Lecture 3: 16 January, 2024

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning January–April 2024

Supervised learning

- A set of items
 - Each item is characterized by attributes $(a_1, a_2, ..., a_k)$
 - Each item is assigned a class or category c
- Given a set of examples, predict c for a new item with attributes $(a'_1, a'_2, \dots, a'_k)$

Supervised learning

- A set of items
 - Each item is characterized by attributes $(a_1, a_2, ..., a_k)$
 - Each item is assigned a class or category c
- Given a set of examples, predict c for a new item with attributes $(a'_1, a'_2, \dots, a'_k)$
- Examples provided are called training data
- Aim is to learn a mathematical model that generalizes the training data
 - Model built from training data should extend to previously unseen inputs

Supervised learning

- A set of items
 - Each item is characterized by attributes $(a_1, a_2, ..., a_k)$
 - Each item is assigned a class or category c
- Given a set of examples, predict c for a new item with attributes $(a'_1, a'_2, \dots, a'_k)$
- Examples provided are called training data
- Aim is to learn a mathematical model that generalizes the training data
 - Model built from training data should extend to previously unseen inputs
- Classification problem
 - Usually assumed to binary two classes

Example: Loan application data set

		Q _a	4.	- AL	
ID	Age	Has_job	Own_house	Credit_rating	Class
1	young	false	false	fair	No -
2	young	false	false	good	No
3	young	true	false	good	Yes
4	young	true	true	fair	Yes
5	young	false	false	fair	No -
6	middle	false	false	fair	No -
7	middle	false	false	good	No -
8	middle	true	true	good	Yes
9	middle	false	true	excellent	Yes
10	middle	false	true	excellent	Yes
11	old	false	true	excellent	Yes
12	old	false	true	good	Yes
13	old	true	false	good	Yes
14	old	true	false	excellent	Yes
15	old	false	false	fair	No -

6N 94

Basic assumptions

Fundamental assumption of machine learning

■ Distribution of training examples is identical to distribution of unseen data

Basic assumptions

Fundamental assumption of machine learning

Distribution of training examples is identical to distribution of unseen data

What does it mean to learn from the data?

- Build a model that does better than random guessing
 - \blacksquare In the loan data set, always saying Yes would be correct about 9/15 of the time
- Performance should ideally improve with more training data

Basic assumptions

Fundamental assumption of machine learning

■ Distribution of training examples is identical to distribution of unseen data

What does it mean to learn from the data?

- Build a model that does better than random guessing
 - In the loan data set, always saying Yes would be correct about 9/15 of the time
- Performance should ideally improve with more training data

How do we evaluate the performance of a model?

- Model is optimized for the training data. How well does it work for unseen data?
- Don't know the correct answers in advance to compare different from normal software verification

The road ahead

Many different models

- Decision trees
- Probabilistic models naïve Bayes classifiers
- Models based on geometric separators
 - Support vector machines (SVM)
 - Neural networks

The road ahead

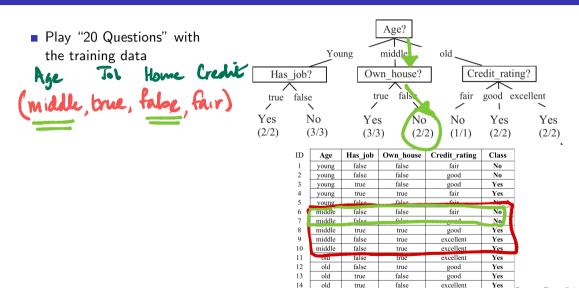
Many different models

- Decision trees
- Probabilistic models naïve Bayes classifiers
- Models based on geometric separators
 - Support vector machines (SVM)
 - Neural networks

Important issues related to supervised learning

- Evaluating models
- Ensuring that models generalize well to unseen data
 - A theoretical framework to provide some guarantees
- Strategies to deal with the training data bottleneck

