Lecture 9: 8 February, 2024

Madhavan Mukund https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning January–April 2024

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Bayesian classifiers

As before

- Attributes $\{A_1, A_2, \ldots, A_k\}$ and
- Classes $C = \{c_1, c_2, \dots c_\ell\}$

As before

- Attributes $\{A_1, A_2, \ldots, A_k\}$ and
- Classes $C = \{c_1, c_2, \dots c_\ell\}$
- Each class *c_i* defines a probabilistic model for attributes
 - $Pr(A_1 = a_1, ..., A_k = a_k | C = c_i)$

→

- As before
 - Attributes $\{A_1, A_2, \ldots, A_k\}$ and
 - Classes $C = \{c_1, c_2, \dots c_\ell\}$
- Each class *c_i* defines a probabilistic model for attributes
 - $Pr(A_1 = a_1, ..., A_k = a_k | C = c_i)$
- Given a data item $d = (a_1, a_2, \ldots, a_k)$, identify the best class c for d

< ∃ ▶

- As before
 - Attributes $\{A_1, A_2, \ldots, A_k\}$ and
 - Classes $C = \{c_1, c_2, \dots c_\ell\}$
- Each class *c_i* defines a probabilistic model for attributes
 - $Pr(A_1 = a_1, ..., A_k = a_k | C = c_i)$
- Given a data item $d = (a_1, a_2, \ldots, a_k)$, identify the best class c for d
- Maximize $Pr(C = c_i | A_1 = a_1, \dots, A_k = a_k)$

★ 3 → 3

Generative model

▶ < ∃ ▶</p>

Generative model

Typically, assume a random instance is created as follows

- Choose a class c_j with probability $Pr(c_j)$
- Choose attributes a_1, \ldots, a_k with probability $Pr(a_1, \ldots, a_k \mid c_j)$

Generative model

- Typically, assume a random instance is created as follows
 - Choose a class c_j with probability $Pr(c_j)$
 - Choose attributes a_1, \ldots, a_k with probability $Pr(a_1, \ldots, a_k \mid c_j)$

Generative model has associated parameters $\theta = (\theta_1, \dots, \theta_m)$

- Each class probability $Pr(c_j)$ is a parameter
- Each conditional probability $Pr(a_1, \ldots, a_k \mid c_j)$ is a parameter

Generative model

- Typically, assume a random instance is created as follows
 - Choose a class c_j with probability $Pr(c_j)$
 - Choose attributes a_1, \ldots, a_k with probability $Pr(a_1, \ldots, a_k \mid c_j)$

Generative model has associated parameters $\theta = (\theta_1, \dots, \theta_m)$

- Each class probability $Pr(c_j)$ is a parameter
- Each conditional probability $Pr(a_1, \ldots, a_k \mid c_j)$ is a parameter
- We need to estimate these parameters

• Our goal is to estimate parameters (probabilities) $\theta = (\theta_1, \dots, \theta_m)$

→

• Our goal is to estimate parameters (probabilities) $\theta = (\theta_1, \dots, \theta_m)$

Law of large numbers allows us to estimate probabilities by counting frequencies

- Our goal is to estimate parameters (probabilities) $\theta = (\theta_1, \dots, \theta_m)$
- Law of large numbers allows us to estimate probabilities by counting frequencies
- Example: Tossing a biased coin, single parameter $\theta = Pr(heads)$
 - N coin tosses, H heads and T tails
 - Why is $\hat{\theta} = H/N$ the best estimate?

