Lecture 2: 11 January, 2024

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

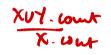
Data Mining and Machine Learning January-April 2024

Market-basket analysis

- Set of items $I = \{i_1, i_2, \dots, i_N\}$
- A transaction is a set $t \subseteq I$ of items
- Set of transactions $T = \{t_1, t_2, \dots, t_M\}$
- Identify association rules $X \rightarrow Y$
 - $X, Y \subseteq I, X \cap Y = \emptyset$
 - If $X \subseteq t_j$ then it is likely that $Y \subseteq t_j$
- Two thresholds
 - How frequently does $X \subseteq t_i$ imply $Y \subseteq t_i$?
 - How significant is this pattern overall?

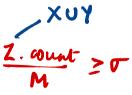
Setting thresholds

- For $Z \subseteq I$, Z.count = $|\{t_j \mid Z \subseteq t_j\}|$
- How frequently does $X \subseteq t_j$ imply $Y \subseteq t_j$?
 - Fix a confidence level χ
 - Want $\frac{(X \cup Y).count}{X.count} \ge \chi$



Y+X

- How significant is this pattern overall?
 - Fix a support level σ
 - Want $\frac{(X \cup Y).count}{M} \ge \sigma$
- Given sets of items I and transactions T, with confidence χ and support σ , find all valid association rules $X \to Y$



Frequent - Z. wout 20.M

Apriori

- If Z is frequent, so is every subset $Y \subseteq Z$
- We exploit the contrapositive

Apriori observation

If Z is not a frequent itemset, no superset $Y \supseteq Z$ can be frequent

- For any frequent pair $\{x, y\}$, both $\{x\}$ and $\{y\}$ must be frequent
- Build frequent itemsets bottom up, size 1,2,...

 \blacksquare F_i : frequent itemsets of size i — Level i

Madhavan Mukund Lecture 2: 11 January, 2024 DMML Jan-Apr 2024

- F_i : frequent itemsets of size i Level i
- F_1 : Scan T, maintain a counter for each $x \in I$

- F_i : frequent itemsets of size i Level i
- F_1 : Scan T, maintain a counter for each $x \in I$
- $C_2 = \{\{x, y\} \mid x, y \in F_1\}$: Candidates in level 2

- \blacksquare F_i : frequent itemsets of size i Level i
- F_1 : Scan T, maintain a counter for each $x \in I$
- $C_2 = \{\{x,y\} \mid x,y \in F_1\}$: Candidates in level 2
- F_2 : Scan T, maintain a counter for each $X \in C_2$
- $C_3 = \{\{x, y, z\} \mid \{x, y\}, \{x, z\}, \{y, z\} \in F_2\}$ ⇒ xef, yef, zef,
- F_3 : Scan T, maintain a counter for each $X \in C_3$
-
- C_k = subsets of size k, every (k-1)-subset is in F_{k-1}
- F_k : Scan T, maintain a counter for each $X \in C_k$
- . . .

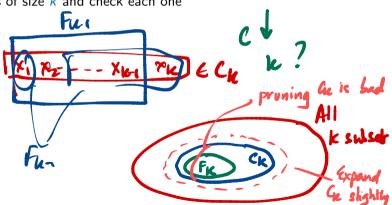
DMML Jan-Apr 2024

- C_k = subsets of size k, every (k-1)-subset is in F_{k-1}
- How do we generate C_k ?

- C_k = subsets of size k, every (k-1)-subset is in F_{k-1}
- How do we generate C_k ?
- Naïve: enumerate subsets of size k and check each one
 - Expensive!

Ck is an overapproximation

J Fk



{y1, y2 - - yk-1, yk} → ĉk

Fer x Fi

- C_k = subsets of size k, every (k-1)-subset is in F_{k-1}
- How do we generate C_k ?
- Naïve: enumerate subsets of size k and check each one
 - Expensive!
- Observation: Any $C'_k \supseteq C_k$ will do as a candidate set

- C_k = subsets of size k, every (k-1)-subset is in F_{k-1}
- How do we generate C_k ?
- Naïve: enumerate subsets of size k and check each one
 - Expensive!
- Observation: Any $C'_k \supseteq C_k$ will do as a candidate set
- Items are ordered: $i_1 < i_2 < \cdots < i_N$
- List each itemset in ascending order canonical representation