DMML Jan-Apr 2024

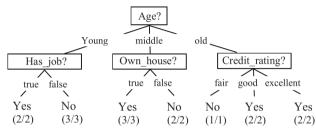


false

false

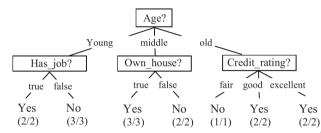
Nο

- Play "20 Questions" with the training data
- Query an attribute
 - Partition the training data based on the answer



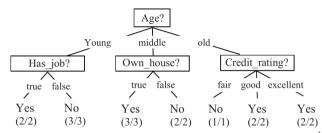
	Age	Has_job	Own_house	Credit_rating	Class
	young	false	false	fair	No
	young	false	false	good	No
	young	true	false	good	Yes
Ī	young	true	true	fair	Yes
Ī	young	false	false	fair	No
Ī	middle	false	false	fair	No
Ī	middle	false	false	good	No
Ī	middle	true	true	good	Yes
Ī	middle	false	true	excellent	Yes
ĺ	middle	false	true	excellent	Yes
	old	false	true	excellent	Yes
ĺ	old	false	true	good	Yes
Ī	old	true	false	good	Yes
ĺ	old	true	false	excellent	Yes
Ì	old	false	false	fair	No

- Play "20 Questions" with the training data
- Query an attribute
 - Partition the training data based on the answer
- Repeat until you reach a partition with a uniform category



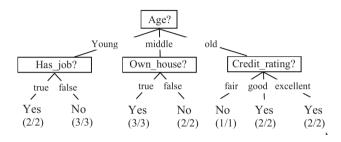
			1		
ID	Age	Has_job	Own_house	Credit_rating	Class
1	young	false	false	fair	No
2	young	false	false	good	No
3	young	true	false	good	Yes
4	young	true	true	fair	Yes
5	young	false	false	fair	No
0	middle	taise	faise	fair	No
7	middle	false	false	good	No
8	middle	true	true	good	Yes
9	middle	false	true	excellent	Yes
10	middle	false	true	excellent	Yes
11	old	false	true	excellent	Yes
12	old	false	true	good	Yes
13	old	true	false	good	Yes
14	old	true	false	excellent	Yes .
15	old	false	false	fair	No

- Play "20 Questions" with the training data
- Query an attribute
 - Partition the training data based on the answer
- Repeat until you reach a partition with a uniform category
- Queries are adaptive
 - Different along each path, depends on history



)	150	Has_job	Own_house	Credit_rating	Class
.	young	false	false	fair	No
: /	young	false	false	good	No
- /	young	true	false	good	Yes
١,	young	true	true	fair	Yes
- 1	young	false	false	fair	No
_	maale	false	talse	fair	No
	middle	false	false	good	No
	middle	true	true	good	Yes
	middle	false	true	excellent	Yes
)	n iddl	false	true	excellent	Yes
	old	false	true	excellent	Yes
2	old	false	true	good	Yes
;	old	true	false	good	Yes
ŀ	old	true	false	excellent	Yes
-	ald	folco	folco	Calm	Ma

A: current set of attributes

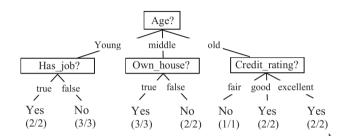


A: current set of attributes

Pick $a \in A$, create children corresponding to resulting partition with attributes $A \setminus \{a\}$

Stopping criterion:

- Current node has uniform class label
- A is empty no more attributes to query



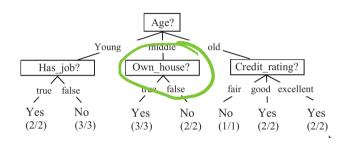
A: current set of attributes

Pick $a \in A$, create children corresponding to resulting partition with attributes $A \setminus \{a\}$

Stopping criterion:

