Lecture 1: 9 January, 2024

Madhavan Mukund
https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning January-April 2024

What is this course about?

Data Mining
■ Identify "hidden" patterns in data

- Also data collection, cleaning, uniformization, storage
- Won't emphasize these aspects

What is this course about?

Data Mining
■ Identify "hidden" patterns in data
■ Also data collection, cleaning, uniformization, storage

- Won't emphasize these aspects

Machine Learning

■ "Learn" mathematical models of processes from data

- Supervised learning - learn from experience

■ Unsupervised learning - search for structure

Supervised Learning

Extrapolate from historical data

- Predict board exam scores from model exams
$■$ Should this loan application be granted?
■ Do these symptoms indicate CoViD-19?

Supervised Learning

Extrapolate from historical data

- Predict board exam scores from model exams

■ Should this loan application be granted?
■ Do these symptoms indicate CoViD-19?
"Manually" labelled historical data is available

- Past exam scores: model exams and board exam

■ Customer profiles: age, income, ..., repayment/default status

- Patient health records, diagnosis

Supervised Learning

Extrapolate from historical data

- Predict board exam scores from model exams

■ Should this loan application be granted?
■ Do these symptoms indicate CoViD-19?
"Manually" labelled historical data is available

- Past exam scores: model exams and board exam

■ Customer profiles: age, income, ..., repayment/default status

- Patient health records, diagnosis

Historical data \rightarrow model to predict outcome

Supervised learning . . .

What are we trying to predict?
Numerical values

- Board exam scores
- House price (valuation for insurance)

■ Net worth of a person (for loan eligibility)

Supervised learning . . .

What are we trying to predict?
Numerical values

- Board exam scores
- House price (valuation for insurance)
- Net worth of a person (for loan eligibility)

Categories

- Email: is this message junk?
- Insurance claim: pay out, or check for fraud?

■ Credit card approval: reject, normal, premium

Supervised learning . . .

How do we predict?

- Build a mathematical model
- Different types of models
- Parameters to be tuned

Supervised learning . . .

How do we predict?

- Build a mathematical model
- Different types of models
- Parameters to be tuned
- Fit parameters based on input data
- Different historical data produces different models

■ e.g., each user's junk mail filter fits their individual preferences

Supervised learning . . .

How do we predict?
■ Build a mathematical model

- Different types of models

■ Parameters to be tuned

- Fit parameters based on input data
- Different historical data produces different models
- e.g., each user's junk mail filter fits their individual preferences
- Study different models, how they are built from historical data

Unsupervised learning

- Supervised learning builds models to reconstruct "known" patterns given by historical data
- Unsupervised learning tries to identify patterns without guidance

Unsupervised learning

- Supervised learning builds models to reconstruct "known" patterns given by historical data
- Unsupervised learning tries to identify patterns without guidance

Customer segmentation

- Different types of newspaper readers
- Age vs product profile of retail shop customers

■ Viewer recommendations on video platform

Clustering

- Organize data into "similar" groups - clusters
- Define a similarity measure, or distance function

Clustering

- Organize data into "similar" groups - clusters
- Define a similarity measure, or distance function
- Clusters are groups of data items that are "close together"

Outliers

- Outliers are anomalous values
- Net worth of Jeff Bezos, Mukesh Ambani

- Outliers distort clustering and other analysis
- How can we identify outliers?

Preprocessing for supervised learning

Dimensionality reduction

Preprocessing for supervised learning

Need not be a good idea - perils of working blind!

Summary

Machine Learning
■ Supervised learning

- Build predictive models from historical data
- Unsupervised learning
- Search for structure
- Clustering, outlier detection, dimensionality reduction

Summary

Machine Learning
■ Supervised learning

- Build predictive models from historical data
- Unsupervised learning
- Search for structure
- Clustering, outlier detection, dimensionality reduction

If intelligence were a cake, unsupervised learning would be the cake, supervised learning would be the icing on the cake, ...

