m Probability of moving to state s’ with
reward r if we choose a at s

m Foreach (s,a), > ., >, p(s',r]s,a)=1
m Backup diagram

m Typically assume finite MDPs — S, A and 8,
R are finite

R
S.. | Environment |¢——

@ &y
Q@

action
Ar

i
N 1) N’ \”3\ 'Y‘n
Yi
\
Sz Sa Su Su & b5

Madhavan Mukund Lecture 24: 18 April, 2024

DMML Jan-Apr 2024



MDP Example: Robot that collects empty cans

m State — battery charge: high, low L Tuase 128, - Bl earen

m Actions: search for a can, wait for ‘; walt\l( searN
someone to bring can, recharge batter | |
& ' & y 1.0 recharge / \e/

m No recharge when high ‘highi Y low ‘

\\ search / Walt
e

@, Tsearch "1, Taearen i Tuan:
s a s’ p(s’|s,a) | r(s,a,s’)
high search high «@ T'search
high  search low = Tsearch
low search high [ 1 -7 =3
low search low B Toearch
high wait high | 1 Twait
high wait low 0 -
low wait high | 0 -
low wait low 1 Twait
low recharge  high 1 0
low recharge low 0 -

Madhavan Mukund Lecture 24: 18 April, 2024



MDP Example: Robot that collects empty cans

m State — battery charge: high, low L, Tuase s Bl earen

/} e

m Actions: search for a can, wait for ‘\
someone to bring can, recharge batter 1L I
g ! g y / 1,0 recharge / \f/

m No recharge when high ‘highi low ‘

m o, 3, probabilities associated with change l@mh / walt |
. . \\H/

of battery state while searching

@, T'search T-a, s 'search 1 Tuan:J
s a s’ p(s’|s,a) | r(s,a,s’)
high search high «@ T'search
high  search low = Tsearch
low search high [ 1 -7 =3
low search low B Toearch
high wait high | 1 Twait
high wait low 0 -
low wait high | 0 -
low wait low 1 Twait
low recharge  high 1 0
low recharge low 0 -

Madhavan Mukund Lecture 24: 18 April, 2024



MDP Example: Robot that collects empty cans

m State — battery charge: high, low L ase 8 Bl earen
m Actions: search for a can, wait for g walt\T( SearN
someone to bring can, recharge batter 1L I
g g y / 1,0 recharge / \4/
\hlgh‘- low |

m No recharge when high

m o, 3, probabilities associated with change l@mh / walt |
. . \\ W,

of battery state while searching

« Tsearch 1 @, T'search il Tuan:
4
m 1 unit of reward per can collected ” ” o e
. h::Lgh search high «@ T'search
B lsearch > Fwait — cans collected while idfgh  emmmeh  day | e Tsearch
X . low search high 1-p8 =3
searchlng, waiting low search low B8 Tsearch
high wait high | 1 Tyait
. e high wait low 0 -
m Negative reward for requiring rescue (low s high | 0 )
to high while searching) lov  wait low | 1 Tyait
low recharge  high 1 0
low recharge low 0 -

Madhavan Mukund Lecture 24: 18 April, 2024



Long term rewards

m How do we formalize long term rewards?

Madhavan Mukund Lecture 24: 18 April, 2024 DMML Jan—Apr 2024



Long term rewards

m How do we formalize long term rewards?

m Assume that each trajectory is a finite episode

Madhavan Mukund Lecture 24: 18 April, 2024 DMML Jan—Apr 2024



Long term rewards

m How do we formalize long term rewards?

m Assume that each trajectory is a finite episode

) ) ) A
m Episode with T steps, expected reward at time t: Gy = Ry 1+ Revo + -+ Rt

m Each episode is independent: rewards are reset after each episode

Madhavan Mukund Lecture 24: 18 April, 2024 DMML Jan—Apr 2024



Long term rewards

m How do we formalize long term rewards?

