Lecture 16: 14 March, 2024

Madhavan Mukund
https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning January-April 2024

A geometric view of supervised learning

- Think of data as points in space

■ Find a separating curve (surface)

- Separable case
- Each class is a connected region

- A single curve can separate them

Linear

- Simplest case - linearly separable data
- Dual of linear regression
- Find a line that passes close to a set of points
- Find a line that separates the two sets of points

Perceptron algorithm

(Frank Rosenblatt, 1958)

- Each training input is $\left(x_{i}, y_{i}\right)$, where $x_{i}=\left\langle x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n}}\right\rangle$ and $y_{i}=+1$ or -1
- Need to find $w=\left\langle w_{0}, w_{1}, \ldots, w_{n}\right\rangle$
- Recall $x_{i 0}=1$, always

Initialize $w=\langle 0,0, \ldots, 0\rangle$
While there exists x_{i}, y_{i} such that

$$
\begin{aligned}
& y_{i}=+1 \text { and } w \cdot x_{i}<0, \text { or } \\
& y_{i}=-1 \text { and } w \cdot x_{i}>0
\end{aligned}
$$

Update w to $w+x_{i} y_{i}$

Linear separators

- Perceptron algorithm is a simple procedure to find a linear separator, if one exists
- Many lines are possible
- Does the Perceptron algorithm find the best one?
- What is a good notion of "cost" to optimize?

Margin

- Each separator defines a margin
- Empty corridor separating the points
- Separator is the centre line of the margin

■ Wider margin makes for a more robust classifier

- More gap between the classes
- Optimum classifier is one that maximizes the width of its margin
- Margin is defined by the training data points on the boundary

- Support vectors

Finding a maximum margin classifier

- Recall our original linear classifier
$w_{1} x_{1}+w_{2} x_{2}+\cdots w_{n} x_{n}+b>0$, classify yes, +1
$w_{1} x_{1}+w_{2} x_{2}+\cdots w_{n} x_{n}+b<0$, classify no, -1
- Scale margin so that separation is 1 on either side
$w_{1} x_{1}+w_{2} x_{2}+\cdots w_{n} x_{n}+b>1$, classify yes, +1
$w_{1} x_{1}+w_{2} x_{2}+\cdots w_{n} x_{n}+b<-1$, classify no, -1

Finding a maximum margin classifier

- Scale margin so that separation is 1 on either side
$w_{1} x_{1}+w_{2} x_{2}+\cdots w_{n} x_{n}+b>1$, classify
yes, +1
$w_{1} x_{1}+w_{2} x_{2}+\cdots w_{n} x_{n}+b<-1$, classify no, -1

■ Using Pythagoras's theorem, perpendicular distance to nearest support vector is $\frac{1}{|w|}$, where
$|w|=\sqrt{w_{1}^{2}+w_{2}^{2}+\cdots+w_{n}^{2}}$

Optimization problem

- Want to maximize the overall margin $\frac{2}{|w|}$

Optimization problem

- Want to maximize the overall margin $\frac{2}{|w|}$
- Equivalently, minimize $\frac{|w|}{2}$

Optimization problem

- Want to maximize the overall margin $\frac{2}{|w|}$
- Equivalently, minimize $\frac{|w|}{2}$
- Also, w should classify each $\left(x_{i}, y_{i}\right)$ correctly

$$
\begin{aligned}
& w_{1} x_{1}^{i}+w_{2} x_{2}^{i}+\cdots w_{n} x_{n}^{i}+b>1, \\
& \text { if } y_{i}=1 \\
& w_{1} x_{1}^{i}+w_{2} x_{2}^{i}+\cdots w_{n} x_{n}^{i}+b<-1, \\
& \text { if } y_{i}=-1
\end{aligned}
$$

Optimization problem

Minimize $\frac{|w|}{2}$
Subject to

$$
\begin{aligned}
& w_{1} x_{1}^{i}+w_{2} x_{2}^{i}+\cdots w_{n} x_{n}^{i}+b>1, \text { if } y_{i}=1 \\
& w_{1} x_{1}^{i}+w_{2} x_{2}^{i}+\cdots w_{n} x_{n}^{i}+b<-1, \text { if } y_{i}=-1
\end{aligned}
$$