Yann Le Cun, ACM Turing Award 2018

Market-Basket Analysis

- People who buy X also tend to buy Y
- Rearrange products on display based on customer patterns

Market-Basket Analysis

- People who buy X also tend to buy Y
- Rearrange products on display based on customer patterns
- The diapers and beer legend

■ The true story, http://www.dssresources. com/newsletters/66.php

Market-Basket Analysis

- People who buy X also tend to buy Y
- Rearrange products on display based on customer patterns
- The diapers and beer legend

■ The true story, http://www.dssresources. com/newsletters/66.php

■ Applies in more abstract settings

- Items are concepts, basket is a set of concepts in which a student does badly

■ Students with difficulties in concept A also tend to misunderstand concept B

- Items are words, transactions are documents

Formal setting

■ Set of items $I=\left\{i_{1}, i_{2}, \ldots, i_{N}\right\}$

- A transaction is a set $t \subseteq I$ of items
- Set of transactions $T=\left\{t_{1}, t_{2}, \ldots, t_{M}\right\}$

Formal setting

■ Set of items $I=\left\{i_{1}, i_{2}, \ldots, i_{N}\right\}$

- A transaction is a set $t \subseteq I$ of items
- Set of transactions $T=\left\{t_{1}, t_{2}, \ldots, t_{M}\right\}$

■ Identify association rules $X \rightarrow Y$

- $X, Y \subseteq I, X \cap Y=\emptyset$
- If $X \subseteq t_{j}$ then it is likely that $Y \subseteq t_{j}$

Formal setting

■ Set of items $I=\left\{i_{1}, i_{2}, \ldots, i_{N}\right\}$

- A transaction is a set $t \subseteq I$ of items
- Set of transactions $T=\left\{t_{1}, t_{2}, \ldots, t_{M}\right\}$

■ Identify association rules $X \rightarrow Y$

- $X, Y \subseteq I, X \cap Y=\emptyset$
- If $X \subseteq t_{j}$ then it is likely that $Y \subseteq t_{j}$

■ Two thresholds

- How frequently does $X \subseteq t_{j}$ imply $Y \subseteq t_{j}$?
- How significant is this pattern overall?

Setting thresholds

- For $Z \subseteq I, Z$.count $=\left|\left\{t_{j} \mid Z \subseteq t_{j}\right\}\right|$

Setting thresholds

■ For $Z \subseteq I, Z$.count $=\left|\left\{t_{j} \mid Z \subseteq t_{j}\right\}\right|$

- How frequently does $X \subseteq t_{j}$ imply $Y \subseteq t_{j}$?
- Fix a confidence level χ

- Want $\frac{(X \cup Y) \cdot \text { count }}{X \cdot \text { count }} \geq \chi$
$\leqslant 1$

Setting thresholds

■ For $Z \subseteq I, Z$. count $=\left|\left\{t_{j} \mid Z \subseteq t_{j}\right\}\right|$
■ How frequently does $X \subseteq t_{j}$ imply $Y \subseteq t_{j}$?

- Fix a confidence level χ
- Want $\frac{(X \cup Y) \cdot \text { count }}{X \cdot \text { count }} \geq \chi$
- How significant is this pattern overall?
- Fix a support level σ
$\begin{aligned} \text { - Want } \frac{(X \cup Y) \cdot \text { count }}{M} & \geq \sigma \\ & \text { no of transactions }\end{aligned}$

Setting thresholds

■ For $Z \subseteq I, Z$.count $=\left|\left\{t_{j} \mid Z \subseteq t_{j}\right\}\right|$
■ How frequently does $X \subseteq t_{j}$ imply $Y \subseteq t_{j}$?

- Fix a confidence level χ
- Want $\frac{(X \cup Y) \cdot \text { count }}{X \cdot \text { count }} \geq \chi$

■ How significant is this pattern overall?

- Fix a support level σ
- Want $\frac{(X \cup Y) \cdot \text { count }}{M} \geq \sigma$
- Given sets of items / and transactions T, with confidence χ and support σ, find all valid association rules $X \rightarrow Y$

Frequent itemsets

- $X \rightarrow Y$ is interesting only if $(X \cup Y)$.count $\geq \sigma \cdot M$
- First identify all frequent itemsets

$\frac{(X \cup y) . \text { comat }}{M} \geq \sigma$

■ $Z \subseteq I$ such that Z. count $\geq \sigma \cdot M$

Frequent itemsets

■ $X \rightarrow Y$ is interesting only if $(X \cup Y)$.count $\geq \sigma \cdot M$

- First identify all frequent itemsets
- $Z \subseteq I$ such that Z.count $\geq \sigma \cdot M$

■ Naïve strategy: maintain a counter for each Z

- For each $t_{j} \in T$

For each $Z \subseteq t_{j}$
Increment the counter for Z

- After scanning all transactions, keep Z with Z.count $\geq \sigma \cdot M$

Frequent itemsets

- $X \rightarrow Y$ is interesting only if $(X \cup Y)$.count $\geq \sigma \cdot M$
- First identify all frequent itemsets

■ $Z \subseteq I$ such that Z. count $\geq \sigma \cdot M$
■ Naïve strategy: maintain a counter for each Z

- For each $t_{j} \in T$

For each $Z \subseteq t_{j}$
Increment the counter for Z

- After scanning all transactions, keep Z with Z.count $\geq \sigma \cdot M$

■ Need to maintain $2^{|/|}$counters

- Infeasible amount of memory
- Can we do better?