- Our goal is to estimate parameters (probabilities) $\theta = (\theta_1, \dots, \theta_m)$
- Law of large numbers allows us to estimate probabilities by counting frequencies
- Example: Tossing a biased coin, single parameter $\theta = Pr(heads)$
 - N coin tosses, H heads and T tails
 - Why is $\hat{\theta} = H/N$ the best estimate?
- Likelihood
 - Actual coin toss sequence is $\tau = t_1 t_2 \dots t_N$
 - Given an estimate of θ , compute $Pr(\tau \mid \theta)$ likelihood $L(\theta)$

- Our goal is to estimate parameters (probabilities) $\theta = (\theta_1, \dots, \theta_m)$
- Law of large numbers allows us to estimate probabilities by counting frequencies
- Example: Tossing a biased coin, single parameter $\theta = Pr(heads)$
 - N coin tosses, H heads and T tails
 - Why is $\hat{\theta} = H/N$ the best estimate?
- Likelihood
 - Actual coin toss sequence is $\tau = t_1 t_2 \dots t_N$
 - Given an estimate of θ , compute $Pr(\tau \mid \theta)$ likelihood $L(\theta)$
- $\hat{\theta} = H/N$ maximizes this likelihood $\arg \max_{\theta} L(\theta) = \hat{\theta} = H/N$
 - Maximum Likelihood Estimator (MLE)

• Maximize $Pr(C = c_i | A_1 = a_1, \dots, A_k = a_k)$

• Maximize $Pr(C = c_i | A_1 = a_1, \dots, A_k = a_k)$

By Bayes' rule,

$$Pr(C = c_i | A_1 = a_1, ..., A_k = a_k)$$

$$= \frac{Pr(A_1 = a_1, ..., A_k = a_k | C = c_i) \cdot Pr(C = c_i)}{Pr(A_1 = a_1, ..., A_k = a_k)} ?$$

Maximize
$$Pr(C = c_i | A_1 = a_1, ..., A_k = a_k)$$

By Bayes' rule,

$$Pr(C = c_i | A_1 = a_1, ..., A_k = a_k)$$

$$= \frac{Pr(A_1 = a_1, ..., A_k = a_k | C = c_i) \cdot Pr(C = c_i)}{Pr(A_1 = a_1, ..., A_k = a_k)}$$

$$= \frac{Pr(A_1 = a_1, ..., A_k = a_k | C = c_i) \cdot Pr(C = c_i)}{\sum_{j=1}^{\ell} Pr(A_1 = a_1, ..., A_k = a_k | C = c_j) \cdot Pr(C = c_j)} - Indep$$

▶ ★ 臣 ▶ ★ 臣 ▶

< □ > < 同

• Maximize $Pr(C = c_i | A_1 = a_1, \ldots, A_k = a_k)$

By Bayes' rule,

$$Pr(C = c_i | A_1 = a_1, ..., A_k = a_k)$$

$$= \frac{Pr(A_1 = a_1, ..., A_k = a_k | C = c_i) \cdot Pr(C = c_i)}{Pr(A_1 = a_1, ..., A_k = a_k)}$$

$$= \frac{Pr(A_1 = a_1, ..., A_k = a_k | C = c_i) \cdot Pr(C = c_i)}{\sum_{j=1}^{\ell} Pr(A_1 = a_1, ..., A_k = a_k | C = c_j) \cdot Pr(C = c_j)}$$

$$Pr(A_1 = a_1, ..., A_k = a_k | C = c_j) \cdot Pr(C = c_j)$$

Denominator is the same for all *c_i*, so sufficient to maximize

$$Pr(A_1 = a_1, \ldots, A_k = a_k \mid C = c_i) \cdot Pr(C = c_i)$$

P(C|A) = P(AAC)P(A)

PILAN

• To classify
$$A = g, B = q$$

A	В	С
m	b	t
m	S	t
g	q	t
h	S	t
g	q	t
g	q	f
g	S	f
h	b	f
h	q	f
т	b	f

- To classify A = g, B = q
- Pr(C = t) = 5/10 = 1/2
- Pr(A = g, B = q | C = t) = 2/5

- To classify A = g, B = q
- Pr(C = t) = 5/10 = 1/2
- Pr(A = g, B = q | C = t) = 2/5

•
$$Pr(A = g, B = q | C = t) \cdot Pr(C = t) = 1/5$$

A	В	С
m	b	t
m	S	t
g	q	t
h	S	t
g	q	t
g	q	f
g	S	f
h	b	f
h	q	f
m	b	f

- To classify A = g, B = q
- Pr(C = t) = 5/10 = 1/2
- Pr(A = g, B = q | C = t) = 2/5