Optimization problem

Minimize $\frac{|w|}{2}$
Subject to
$w_{1} x_{1}^{i}+w_{2} x_{2}^{i}+\cdots w_{n} x_{n}^{i}+b>1$, if $y_{i}=1$
$w_{1} x_{1}^{i}+w_{2} x_{2}^{i}+\cdots w_{n} x_{n}^{i}+b<-1$, if $y_{i}=-1$

- The constraints are linear

Optimization problem

Minimize $\frac{|w|}{2}$
Subject to
$w_{1} x_{1}^{i}+w_{2} x_{2}^{i}+\cdots w_{n} x_{n}^{i}+b>1$, if $y_{i}=1$
$w_{1} x_{1}^{i}+w_{2} x_{2}^{i}+\cdots w_{n} x_{n}^{i}+b<-1$, if $y_{i}=-1$

- The constraints are linear
- The objective function is not linear
$|w|=\sqrt{w_{1}^{2}+w_{2}^{2}+\cdots+w_{n}^{2}}$

Optimization problem

Minimize $\frac{|w|}{2}$
Subject to
$w_{1} x_{1}^{i}+w_{2} x_{2}^{i}+\cdots w_{n} x_{n}^{i}+b>1$, if $y_{i}=1$
$w_{1} x_{1}^{i}+w_{2} x_{2}^{i}+\cdots w_{n} x_{n}^{i}+b<-1$, if $y_{i}=-1$

- The constraints are linear
- The objective function is not linear
$|w|=\sqrt{w_{1}^{2}+w_{2}^{2}+\cdots+w_{n}^{2}}$
- This is a quadratic optimization problem, not linear programming

Solution to optimization problem

■ Convex optimization theory

- Can be solved using computational techniques

Solution to optimization problem

- Convex optimization theory
- Can be solved using computational techniques
- Solution expressed in terms of Lagrange multipliers $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}$, one multiplier per training input
- α_{i} is non-zero iff x_{i} is a support vector

Solution to optimization problem

- Convex optimization theory
- Can be solved using computational techniques
- Solution expressed in terms of Lagrange multipliers $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}$, one multiplier per training input
- α_{i} is non-zero iff x_{i} is a support vector
- Final classifier for newner
$\operatorname{sign}\left[\sum_{i \in s v}\right.$

■ $s v$ is set of support vectors

Support Vector Machine (SVM)

$$
\operatorname{sign}\left[\sum_{i \in s v} y_{i} \alpha_{i}\left(x_{i} \cdot z\right)+b\right]
$$

- Solution depends only on support vectors
- If we add more training data away from support vectors, separator does not change

Support Vector Machine (SVM)

$$
\operatorname{sign}\left[\sum_{i \in s v} y_{i} \alpha_{i}\left(x_{i} \cdot z\right)+b\right]
$$

- Solution depends only on support vectors
- If we add more training data away from support vectors, separator does not change
- Solution uses dot product of support vectors with new point
- Will be used later, in the non-linear case

The non-linear case

- Some points may lie on the wrong side of the classifier
- How do we account for these?

The non-linear case

- Some points may lie on the wrong side of the classifier
- How do we account for these?
- Add an error term to the classifier requirement
- Instead of

$$
\begin{aligned}
& w \cdot x+b>1, \text { if } y_{i}=1 \\
& w \cdot x+b<-1, \text { if } y_{i}=-1
\end{aligned}
$$

we have

$$
\begin{aligned}
& w \cdot x+b>1-\xi_{i}, \text { if } y_{i}=1 \\
& w \cdot x+b<-1+\xi_{i}, \text { if } y_{i}=-1
\end{aligned}
$$

Soft margin classifier

$$
\begin{aligned}
& w \cdot x+b>1-\xi_{i} \text {, if } y_{i}=1 \\
& w \cdot x+b<-1+\xi_{i}, \text { if } y_{i}=-1
\end{aligned}
$$

- Error term always non-negative,
- If the point is correctly classified, error term is 0
- Soft margin - some points can drift across the boundary
- Need to account for the errors in the objective function
- Minimize the need for non-zero error terms

Soft margin optimization

$\operatorname{Minimize} \frac{|w|}{2}+\sum_{i=1}^{N} \xi_{i}^{2}$
Subject to
$\xi_{i} \geq 0$
$w \cdot x_{i}+b>1-\xi_{i}$, if $y_{i}=1$
$w \cdot x_{i}+b<-1+\xi_{i}$, if $y_{i}=-1$

- Constraints include requirement that error terms are non-negative
- Again the objective function is quadratic

Soft margin optimization

■ Can again be solved using convex optimization theory

■ Form of the solution turns out to be the same as the hard margin case

- Expression in terms of Lagrange multipliers α_{i}
- Only terms corresponding to support vectors are actively used

$$
\operatorname{sign}\left[\sum_{i \in s v} y_{i} \alpha_{i}\left(x_{i} \cdot z\right)+b\right]
$$

The non-linear case

■ How do we deal with datasets where the separator is a complex shape?