- C_k = subsets of size k, every (k-1)-subset is in F_{k-1}
- How do we generate C_k ?
- Naïve: enumerate subsets of size k and check each one
 - Expensive!
- Observation: Any $C'_k \supseteq C_k$ will do as a candidate set
- Items are ordered: $i_1 < i_2 < \cdots < i_N$
- List each itemset in ascending order canonical representation
- Merge two (k-1)-subsets if they differ in last element
 - $X = \{i_1, i_2, \dots, i_{k-2}, i_{k-1}\}$
 - $X' = \{i_1, i_2, \dots, i_{k-2}, i'_{k-1}\}$
 - $Merge(X, X') = \{i_1, i_2, \dots, i_{k-2}, i_{k-1}, i'_{k-1}\}$

- Merge(X, X') = { $i_1, i_2, ..., i_{k-2}, i_{k-1}, i'_{k-1}$ }
 - $X = \{i_1, i_2, \dots, i_{k-2}, i_{k-1}\}$
 - $X' = \{i_1, i_2, \dots, i_{k-2}, i'_{k-1}\}$

Madhavan Mukund Lecture 2: 11 January, 2024 DMML Jan-Apr 2024

- Merge(X, X') = { $i_1, i_2, ..., i_{k-2}, i_{k-1}, i'_{k-1}$ }
 - $X = \{i_1, i_2, \dots, i_{k-2}, i_{k-1}\}$
 - $X' = \{i_1, i_2, \dots, i_{k-2}, i'_{k-1}\}$
- $C'_k = \{ Merge(X, X') \mid X, X' \in F_{k-1} \}$

Madhavan Mukund Lecture 2: 11 January, 2024 DMML Jan-Apr 2024

■ Merge(
$$X, X'$$
) = { $i_1, i_2, ..., i_{k-2}, i_{k-1}, i'_{k-1}$ }

$$X = \{i_1, i_2, \dots, i_{k-2}, i_{k-1}\}$$

$$X' = \{i_1, i_2, \dots, i_{k-2}, i'_{k-1}\}$$

•
$$C'_k = \{ Merge(X, X') \mid X, X' \in F_{k-1} \}$$

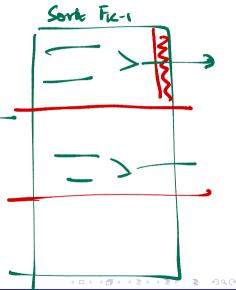
- Claim $C_k \subseteq C'_k$
- Suppose $Y = \{i_1, i_2, \dots, i_{k-1}, i_k'\} \in C_k$ $X = \{i_1, i_2, \dots, i_{k-2}, i_{k-1}\} \in F_{k-1}$ and $X' = \{i_1, i_2, \dots, i_{k-2}, i_k\} \in F_{k-1}$ $Y = \text{Merge}(X, X') \in C'_k$

DMML Jan-Apr 2024

■ Merge(
$$X, X'$$
) = { $i_1, i_2, ..., i_{k-2}, i_{k-1}, i'_{k-1}$ }

- $X = \{i_1, i_2, \dots, i_{k-2}, i_{k-1}\}$
- $X' = \{i_1, i_2, \dots, i_{k-2}, i'_{k-1}\}$
- $C'_k = \{ \mathsf{Merge}(X, X') \mid X, X' \in F_{k-1} \}$
- Claim $C_k \subseteq C'_k$

 - $X = \{i_1, i_2, \dots, i_{k-2}, i_{k-1}\} \in F_{k-1}$ and $X' = \{i_1, i_2, \dots, i_{k-2}, i_k\} \in F_{k-1}$
 - $Y = Merge(X, X') \in C'_k$
- Can generate C'_k efficiently
 - Arrange F_{k-1} in dictionary order
 - Split into blocks that differ on last element
 - Merge all pairs within each block



- $C_1 = \{\{x\} \mid x \in I\}$
- $F_1 = \{Z \mid Z \in C_1, Z.\text{count} \geq \sigma \cdot M\}$
- For $k \in \{2, 3, ...\}$
 - $C'_k = \{ Merge(X, X') \mid X, X' \in F_{k-1} \}$
 - $F_k = \{Z \mid Z \in C'_k, Z.\text{count} \geq \sigma \cdot M\}$

8/8

Madhavan Mukund Lecture 2: 11 January, 2024 DMML Jan-Apr 2024

- $C_1 = \{\{x\} \mid x \in I\}$
- $F_1 = \{Z \mid Z \in C_1, Z.\text{count} \geq \sigma \cdot M\}$
- For $k \in \{2, 3, ...\}$
 - $C'_k = \{ Merge(X, X') \mid X, X' \in F_{k-1} \}$
 - $F_k = \{Z \mid Z \in C'_k, Z.\text{count} \geq \sigma \cdot M\}$
- When do we stop?