Assume that each trajectory is a finite episode

) ) ) A
Episode with T steps, expected reward at time t: Gt = Ryy1 + Reao + -+ Rr

m Each episode is independent: rewards are reset after each episode

m In some situations, trajectories may be (potentially) infinite
o0
m Discounted rewards: G; = Ry1 + YRipo + “/2Rr+3 4+ = Zﬁ/kRHkHv 0<~y<1
k=0

m Inductive calculation of expected reward

Gt = Rey1 + YRev2 + V?Reyz + VP Rega + -+

Madhavan Mukund Lecture 24: 18 April, 2024 DMML Jan—Apr 2024



Long term rewards

m How do we formalize long term rewards?

Assume that each trajectory is a finite episode

) ) ) A
Episode with T steps, expected reward at time t: Gt = Ryy1 + Reao + -+ Rr

m Each episode is independent: rewards are reset after each episode

m In some situations, trajectories may be (potentially) infinite
m Discounted rewards: G; = Ry1 + YRipo + “/2Rt+3 4+ = Zﬁ/kRHkHv 0<~y<1
k=0
m Inductive calculation of expected reward
Gt = Rey1 + YRer2 + Y Rey3 + 7V’ Reja + - -
= Rey1+7(Rey2 + YRey3 + Y Reqa + - -)

Madhavan Mukund Lecture 24: 18 April, 2024 DMML Jan—Apr 2024



Long term rewards

m How do we formalize long term rewards?

Assume that each trajectory is a finite episode

) ) ) A
Episode with T steps, expected reward at time t: Gt = Ryy1 + Reao + -+ Rr

m Each episode is independent: rewards are reset after each episode

m In some situations, trajectories may be (potentially) infinite
o0
m Discounted rewards: G; = Ry1 + YRipo + “/2Rr+3 4+ = Zﬁ/kRHkHv 0<~y<1
k=0

v<\) Vv

m Inductive calculation of expected reward
Gt = Rep1 4+ YRer2 + VP Regs + VP Reya + -+ vz 7
= Rey1+7(Rey2 + YRey3 + Y Reqa + - -)
= Rep1 +7Get1

Madhavan Mukund Lecture 24: 18 April, 2024 DMML Jan—Apr 2024



Long term rewards

m Can make all episodes infinite by adding a self-loop with reward 0

R1_+1 R,=+1 Ry;=+1
. '(:) '(:) » R5-0

Madhavan Mukund Lecture 24: 18 April, 2024 DMML Jan—Apr 2024



Long term rewards

m Can make all episodes infinite by adding a self-loop with reward 0

R1_+1 R,=+1 Ry;=+1
. '(:) '(:) » R5-0

m Allow v = 1 only if sum converges

Madhavan Mukund Lecture 24: 18 April, 2024 DMML Jan—Apr 2024



Long term rewards

m Can make all episodes infinite by adding a self-loop with reward 0

R1_+1 R,=+1 Ry;=+1
. '(:) '(:) » R5-0

m Allow v = 1 only if sum converges

a "’. o

. A P
m Alternatively, G; = Wk t le,
k=t+1

where we allow T = oo and v = 1, but not both at the same time

Madhavan Mukund Lecture 24: 18 April, 2024 DMML Jan—Apr 2024



Long term rewards

m Can make all episodes infinite by adding a self-loop with reward 0

R1_+1 R,=+1 Ry;=+1
. '(:) '(:) » R5-0

m Allow v = 1 only if sum converges

m Alternatively, Gt Z AR,
k=t+1

where we allow T = oo and v = 1, but not both at the same time

mIf T =00, R, = +1 for each k, v < 1, then G; = ——

Madhavan Mukund Lecture 24: 18 April, 2024 DMML Jan—Apr 2024



Policies and value functions

m A policy m describes how the agent chooses actions at a state

m 7(a|s) — probability of choosing a in state s, Zﬂ(a [s)=1

a

Madhavan Mukund Lecture 24: 18 April, 2024 DMML Jan—Apr 2024



Policies and value functions

m A policy m describes how the agent chooses actions at a state

m 7(a|s) — probability of choosing a in state s, Zﬂ(a [s)=1

a

m State value function at s, following policy 7

> VRevkrr| S = 5]

k=0

ve(s) 2 EA[Ge | S; = 5] = Ex

Madhavan Mukund Lecture 24: 18 April, 2024 DMML Jan—Apr 2024



Policies and value functions

m A policyz describes how the agent chooses actions at a state &“L‘\")