- Current node has uniform class label
- A is empty no more attributes to query

If a leaf node is not uniform, use majority class as prediction



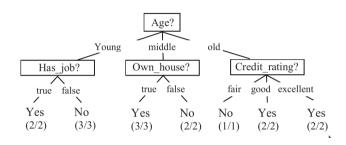
A: current set of attributes

Pick $a \in A$, create children corresponding to resulting partition with attributes $A \setminus \{a\}$

Stopping criterion:

- Current node has uniform class label
- A is empty no more attributes to query

If a leaf node is not uniform, use majority class as prediction



 Non-uniform leaf node — identical combination of attributes, but different classes

A: current set of attributes

Pick $a \in A$, reate children

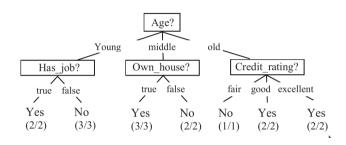
corresponding to resulting

partition with attributes $A \setminus \{a\}$

Stopping criterion:

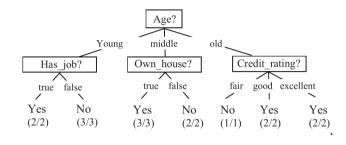
- Current node has uniform class label
- A is empty no more attributes to query

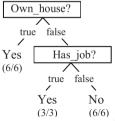
If a leaf node is not uniform, use majority class as prediction



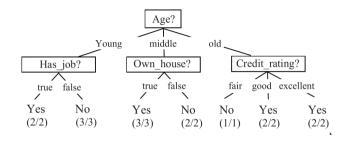
- Non-uniform leaf node identical combination of attributes, but different classes
- Attributes do not capture all criteria used for classification

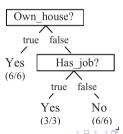
■ Tree is not unique





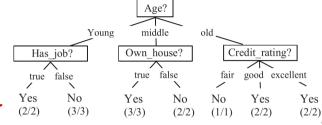
- Tree is not unique
- Which tree is better?



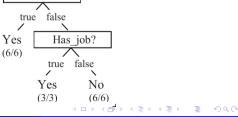


- Tree is not unique
- Which tree is better?
- Prefer small trees

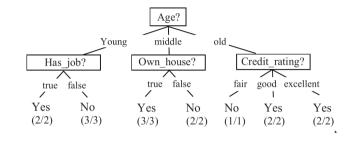
Oceam's Razor

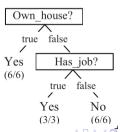


Own_house?

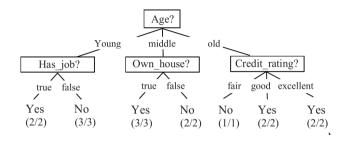


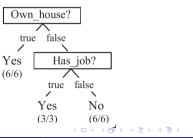
- Tree is not unique
- Which tree is better?
- Prefer small trees
 - Explainability





- Tree is not unique
- Which tree is better?
- Prefer small trees
 - Explainability
 - Generalize better (see later)

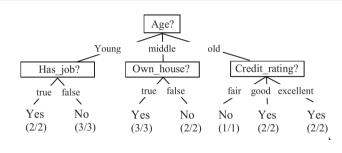


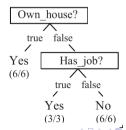


- Tree is not unique
- Which tree is better?
- Prefer small trees
 - Explainability
 - Generalize better (see later)

Unfortunately

 Finding smallest tree is NP-complete — for any definition of "smallest"

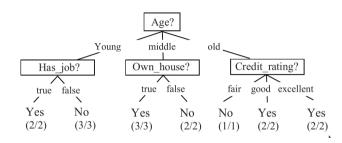


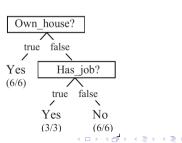


- Tree is not unique
- Which tree is better?
- Prefer small trees
 - Explainability
 - Generalize better (see later)