The non-linear case

■ How do we deal with datasets where the separator is a complex shape?

- Geometrically transform the data
- Typically, add dimensions

The non-linear case

■ How do we deal with datasets where the separator is a complex shape?

■ Geometrically transform the data

- Typically, add dimensions

■ For instance, if we can "lift" one class, we can find a planar separator between levels

Geometric tranformation

- Consider two sets of points separated by a circle of radius 1
- Equation of circle is $x^{2}+y^{2}=1$

Geometric tranformation

- Consider two sets of points separated by a circle of radius 1
- Equation of circle is $x^{2}+y^{2}=1$
- Points inside the circle, $x^{2}+y^{2}<1$

■ Points outside circle, $x^{2}+y^{2}>1$

Geometric tranformation

- Consider two sets of points separated by a circle of radius 1
- Equation of circle is $x^{2}+y^{2}=1$
- Points inside the circle, $x^{2}+y^{2}<1$
- Points outside circle, $x^{2}+y^{2}>1$
- Transformation

Geometric tranformation

- Consider two sets of points separated by a circle of radius 1
- Equation of circle is $x^{2}+y^{2}=1$
- Points inside the circle, $x^{2}+y^{2}<1$
- Points outside circle, $x^{2}+y^{2}>1$
- Transformation

$$
\varphi:(x, y) \mapsto\left(x, y, x^{2}+y^{2}\right)
$$

- Points inside circle lie below $z=1$
- Point outside circle lifted above $z=1$

SVM after transformation

■ SVM in original space

$$
\operatorname{sign}\left[\sum_{i \in s v} y_{i} \alpha_{i}\left(x_{i} \cdot z\right)+b\right]
$$

SVM after transformation

■ SVM in original space

$x \longmapsto \varphi(x)$

$$
\operatorname{sign}\left[\sum_{i \in s v} y_{i} \alpha_{i}\left(x_{i} \cdot z\right)+b\right]
$$

- After transformation

$$
\operatorname{sign}\left[\sum_{i \in s v} y_{i} \alpha_{i}\left(\varphi\left(x_{i}\right) \cdot \varphi(z)\right)+b\right]
$$

SVM after transformation

■ SVM in original space

$$
\operatorname{sign}\left[\sum_{i \in s v} y_{i} \alpha_{i}\left(x_{i} \cdot z\right)+b\right]
$$

- After transformation

$$
\operatorname{sign}\left[\sum_{i \in s v} y_{i} \alpha_{i}\left(\varphi\left(x_{i}\right) \cdot \varphi(z)\right)+b\right]
$$

- All we need to know is how to compute dot products in transformed space

Dot products

■ Consider the transformation

$$
\varphi:\left(x_{1}, x_{2}\right) \mapsto\left(1, \sqrt{2} x_{1}, \sqrt{2} x_{2}, x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right)
$$

Dot products

- Consider the transformation

$$
\varphi:\left(x_{1}, x_{2}\right) \mapsto\left(1, \sqrt{2} x_{1}, \sqrt{2} x_{2}, x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right)
$$

- Dot product in transformed space

$$
\varphi(x) \cdot \varphi(z)=\frac{1+2 x_{1} z_{1}+2 x_{2} z_{2}+x_{1}^{2} z_{1}^{2}}{+2 x_{1} x_{2} z_{1} z_{2}+x_{2}^{2} z_{2}^{2}}+\left(1+x_{1} z_{1}+x_{2} z_{2}\right)^{2}
$$

Dot products

- Consider the transformation

$$
\varphi:\left(x_{1}, x_{2}\right) \mapsto\left(1, \sqrt{2} x_{1}, \sqrt{2} x_{2}, x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right)
$$