1f m(a|s) —- probability of choosing a in state s, Zﬂ(a [s)=1

a

m State value¥unctionat_s, following policy 7

> VRevkrr| S = 5]

k=0

ve(s) 2 E[G, \S: = 5] 4 E.,

m Action value function on choosing a at s and then following policy 7

ZWth-s-kH | St =5, Ar = a]
k=0

qTF(Sa 3) é Eﬂ[Gt ‘ St =%, A = 3] =Ex

m Note that v, (s) = Zw(a | )= (s, a)

; p(sir| )

Madhavan Mukund Lecture 24: 18 April, 2024 DMML Jan—Apr 2024



Policies and value functions

m A policy m describes how the agent chooses actions at a state

m 7(a|s) — probability of choosing a in state s, Zﬂ(a [s)=1

a

m State value function at s, following policy 7

> VRevkrr| S = 5]

k=0

ve(s) 2 EA[Ge | S; = 5] = Ex

m Action value function on choosing a at s and then following policy 7

ZWth-s-kH | St =5, Ar = a]
k=0

g=(s,a) = E;[G:| St =s,Ar=a]=E,

m Note that v, (s) = Zw(a | s)g=(s,a)

a

m Goal is to find an optimal policy, that maximizes state/action value at every state

Madhavan Mukund Lecture 24: 18 April, 2024 DMML Jan—Apr 2024



Bellman equation

m vo(s) 2 E.[G, | S, = 5]

Madhavan Mukund Lecture 24: 18 April, 2024 DMML Jan—Apr 2024



Bellman equation

m vo(s) 2 E.[G, | S, = 5]

= Ez[Re+1 + Gy | St = 9]
__ﬂ

Madhavan Mukund Lecture 24: 18 April, 2024 DMML Jan—Apr 2024



Bellman equation

m vo(s) 2 E.[G, | S, = 5] Rx r

—_"
= En[RtH +7Gi1 | St = S“]]/—"_J>
= ' , E-[G Siv1=5
Za:w(a!s)%:zlo(s,r s,3) [r +1Ex[Ger1 | Sevr = S]]

~

E(%)= Z 1>

Madhavan Mukund Lecture 24: 18 April, 2024 DMML Jan—Apr 2024



Bellman equation

m vo(s) 2 E.[G | S; = 5]
= Ex[Rer1 +7Gey1 | Se = 5]
=Y w(al )30 YRl 115,9) [+ AEelGesn | Sern = 5]
a s r L/«
= Zw(a | s) ZZp(s/, r|s,a)[r+yve(s)]

Madhavan Mukund Lecture 24: 18 April, 2024 DMML Jan—Apr 2024



Bellman equation

m vo(s) 2 E.[G, | S, = 5]
= Er[Res1 +7Gey1 | St = 5]

= Zw(a | s) ZZp(s’, r|s,a)[r+9Ez[Ges1 | Se1 = 5]
- Zw(a | s) ZZp(s’, r|s,a)[r+yve(s)]

m Bellman equation relates state value at s to state values at successors of s

m Value function v, is unique solution to the equation

Madhavan Mukund Lecture 24: 18 April, 2024 DMML Jan—Apr 2024



Gridworld Example

m Actions in each cell are {N,S,E,W}, with usual interpretation

Al |[B
+5

+10) B'

Actions
.