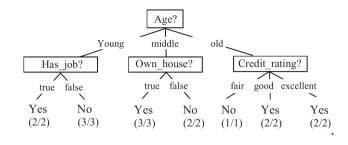
Unfortunately

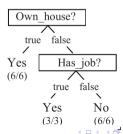
- Finding smallest tree is NP-complete — for any definition of "smallest"
- Instead, greedy heuristic



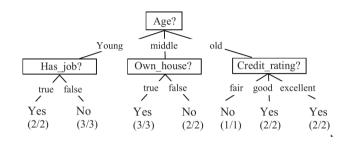


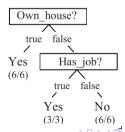
Goal: partition with uniform category — pure leaf



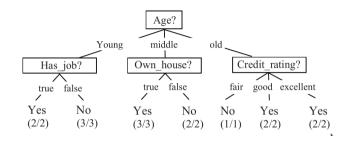


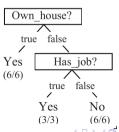
- Goal: partition with uniform category — pure leaf
- Impure node best prediction is majority value



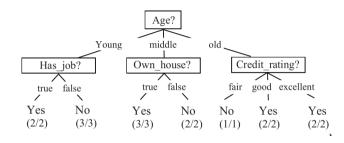


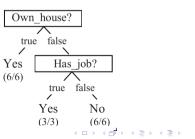
- Goal: partition with uniform category pure leaf
- Impure node best prediction is majority value
- Minority ratio is impurity



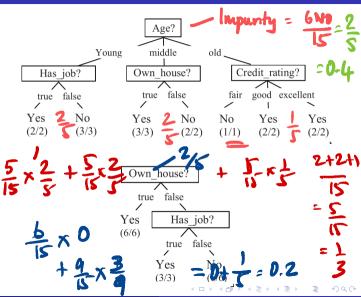


- Goal: partition with uniform category pure leaf
- Impure node best prediction is majority value
- Minority ratio is impurity
- Heuristic: reduce impurity as much as possible

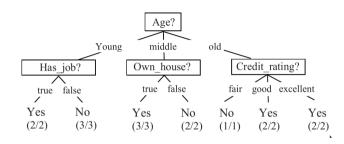


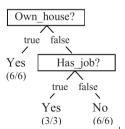


- Goal: partition with uniform category pure leaf
- Impure node best prediction is majority value
- Minority ratio is impurity
- Heuristic: reduce impurity as much as possible
- For each attribute, compute weighted average impurity of children

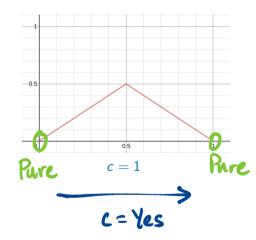


- Goal: partition with uniform category pure leaf
- Impure node best prediction is majority value
- Minority ratio is impurity
- Heuristic: reduce impurity as much as possible
- For each attribute, compute weighted average impurity of children
- Choose the minimum

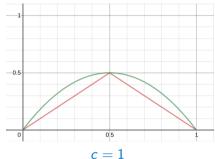




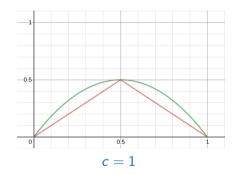
Misclassification rate is linear



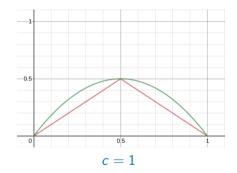
- Misclassification rate is linear
- Impurity measure that increases more sharply performs better, empirically



- Misclassification rate is linear
- Impurity measure that increases more sharply performs better, empirically
- Entropy [Quinlan]



- Misclassification rate is linear
- Impurity measure that increases more sharply performs better, empirically
- Entropy [Quinlan]
- Gini index [Breiman]



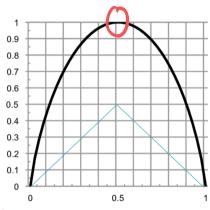
- Information theoretic measure of randomness
- Minimum number of bits to transmit a message — [Shannon]

