Lecture 1: 9 January, 2024

Madhavan Mukund https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning January–April 2024

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Data Mining

- Identify "hidden" patterns in data
- Also data collection, cleaning, uniformization, storage
 - Won't emphasize these aspects

4 E

Data Mining

- Identify "hidden" patterns in data
- Also data collection, cleaning, uniformization, storage
 - Won't emphasize these aspects

Machine Learning

- "Learn" mathematical models of processes from data
- Supervised learning learn from experience
- Unsupervised learning search for structure

Supervised Learning

Extrapolate from historical data

- Predict board exam scores from model exams
- Should this loan application be granted?
- Do these symptoms indicate CoViD-19?

Supervised Learning

Extrapolate from historical data

- Predict board exam scores from model exams
- Should this loan application be granted?
- Do these symptoms indicate CoViD-19?

"Manually" labelled historical data is available

- Past exam scores: model exams and board exam
- Customer profiles: age, income, ..., repayment/default status
- Patient health records, diagnosis

Supervised Learning

Extrapolate from historical data

- Predict board exam scores from model exams
- Should this loan application be granted?
- Do these symptoms indicate CoViD-19?

"Manually" labelled historical data is available

- Past exam scores: model exams and board exam
- Customer profiles: age, income, ..., repayment/default status
- Patient health records, diagnosis

Historical data \rightarrow model to predict outcome

What are we trying to predict?

Numerical values

- Board exam scores
- House price (valuation for insurance)
- Net worth of a person (for loan eligibility)

What are we trying to predict?

Numerical values

- Board exam scores
- House price (valuation for insurance)
- Net worth of a person (for loan eligibility)

Categories

- Email: is this message junk?
- Insurance claim: pay out, or check for fraud?
- Credit card approval: reject, normal, premium

How do we predict?

- Build a mathematical model
 - Different types of models
 - Parameters to be tuned

▶ < ∃ ▶</p>

How do we predict?

- Build a mathematical model
 - Different types of models
 - Parameters to be tuned
- Fit parameters based on input data
 - Different historical data produces different models
 - e.g., each user's junk mail filter fits their individual preferences

How do we predict?

- Build a mathematical model
 - Different types of models
 - Parameters to be tuned
- Fit parameters based on input data
 - Different historical data produces different models
 - e.g., each user's junk mail filter fits their individual preferences
- Study different models, how they are built from historical data

Unsupervised learning

- Supervised learning builds models to reconstruct "known" patterns given by historical data
- Unsupervised learning tries to identify patterns without guidance

< ∃ >

Unsupervised learning

- Supervised learning builds models to reconstruct "known" patterns given by historical data
- Unsupervised learning tries to identify patterns without guidance

Customer segmentation

- Different types of newspaper readers
- Age vs product profile of retail shop customers
- Viewer recommendations on video platform

Clustering

- Organize data into "similar" groups — clusters
- Define a similarity measure, or distance function

▶ ∢ ⊒

Clustering

- Organize data into "similar" groups — clusters
- Define a similarity measure, or distance function
- Clusters are groups of data items that are "close together"

Outliers

- Outliers are anomalous values
 - Net worth of Jeff Bezos, Mukesh Ambani
- Outliers distort clustering and other analysis
- How can we identify outliers?

Preprocessing for supervised learning

Dimensionality reduction

< ∃

Preprocessing for supervised learning

Need not be a good idea — perils of working blind!

Summary

Machine Learning

- Supervised learning
 - Build predictive models from historical data
- Unsupervised learning
 - Search for structure
 - Clustering, outlier detection, dimensionality reduction

< ∃→

Summary

Machine Learning

- Supervised learning
 - Build predictive models from historical data
- Unsupervised learning
 - Search for structure
 - Clustering, outlier detection, dimensionality reduction

If intelligence were a cake, unsupervised learning would be the cake, supervised learning would be the icing on the cake, ...