Sample calculation

■ Let's assume a bound on each $t_{i} \in T$
■ No transacation has more than 10 items
■ Say $N=|I|=10^{6}, M=|T|=10^{9}, \sigma=0.01$

- Number of possible subsets to count is $\sum_{i=1}^{10}\binom{10^{6}}{i}$

Sample calculation

■ Let's assume a bound on each $t_{i} \in T$

- No transacation has more than 10 items

■ Say $N=|I|=10^{6}, M=|T|=10^{9}, \sigma=0.01$

- Number of possible subsets to count is $\sum_{i=1}^{10}\binom{10^{6}}{i}$
- A singleton subset that is frequent is an item that appears in at least 10^{7} transactions

Sample calculation

■ Let's assume a bound on each $t_{i} \in T$

- No transacation has more than 10 items

■ Say $N=|I|=10^{6}, M=|T|=10^{9}, \sigma=0.01$

- Number of possible subsets to count is $\sum_{i=1}^{10}\binom{10^{6}}{i}$
- A singleton subset that is frequent is an item that appears in at least 10^{7} transactions
- Totally, T contains at most 10^{10} items
- At most $10^{10} / 10^{7}=1000$ items are frequent!

■ How can we exploit this?

Apriori

- Clearly, if Z is frequent, so is every subset $Y \subseteq Z$

Apriori

- Clearly, if Z is frequent, so is every subset $Y \subseteq Z$
- We exploit the contrapositive

Apriori observation

If Z is not a frequent itemset, no superset $Y \supseteq Z$ can be frequent

Apriori

- Clearly, if Z is frequent, so is every subset $Y \subseteq Z$
- We exploit the contrapositive

Apriori observation

If Z is not a frequent itemset, no superset $Y \supseteq Z$ can be frequent

- For instance, in our earlier example, every frequent itemset must be built from the 1000 frequent items

■ In particular, for any frequent pair $\{x, y\}$, both $\{x\}$ and $\{y\}$ must be frequent

- Build frequent itemsets bottom up, size $1,2, \ldots$

Apriori algorithm

■ F_{i} : frequent itemsets of size i - Level i

Apriori algorithm

- F_{i} : frequent itemsets of size i - Level i
- F_{1} : Scan T, maintain a counter for each $x \in I$

Apriori algorithm

■ F_{i} : frequent itemsets of size i - Level i

- F_{1} : Scan T, maintain a counter for each $x \in I$

■ $C_{2}=\left\{\{x, y\} \mid x, y \in F_{1}\right\}:$ Candidates in level 2

Apriori algorithm

■ F_{i} : frequent itemsets of size i - Level i

- F_{1} : Scan T, maintain a counter for each $x \in I$

■ $C_{2}=\left\{\{x, y\} \mid x, y \in F_{1}\right\}:$ Candidates in level 2

- F_{2} : Scan T, maintain a counter for each $X \in C_{2}$

Apriori algorithm

■ F_{i} : frequent itemsets of size i - Level i

- F_{1} : Scan T, maintain a counter for each $x \in I$

■ $C_{2}=\left\{\{x, y\} \mid x, y \in F_{1}\right\}:$ Candidates in level 2

- F_{2} : Scan T, maintain a counter for each $X \in C_{2}$
- $C_{3}=\left\{\{x, y, z\} \mid\{x, y\},\{x, z\},\{y, z\} \in F_{2}\right\}$
- F_{3} : Scan T, maintain a counter for each $X \in C_{3}$

Apriori algorithm

- F_{i} : frequent itemsets of size i - Level i
- F_{1} : Scan T, maintain a counter for each $x \in I$

■ $C_{2}=\left\{\{x, y\} \mid x, y \in F_{1}\right\}:$ Candidates in level 2

- F_{2} : Scan T, maintain a counter for each $X \in C_{2}$
- $C_{3}=\left\{\{x, y, z\} \mid\{x, y\},\{x, z\},\{y, z\} \in F_{2}\right\}$
- F_{3} : Scan T, maintain a counter for each $X \in C_{3}$
- $C_{k}=$ subsets of size k, every $(k-1)$-subset is in F_{k-1}

? Boltleneck

- F_{k} : Scan T, maintain a counter for each $X \in C_{k}$