Madhavan Mukund Lecture 24: 18 April, 2024 DMML Jan—Apr 2024



Gridworld Example

m Actions in each cell are {N,S,E,W}, with usual interpretation

Al |B
m Reward is 0, except at boundaries \ +5
m Colliding with boundary — position unchanged, reward —1 "10) B'
A%
Actions

Madhavan Mukund Lecture 24: 18 April, 2024 DMML Jan—Apr 2024



Gridworld Example

m Actions in each cell are {N,S,E,W}, with usual interpretation

Al |B
m Reward is 0, except at boundaries +5
m Colliding with boundary — position unchanged, reward —1 "10) B'
m Special squares A and B — all four actions move as ¥
indicated, with rewards +10 and +5, respectively A |
Actions

Madhavan Mukund Lecture 24: 18 April, 2024 DMML Jan—Apr 2024



Gridworld Example

m Actions in each cell are {N,S,E,W}, with usual interpretation

A B
m Reward is 0, except at boundaries \\ +5
m Colliding with boundary — position unchanged, reward —1 +1°) B'
m Special squares A and B — all four actions move as »
indicated, with rewards +10 and +5, respectively A |
m Policy m — choose each action with uniform probability 0.25 <_I_>
Actions |

Madhavan Mukund Lecture 24: 18 April, 2024 DMML Jan—Apr 2024



Gridworld Example

m Actions in each cell are {N,S,E,W}, with usual interpretation Al |8

m Reward is 0, except at boundaries \ +5

m Colliding with boundary — position unchanged, reward —1 +1°) B'

m Special squares A and B — all four actions move as »
indicated, with rewards +10 and +5, respectively A |

m Policy m — choose each action with uniform probability 0.25 <_I_>

m Solving Bellman equations, we obtain v, for each square Actons,

3.3/ 8.8/ 4.4|5.3|1.5

1.5/3.0/ 2.3{1.9/0.5
0.1/0.7| 0.7/ 0.4|-0.4

-1.0/-0.4/-0.4/-0.6/-1.2

-1.9/-1.3/-1.2/-1.4}-2.0

Madhavan Mukund Lecture 24: 18 April, 2024 DMML Jan—Apr 2024



Gridworld Example

m Actions in each cell are {N,S,E,W}, with usual interpretation Al |8

m Reward is 0, except at boundaries \ +5

m Colliding with boundary — position unchanged, reward —1 +1°) B'

m Special squares A and B — all four actions move as »
indicated, with rewards +10 and +5, respectively A |

m Policy m — choose each action with uniform probability 0.25 <_I_>

m Solving Bellman equations, we obtain v, for each square Actons,

m Values at boundary are negative 2 el aal o 8l 5.

1.5/3.0/ 2.3{1.9/0.5
0.1/0.7| 0.7/ 0.4|-0.4

-1.0/-0.4/-0.4/-0.6/-1.2

-1.9/-1.3/-1.2/-1.4}-2.0

Madhavan Mukund Lecture 24: 18 April, 2024 DMML Jan—Apr 2024



Gridworld Example

m Actions in each cell are {N,S,E,W}, with usual interpretation Al |8

m Reward is 0, except at boundaries \ +5

m Colliding with boundary — position unchanged, reward —1 +1°) B'

m Special squares A and B — all four actions move as »
indicated, with rewards +10 and +5, respectively A |

m Policy m — choose each action with uniform probability 0.25 <_I_>

m Solving Bellman equations, we obtain v, for each square Actons,

m Values at boundary are negative 2 el aal o 8l 5.

Value at A is less than 10 because next move takes agent to 15/3.0/ 2311905
boundary square with negative value 0.1 0.7/ 0.7 0.4]-0.4

-1.0/-0.4/-0.4/-0.6/-1.2

-1.9/-1.3/-1.2/-1.4}-2.0

Madhavan Mukund Lecture 24: 18 April, 2024 DMML Jan—Apr 2024



Gridworld Example

m Actions in each cell are {N,S,E,W}, with usual interpretation A B
N

m Reward is 0, except at boundaries \ +5

m Colliding with boundary — position unchanged, reward —1 +1°) B'

m Special squares A and B — all four actions move as ¥
indicated, with rewards +10 and +5, respectively A |

m Policy m — choose each action with uniform probability 0.25 {

m Solving Bellman equations, we obtain v, for each square Efions

m Values at boundary are negative 2 el aal o 8l 5.