Yann Le Cun, ACM Turing Award 2018

Market-Basket Analysis

- People who buy X also tend to buy Y
- Rearrange products on display based on customer patterns

▶ < ∃ ▶</p>

Market-Basket Analysis

- People who buy X also tend to buy Y
- Rearrange products on display based on customer patterns
 - The diapers and beer legend
 - The true story, http://www.dssresources. com/newsletters/66.php

→

Market-Basket Analysis

- People who buy X also tend to buy Y
- Rearrange products on display based on customer patterns
 - The diapers and beer legend
 - The true story, http://www.dssresources. com/newsletters/66.php
- Applies in more abstract settings
 - Items are concepts, basket is a set of concepts in which a student does badly
 - Students with difficulties in concept A also tend to misunderstand concept B
 - Items are words, transactions are documents

Formal setting

- Set of items $I = \{i_1, i_2, ..., i_N\}$
- A transaction is a set $t \subseteq I$ of items
- Set of transactions $T = \{t_1, t_2, \dots, t_M\}$

< ∃ ▶

Formal setting

- Set of items $I = \{i_1, i_2, ..., i_N\}$
- A transaction is a set $t \subseteq I$ of items
- Set of transactions $T = \{t_1, t_2, \dots, t_M\}$
- Identify association rules $X \rightarrow Y$
 - $X, Y \subseteq I, X \cap Y = \emptyset$
 - If $X \subseteq t_j$ then it is likely that $Y \subseteq t_j$

э

Formal setting

- Set of items $I = \{i_1, i_2, ..., i_N\}$
- A transaction is a set $t \subseteq I$ of items
- Set of transactions $T = \{t_1, t_2, \dots, t_M\}$
- Identify association rules $X \rightarrow Y$
 - $X, Y \subseteq I, X \cap Y = \emptyset$
 - If $X \subseteq t_j$ then it is likely that $Y \subseteq t_j$
- Two thresholds
 - How frequently does $X \subseteq t_j$ imply $Y \subseteq t_j$?
 - How significant is this pattern overall?

э

• For $Z \subseteq I$, Z.count = $|\{t_j \mid Z \subseteq t_j\}|$

▶ ▲ 国 ▶ ▲ 国 ▶

3

• For $Z \subseteq I$, Z.count = $|\{t_j \mid Z \subseteq t_j\}|$

• How frequently does $X \subseteq t_j$ imply $Y \subseteq t_j$?

• Fix a confidence level χ

• Want $\frac{(X \cup Y).count}{X.count} \ge \chi$

< ∃ >

- For $Z \subseteq I$, Z.count = $|\{t_i \mid Z \subseteq t_i\}|$
- How frequently does $X \subseteq t_i$ imply $Y \subseteq t_i$?
 - Fix a confidence level χ
 - Want $\frac{(X \cup Y).count}{X \ count} \ge \chi$
- How significant is this pattern overall?

```
Fix a support level \sigma
```


→

- For $Z \subseteq I$, Z.count = $|\{t_j \mid Z \subseteq t_j\}|$
- How frequently does $X \subseteq t_j$ imply $Y \subseteq t_j$?
 - Fix a confidence level χ
 - Want $\frac{(X \cup Y).count}{X.count} \ge \chi$
- How significant is this pattern overall?
 - Fix a support level σ

• Want
$$\frac{(X \cup Y).count}{M} \ge \sigma$$

Given sets of items *I* and transactions *T*, with confidence χ and support σ, find all valid association rules X → Y

Frequent itemsets

- $X \to Y$ is interesting only if $(X \cup Y)$.count $\geq \sigma \cdot M$
- First identify all frequent itemsets
 - $Z \subseteq I$ such that Z.count $\geq \sigma \cdot M$

▶ < ∃ ▶</p>

Frequent itemsets

- $X \to Y$ is interesting only if $(X \cup Y)$.count $\geq \sigma \cdot M$
- First identify all frequent itemsets

```
• Z \subseteq I such that Z.count \geq \sigma \cdot M
```

Naïve strategy: maintain a counter for each Z

```
For each t_j \in T
For each Z \subseteq t_j
Increment the counter for Z
```

• After scanning all transactions, keep Z with Z.count $\geq \sigma \cdot M$

1 E N

Frequent itemsets

- $X \to Y$ is interesting only if $(X \cup Y)$.count $\geq \sigma \cdot M$
- First identify all frequent itemsets

• $Z \subseteq I$ such that Z.count $\geq \sigma \cdot M$

Naïve strategy: maintain a counter for each Z

```
■ For each t_j \in T
For each Z \subseteq t_j
Increment the counter for Z
```

- After scanning all transactions, keep Z with Z.count $\geq \sigma \cdot M$
- Need to maintain 2^{|/|} counters
 - Infeasible amount of memory
 - Can we do better?