$$C_1 = \{\{x\} \mid x \in I\}$$

■
$$F_1 = \{Z \mid Z \in C_1, Z.\text{count} \geq \sigma \cdot M\}$$

■ For
$$k \in \{2, 3, ...\}$$

■
$$C'_k = \{ Merge(X, X') \mid X, X' \in F_{k-1} \}$$

•
$$F_k = \{Z \mid Z \in C'_k, Z.\text{count} \geq \sigma \cdot M\}$$

- When do we stop?
- *k* exceeds the size of the largest transaction
- \blacksquare F_k is empty

Z - frequent

Check if Z

contains a valid

The X-Y

- Given sets of items I and transactions T, with confidence χ and support σ , find all valid association rules $X \to Y$
 - $X, Y \subseteq I, X \cap Y = \emptyset$
 - $\frac{(X \cup Y).count}{X.count} \ge \chi$

- Given sets of items / and transactions T, with confidence χ and support σ , find all valid association rules $X \to Y$
 - $X, Y \subseteq I, X \cap Y = \emptyset$

$$\frac{(X \cup Y).count}{X.count} \ge \chi$$

- For a rule $X \to Y$ to be valid, $X \cup Y$ should be a frequent itemset
- Apriori algorithm finds all $Z \subseteq I$ such that Z.count $> \sigma \cdot M$

Naïve strategy

- For every frequent itemset *Z*
 - Enumerate all pairs $X, Y \subseteq Z, X \cap Y = \emptyset$

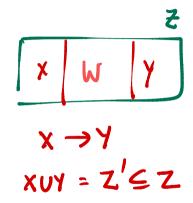
■ Check
$$\frac{(X \cup Y).count}{X.count} \ge \chi$$

Naïve strategy

- For every frequent itemset *Z*
 - Enumerate all pairs $X, Y \subseteq Z, X \cap Y = \emptyset$
 - Check $\frac{(X \cup Y).count}{X.count} \ge \chi$
- Can we do better?

Naïve strategy

- For every frequent itemset *Z*
 - Enumerate all pairs $X, Y \subseteq Z, X \cap Y = \emptyset$
 - Check $\frac{(X \cup Y).count}{X.count} \ge \chi$
- Can we do better?
- Sufficient to check all partitions of Z
 - If $X, Y \subseteq Z$, $X \cup Y$ is also a frequent itemset



- Sufficient to check all partitions of Z
 Suppose Z = X ⊎ Y, X → Y is a valid rule and y ∈ Y
- XHY

■ What about $(X \cup \{y\}) \rightarrow Y \setminus \{y\}$?

DMML Jan-Apr 2024

- Sufficient to check all partitions of Z
- Suppose $Z = X \uplus Y$, $X \to Y$ is a valid rule and $y \in Y$
- What about $(X \cup \{y\}) \rightarrow Y \setminus \{y\}$?

• Know
$$\frac{(X \cup Y).count}{X.count} \ge \chi$$

• Check
$$\frac{(X \cup Y).count}{(X \cup \{y\}).count} \ge \chi$$

- Sufficient to check all partitions of Z
- Suppose $Z = X \uplus Y$, $X \to Y$ is a valid rule and $y \in Y$
- What about $(X \cup \{y\}) \rightarrow Y \setminus \{y\}$?
 - Know $\frac{(X \cup Y).count}{X.count} \ge \chi$
 - Check $\frac{(X \cup Y).count}{(X \cup \{y\}).count} \ge \chi$
 - $X.count \ge (X \cup \{y\}).count$, always
 - Second fraction has smaller denominator, so $(X \cup \{y\}) \rightarrow Y \setminus \{y\}$ is also a valid rule

- Sufficient to check all partitions of Z
- Suppose $Z = X \uplus Y$, $X \to Y$ is a valid rule and $y \in Y$
- What about $(X \cup \{y\}) \rightarrow Y \setminus \{y\}$?
 - Know $\frac{(X \cup Y).count}{X.count} \ge \chi$
 - Check $\frac{(X \cup Y).count}{(X \cup \{y\}).count} \ge \chi$
 - $X.count \ge (X \cup \{y\}).count$, always
 - Second fraction has smaller denominator, so $(X \cup \{y\}) \rightarrow Y \setminus \{y\}$ is also a valid rule

Observation: Can use apriori principle again!