m Value at A is less than 10 because next move takes agent to 15/3.0/ 2.3/ 19/ 05
boundary square with negative value 01071071 0.4]-0.4

m Value at B is more than 5 because next move is to a square -1.0[-0.4/-0.4/-0.6-1.2
with positive value -1.9/-1.3]-1.2-1.4]-2.0

Madhavan Mukund Lecture 24: 18 April, 2024 DMML Jan—Apr 2024



Optimal policies and value functions

m Compare policies 7, 7': m > 7" if v;(s) > v/ (s) for every state s

Madhavan Mukund Lecture 24: 18 April, 2024 DMML Jan—Apr 2024



Optimal policies and value functions

m Compare policies 7, 7': m > 7" if v;(s) > v/ (s) for every state s

m Optimal policy 7, m, > 7 for every 7
m Always exists, but may not be unique

Madhavan Mukund Lecture 24: 18 April, 2024 DMML Jan—Apr 2024



Optimal policies and value functions

m Compare policies 7, 7': m > 7" if v;(s) > v/ (s) for every state s

m Optimal policy 7, m, > 7 for every 7
m Always exists, but may not be unique

. : A
m Optimal state value function, v.(s) = max v.(s) = v,.(s)
™

Madhavan Mukund Lecture 24: 18 April, 2024 DMML Jan—Apr 2024



Optimal policies and value functions

m Compare policies 7, 7': m > 7" if v;(s) > v/ (s) for every state s

m Optimal policy 7, m, > 7 for every 7
m Always exists, but may not be unique

. : A
m Optimal state value function, v.(s) = max v.(s) = v,.(s)
™

m Optimal action value function, q.(s,a) = maxq,(s,a) = q,. (s, a)
s

Madhavan Mukund Lecture 24: 18 April, 2024 DMML Jan—Apr 2024



Optimal policies and value functions

m Compare policies 7, 7': m > 7" if v;(s) > v/ (s) for every state s

m Optimal policy 7, m, > 7 for every 7
m Always exists, but may not be unique

. : A
m Optimal state value function, v.(s) = max v.(s) = v,.(s)
™

m Optimal action value function, q.(s,a) = maxq,(s,a) = q,. (s, a)
s
m Bellman optimality equation for v,

vi(s) = max gx, (s, a)
a

Madhavan Mukund Lecture 24: 18 April, 2024 DMML Jan—Apr 2024



Optimal policies and value functions

m Compare policies 7, 7': m > 7" if v;(s) > v/ (s) for every state s

Optimal policy 7, 7, > 7 for every 7
m Always exists, but may not be unique

. : A
m Optimal state value function, v.(s) = max v.(s) = v,.(s)
™

. : . A
Optimal action value function, g.(s, a) = max g.(s, a) = gx. (s, a)
s
m Bellman optimality equation for v,

vi(s) = max gx, (s, a)
a
= maxEm[Gt ‘ St = S,At = a]
a

Madhavan Mukund Lecture 24: 18 April, 2024 DMML Jan—Apr 2024



Optimal policies and value functions

m Compare policies 7, 7': m > 7" if v;(s) > v/ (s) for every state s

Optimal policy 7, 7, > 7 for every 7
m Always exists, but may not be unique

. : A
m Optimal state value function, v.(s) = max v.(s) = v,.(s)
™

. : . A
Optimal action value function, g.(s, a) = max g.(s, a) = gx. (s, a)
s

m Bellman optimality equation for v,

vi(s) = max gx, (s, a)
a
= maxEm[Gt ‘ St = S,At = a]
a

= maxEr [Ret1+7Gei1 [ St =5, Ar = 3

Madhavan Mukund Lecture 24: 18 April, 2024 DMML Jan—Apr 2024



Optimal policies and value functions

m Compare policies 7, 7': m > 7" if v;(s) > v/ (s) for every state s

Optimal policy 7, 7, > 7 for every 7
m Always exists, but may not be unique

. : A
m Optimal state value function, v.(s) = max v.(s) = v,.(s)
™

. : . A
Optimal action value function, g.(s, a) = max g.(s, a) = gx. (s, a)
s

m Bellman optimality equation for v,

vi(s) = max gx, (s, a)
a
= maxEm[Gt ‘ St = S,At = a]
a
= maxEr [Ret1+7Gei1 [ St =5, Ar = 3