Sample calculation

• Let's assume a bound on each $t_i \in T$

No transacation has more than 10 items

• Say $N = |I| = 10^6$, $M = |T| = 10^9$, $\sigma = 0.01$

• Number of possible subsets to count is $\sum_{i=1}^{10} {10^6 \choose i}$

э

Sample calculation

• Let's assume a bound on each $t_i \in T$

- No transacation has more than 10 items
- Say $N = |I| = 10^6$, $M = |T| = 10^9$, $\sigma = 0.01$

• Number of possible subsets to count is $\sum_{i=1}^{10} {10^6 \choose i}$

 A singleton subset that is frequent is an item that appears in at least 10⁷ transactions

Sample calculation

- Let's assume a bound on each $t_i \in T$
 - No transacation has more than 10 items
- Say $N = |I| = 10^6$, $M = |T| = 10^9$, $\sigma = 0.01$

• Number of possible subsets to count is $\sum_{i=1}^{10} {10^6 \choose i}$

- A singleton subset that is frequent is an item that appears in at least 10⁷ transactions
- Totally, T contains at most 10^{10} items
- At most $10^{10}/10^7 = 1000$ items are frequent!
- How can we exploit this?

• Clearly, if Z is frequent, so is every subset $Y \subseteq Z$

< □ > < 円

- Clearly, if Z is frequent, so is every subset $Y \subseteq Z$
- We exploit the contrapositive

```
Apriori observation

If Z is not a frequent itemset, no superset Y \supseteq Z can be

frequent
```

- Clearly, if Z is frequent, so is every subset $Y \subseteq Z$
- We exploit the contrapositive

```
Apriori observation
If Z is not a frequent itemset, no superset Y \supseteq Z can be
frequent
```

- For instance, in our earlier example, every frequent itemset must be built from the 1000 frequent items
- In particular, for any frequent pair {x, y}, both {x} and {y} must be frequent
- Build frequent itemsets bottom up, size 1,2,...

• F_i : frequent itemsets of size i — Level i

- F_i : frequent itemsets of size i Level i
- F_1 : Scan T, maintain a counter for each $x \in I$

→

э

- F_i : frequent itemsets of size i Level i
- F_1 : Scan T, maintain a counter for each $x \in I$
- $C_2 = \{\{x, y\} \mid x, y \in F_1\}$: Candidates in level 2

< ∃ ▶

- F_i : frequent itemsets of size i Level i
- F_1 : Scan T, maintain a counter for each $x \in I$
- $C_2 = \{\{x, y\} \mid x, y \in F_1\}$: Candidates in level 2
- F_2 : Scan T, maintain a counter for each $X \in C_2$

- F_i : frequent itemsets of size i Level i
- F_1 : Scan T, maintain a counter for each $x \in I$
- $C_2 = \{\{x, y\} \mid x, y \in F_1\}$: Candidates in level 2
- F_2 : Scan T, maintain a counter for each $X \in C_2$
- $C_3 = \{\{x, y, z\} \mid \{x, y\}, \{x, z\}, \{y, z\} \in F_2\}$
- F_3 : Scan T, maintain a counter for each $X \in C_3$

- F_i : frequent itemsets of size i Level i
- F_1 : Scan T, maintain a counter for each $x \in I$
- $C_2 = \{\{x, y\} \mid x, y \in F_1\}$: Candidates in level 2
- F_2 : Scan T, maintain a counter for each $X \in C_2$
- $C_3 = \{\{x, y, z\} \mid \{x, y\}, \{x, z\}, \{y, z\} \in F_2\}$
- F_3 : Scan T, maintain a counter for each $X \in C_3$

...

. . . .

- C_k = subsets of size k, every (k-1)-subset is in F_{k-1}
- F_k : Scan T, maintain a counter for each $X \in C_k$

18 / 21

7 Bottleneck