- Dot product in transformed space

$$
\begin{aligned}
\varphi(x) \cdot \varphi(z)= & 1+2 x_{1} z_{1}+2 x_{2} z_{2}+x_{1}^{2} z_{1}^{2} \\
& +2 x_{1} x_{2} z_{1} z_{2}+x_{2}^{2} z_{2}^{2} \\
= & \left(1+x_{1} z_{1}+x_{2} z_{2}\right)^{2}
\end{aligned}
$$

- Transformed dot product can be expressed in terms of original inputs

$$
\varphi(x) \cdot \varphi(z)=K(x, z)=\left(1+x_{1} z_{1}+x_{2} z_{2}\right)^{2}
$$

Kernels

■ K is a kernel for transformation φ if $K(x, z)=\varphi(x) \cdot \varphi(z)$

Kernels

■ K is a kernel for transformation φ if $K(x, z)=\varphi(x) \cdot \varphi(z)$

■ If we have a kernel, we don't need to explicitly compute transformed points

- All dot products can be computed implicitly using the kernel on original data points

$$
\operatorname{sign}\left[\sum _ { i \in s v } y _ { i } \left(k_{i}\left(\varphi\left(x_{i}\right) \cdot \varphi(z)+b\right]\right.\right.
$$

Kernels

■ K is a kernel for transformation φ if $K(x, z)=\varphi(x) \cdot \varphi(z)$

■ If we have a kernel, we don't need to explicitly compute transformed points

- All dot products can be computed implicitly using the kernel on original data points

$$
\operatorname{sign}\left[\sum_{i \in s v} y_{i} \alpha_{i} K\left(x_{i}, z\right)+b\right]
$$

Kernels

- If we know K is a kernel for some transformation φ, we can blindly use K without even knowing what φ looks like!

Kernels

- If we know K is a kernel for some transformation φ, we can blindly use K without even knowing what φ looks like!
- When is a function a valid kernel?

Kernels

- If we know K is a kernel for some transformation φ, we can blindly use K without even knowing what φ looks like!
- When is a function a valid kernel?
- Has been studied in mathematics Mercer's Theorem
- Criteria are non-constructive

Kernels

- If we know K is a kernel for some transformation φ, we can blindly use K without even knowing what φ looks like!
- When is a function a valid kernel?
- Has been studied in mathematics Mercer's Theorem
- Criteria are non-constructive
- Can define sufficient conditions from linear algebra

Kernels

- Kernel over training data $x_{1}, x_{2}, \ldots, x_{\boldsymbol{y}} \boldsymbol{n}$ can be represented as a gram matrix

$$
K=\begin{gathered}
x_{1} \\
x_{1} \\
x_{2} \\
\vdots \\
\\
x_{n}
\end{gathered}\left[\begin{array}{lll}
x_{2} & \cdots & x_{n} \\
& & \\
& & \\
& &
\end{array}\right]
$$

- Entries are values $K\left(x_{i}, x_{j}\right)$

Kernels

■ Kernel over training data $x_{1}, x_{2}, \ldots, x_{N}$ can be represented as a gram matrix

- Entries are values $K\left(x_{i}, x_{j}\right)$
- Gram matrix should be positive semi-definite for all $x_{1}, x_{2}, \ldots, x_{N}$

Known kernels

- Fortunately, there are many known kernels

Known kernels

- Fortunately, there are many known kernels
- Polynomial kernels

$$
\begin{aligned}
& K(x, z)=(1+x \cdot z)^{k} \\
& \left(1+x_{1} z_{1}+x_{2} z_{2}\right)^{2} \\
& (1+x \cdot z)^{2}
\end{aligned}
$$

Known kernels

- Fortunately, there are many known kernels
- Polynomial kernels

$$
K(x, z)=(1+x \cdot z)^{k}
$$

- Any $K(x, z)$ representing a similarity measure

Known kernels

- Fortunately, there are many known kernels
- Polynomial kernels

$$
K(x, z)=(1+x \cdot z)^{k}
$$

- Any $K(x, z)$ representing a similarity measure
- Gaussian radial basis function similarity based on inverse exponential distance

$$
K(x, z)=e^{-c|x-z|^{2}}
$$

Perception

$$
\begin{aligned}
w & =\left(\sum n_{i} x_{i}\right. \\
w-z & =\left(\sum n_{i} x_{i}\right)-2 \\
w \cdot x & >0 \\
& <0
\end{aligned}
$$