= m;xE[RtH + Yu(Se+1) | St = s, Ar = 4]

Madhavan Mukund Lecture 24: 18 April, 2024 DMML Jan—Apr 2024



Optimal policies and value functions

m Compare policies 7, 7': m > 7" if v;(s) > v/ (s) for every state s

Optimal policy 7, 7, > 7 for every 7
m Always exists, but may not be unique

. : A
m Optimal state value function, v.(s) = max v.(s) = v,.(s)
™

. : . A
Optimal action value function, g.(s, a) = max g.(s, a) = gx. (s, a)
s

m Bellman optimality equation for v,
vi(s) = max Gr. (s, a)
=maxE, [G: | St =s,Ar = 4]
= m:aXEm[Rtﬂ +7Gey1 | St =5, At = 4]
= m;xE[RtH + v (Set1) | St = s, A = 3]
= maaxz p(s',r|s,a)r+yvi(s)]

s/ r

Madhavan Mukund Lecture 24: 18 April, 2024 DMML Jan—Apr 2024




Bellman optimality equations

mv(s)= mfxE[RHrl + i (St41) | St =5, Ar = 3

=max > p(s',r | 5, 2)[r +7v(5))

s’r

Madhavan Mukund Lecture 24: 18 April, 2024 DMML Jan—Apr 2024



Bellman optimality equations

mv(s)= mfxE[RHrl + i (St41) | St =5, Ar = 3

=max > p(s',r | 5, 2)[r +7v(5))

s’r
m Likewise, for action value function
g«(s,a) = E[Re+1 + max q«(St+1,3) | St = t, Ar = 4

= Z p(slv r ‘ S, a)[r + mgxyq*(s’, a/)]
a

s’.r

Madhavan Mukund Lecture 24: 18 April, 2024 DMML Jan—Apr 2024



Bellman optimality equations

mv(s)= mfxE[RtH + i (St41) | St =5, Ar = 3

_ / /
maaxSZ; p(s',r|s,a)[r+yvi(s)]
m Likewise, for action value function
g«(s,a) = E[Re11 + max q«(St+1,3) | St = t, Ar = 4
=3 p(sr | 5, a)lr + maxya(s', &)
s'.r

m For finite state MDPs, can solve explicitly for v,
m 1 states, n equations in n unknowns, (assuming we know p)

Madhavan Mukund Lecture 24: 18 April, 2024 DMML Jan—Apr 2024



Bellman optimality equations

mv(s)= mfxE[RtH + i (St41) | St =5, Ar = 3

_ / /
= maaxZ p(s',r|s,a)[r+yvi(s)]
s’r
m Likewise, for action value function
g«(s,a) = E[Re+1 + max q«(St+1,3) | St = t, Ar = 4
= Z p(slv r ‘ S, a)[r + mgxyq*(s’, a/)]
s’.r ?

m For finite state MDPs, can solve explicitly for v,

m 1 states, n equations in n unknowns, (assuming we know p)

m However, n is usually large, computationally infeasible
m State space of a game like chess or Go

Madhavan Mukund Lecture 24: 18 April, 2024 DMML Jan—Apr 2024



Bellman optimality equations

mv(s)= mfxE[RtH + i (St41) | St =5, Ar = 3

=max > p(s',r | 5, 2)[r +7v(5))

s’r

Likewise, for action value function

q«(s,a) = E[Re1 + v mjx G« (St+1,d) | Se = t, A = 4

= 3 p(s'sr | 5. 2)lr + maxyau(s’, )]
a/

s’.r

For finite state MDPs, can solve explicitly for v,
m 1 states, n equations in n unknowns, (assuming we know p)

m However, n is usually large, computationally infeasible
m State space of a game like chess or Go

m Instead, we will explore iterative methods to approximate v,

Madhavan Mukund Lecture 24: 18 April, 2024 DMML Jan—Apr 2024