Apriori for association rules

- If $X \to Y$ is a valid rule, and $y \in Y$, $(X \cup \{y\}) \to Y \setminus \{y\}$ must also be a valid rule
- If $X \to Y$ is not a valid rule, and $x \in X$, $(X \setminus \{x\}) \to Y \cup \{x\}$ cannot be a valid rule

12/8

Madhavan Mukund Lecture 2: 11 January, 2024 DMML Jan-Apr 2024

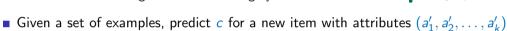
Apriori for association rules

- If $X \to Y$ is a valid rule, and $y \in Y$, $(X \cup \{y\}) \to Y \setminus \{y\}$ must also be a valid rule
- If $X \to Y$ is not a valid rule, and $x \in X$, $(X \setminus \{x\}) \to Y \cup \{x\}$ cannot be a valid rule
- Start by checking rules with single element on the right
 - $Z \setminus z \rightarrow \{z\}$
- For $X \to \{x, y\}$ to be a valid rule, both $(X \cup \{x\}) \to \{y\}$ and $(X \cup \{y\}) \to \{x\}$ must be valid
- Explore partitions of each frequent itemset "level by level"

If $\times \cup \{z\} \rightarrow \{y\}$ $\times \cup \{y\} \rightarrow \{z\}$ is not valid, $\text{skip } \times \rightarrow \{x,y\}$

Supervised learning

- A set of items
 - Each item is characterized by attributes $(a_1, a_2, ..., a_k)$
 - Each item is assigned a class or category *c*



Supervised learning

- A set of items
 - Each item is characterized by attributes $(a_1, a_2, ..., a_k)$
 - Each item is assigned a class or category c
- Given a set of examples, predict c for a new item with attributes $(a'_1, a'_2, \dots, a'_k)$
- Examples provided are called training data
- Aim is to learn a mathematical model that generalizes the training data
 - Model built from training data should extend to previously unseen inputs

Supervised learning

- A set of items
 - Each item is characterized by attributes $(a_1, a_2, ..., a_k)$
 - Each item is assigned a class or category c
- Given a set of examples, predict c for a new item with attributes $(a'_1, a'_2, \dots, a'_k)$
- Examples provided are called training data
- Aim is to learn a mathematical model that generalizes the training data
 - Model built from training data should extend to previously unseen inputs
- Classification problem
 - Usually assumed to binary two classes

- Classify documents by topic
- Consider the table on the right

Words in document	Topic
student, teach, school	Education
student, school	Education
teach, school, city, game	Education
cricket, football	Sports
football, player, spectator	Sports
cricket, coach, game, team	Sports
football, team, city, game	Sports

- Classify documents by topic
- Consider the table on the right
- Items are regular words and topics
- Documents are transactions set of words and one topic

Words in document	Topic
student, teach, school	Education
student, school	Education
teach, school, city, game	Education
cricket, football	Sports
football, player, spectator	Sports
cricket, coach, game, team	Sports
football, team, city, game	Sports

- Classify documents by topic
- Consider the table on the right
- Items are regular words and topics
- Documents are transactions set of words and one topic
- Look for association rules of a special form
 - $\blacksquare \ \{\mathsf{student}, \, \mathsf{school}\} \to \{\mathsf{Education}\}$
 - $\blacksquare \ \{\mathsf{game}, \ \mathsf{team}\} \to \{\mathsf{Sports}\}$

Words in document	Topic
student, teach, school	Education
student, school	Education
teach, school, city, game	Education
cricket, football	Sports
football, player, spectator	Sports
cricket, coach, game, team	Sports
football, team, city, game	Sports

- Classify documents by topic
- Consider the table on the right
- Items are regular words and topics
- Documents are transactions set of words and one topic
- Look for association rules of a special form
 - $\blacksquare \ \{\mathsf{student}, \, \mathsf{school}\} \to \{\mathsf{Education}\}$
 - $\blacksquare \{\mathsf{game, team}\} \to \{\mathsf{Sports}\}$
- Right hand side always a single topic
- Class Association Rules

Words in document	Topic
student, teach, school	Education
student, school	Education
teach, school, city, game	Education
cricket, football	Sports
football, player, spectator	Sports
cricket, coach, game, team	Sports
football, team, city, game	Sports

Summary

- Market-basket analysis searches for correlated items across transactions
- Formalized as association rules
- Apriori principle helps us to efficiently
 - identify frequent itemsets, and
 - split these itemsets into valid rules
- Class association rules simple supervised learning model

Contont - single transachen - sequences across transachen Uniform thresholds