- Information theoretic measure of randomness
- Minimum number of bits to transmit a message — [Shannon]
- n data items
 - n_0 with c = 0, $p_0 = n_0/n$
 - n_1 with c = 1, $p_1 = n_1/n$

- Information theoretic measure of randomness
- Minimum number of bits to transmit a message — [Shannon]
- n data items
 - n_0 with c = 0, $p_0 = n_0/n$
 - n_1 with c = 1, $p_1 = n_1/n$
- Entropy

$$E = -(p_0 \log_2 p_0 + p_1 \log_2 p_1)$$

- Information theoretic measure of randomness
- Minimum number of bits to transmit a message — [Shannon]
- n data items
 - n_0 with c = 0, $p_0 = n_0/n$
 - n_1 with c = 1, $p_1 = n_1/n$
- Entropy $E = P_0 \log_2 p_0 + p_1 \log_2 p_1$
- Minimum when $p_0 = 1$, $p_1 = 0$ or vice versa note, declare $0 \log_2 0$ to be 0
- Maximum when $p_0 = p_1 = 0.5$

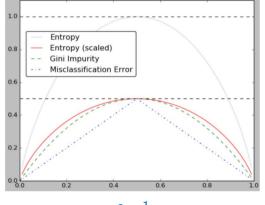


- Measure of unequal distribution of wealth
- Economics [Corrado Gini]
- As before, *n* data items
 - n_0 with c = 0, $p_0 = n_0/n$
 - n_1 with c = 1, $p_1 = n_1/n$

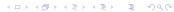
DMML Jan-Apr 2024

- Measure of unequal distribution of wealth
- Economics [Corrado Gini]
- As before, *n* data items
 - n_0 with c = 0, $p_0 = n_0/n$
 - n_1 with c = 1, $p_1 = n_1/n$
- Gini Index $G = 1 (p_0^2 + p_1^2)$

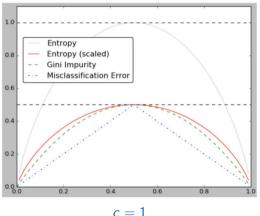
- Measure of unequal distribution of wealth
- Economics [Corrado Gini]
- As before, *n* data items
 - n_0 with c = 0, $p_0 = n_0/n$
 - n_1 with c = 1, $p_1 = n_1/n$
- Gini Index $G = 1 (p_0^2 + p_1^2)$
- G = 0 when $p_0 = 0$, $p_1 = 0$ or v.v. G = 0.5 when $p_0 = p_1 = 0.5$



$$c = 1$$

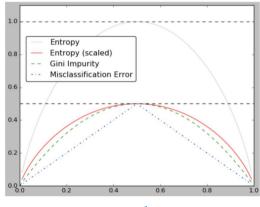


- Measure of unequal distribution of wealth
- Economics [Corrado Gini]
- As before, *n* data items
 - n_0 with c = 0, $p_0 = n_0/n$
 - n_1 with c = 1, $p_1 = n_1/n$
- Gini Index $G = 1 (p_0^2 + p_1^2)$
- G = 0 when $p_0 = 0$, $p_1 = 0$ or v.v. G = 0.5 when $p_0 = p_1 = 0.5$
- Entropy curve is slightly steeper, but Gini index is easier to compute



$$c =$$

- Measure of unequal distribution of wealth
- Economics [Corrado Gini]
- As before, *n* data items
 - n_0 with c = 0, $p_0 = n_0/n$
 - n_1 with c = 1, $p_1 = n_1/n$
- Gini Index $G = 1 (p_0^2 + p_1^2)$
- G = 0 when $p_0 = 0$, $p_1 = 0$ or v.v. G = 0.5 when $p_0 = p_1 = 0.5$
- Entropy curve is slightly steeper, but Gini index is easier to compute
- Decision tree libraries usually use Gini index



$$c = 1$$