•
$$Pr(A = g, B = q | C = t) \cdot Pr(C = t) = 1/5$$

- Pr(C = f) = 5/10 = 1/2
- Pr(A = g, B = q | C = f) = 1/5

A B M A B M

く 周 ト く ヨ ト く ヨ ト

- To classify A = g, B = q
- Pr(C = t) = 5/10 = 1/2
- Pr(A = g, B = q | C = t) = 2/5

•
$$Pr(A = g, B = q | C = t) \cdot Pr(C = t) = 1/5$$

- Pr(C = f) = 5/10 = 1/2
- Pr(A = g, B = q | C = f) = 1/5
- $Pr(A = g, B = q | C = f) \cdot Pr(C = f) = 1/10$

A	В	С
т	b	t
т	S	t
g	q	t
h	S	t
g	q	t
g	q	f
g	S	f
h	b	f
h	q	f
m	b	f

• Hence, predict C = t

• What if we want to classify A = m, B = q?

Example . . .

- What if we want to classify A = m, B = q?
- Pr(A = m, B = q | C = t) = 0

A	В	С
m	b	t
т	S	t
g	q	t
h	S	t
g	q	t
g	q	f
g	S	f
h	b	f
h	q	f
т	b	f

Example . . .

- What if we want to classify A = m, B = q?
- Pr(A = m, B = q | C = t) = 0
- Also Pr(A = m, B = q | C = f) = 0!

A	В	С
m	b	t
т	S	t
g	q	t
h	S	t
g	q	t
g	q	f
g	S	f
h	b	f
h	q	f
т	b	f

• • = • • = •

Example . . .

- What if we want to classify A = m, B = q?
- Pr(A = m, B = q | C = t) = 0Also Pr(A = m, B = q | C = f) = 0!
- To estimate joint probabilities across all combinations of attributes, we need a much larger set of training data

A	В	С
m	b	t
т	S	t
g	q	t
h	S	t
g	q	t
g	q	f
g	S	f
h	b	f
h	q	f
m	b	f

Naïve Bayes classifier

• Strong simplifying assumption: attributes are pairwise independent

$$Pr(A_1 = a_1, ..., A_k = a_k | C = c_i) = \prod_{j=1}^k Pr(A_j = a_j | C = c_i)$$

• $Pr(C = c_i)$ is fraction of training data with class c_i

• $Pr(A_j = a_j | C = c_i)$ is fraction of training data labelled c_i for which $A_j = a_j$

Naïve Bayes classifier

• Strong simplifying assumption: attributes are pairwise independent

$$Pr(A_1 = a_1, ..., A_k = a_k | C = c_i) = \prod_{j=1}^k Pr(A_j = a_j | C = c_i)$$

• $Pr(C = c_i)$ is fraction of training data with class c_i

• $Pr(A_j = a_j | C = c_i)$ is fraction of training data labelled c_i for which $A_j = a_j$

Final classification is

arg max
$$Pr(C = c_i) \prod_{j=1}^{k} Pr(A_j = a_j \mid C = c_i)$$

Comme term

Conditional independence is not theoretically justified

→

Naïve Bayes classifier ...

- Conditional independence is not theoretically justified
- For instance, text classification
 - Items are documents, attributes are words (absent or present)
 - Classes are topics
 - Conditional independence says that a document is a set of words: ignores sequence of words
 - Meaning of words is clearly affected by relative position, ordering

Naïve Bayes classifier . . .

- Conditional independence is not theoretically justified
- For instance, text classification
 - Items are documents, attributes are words (absent or present)
 - Classes are topics
 - Conditional independence says that a document is a set of words: ignores sequence of words
 - Meaning of words is clearly affected by relative position, ordering
- However, naive Bayes classifiers work well in practice, even for text classification!
 - Many spam filters are built using this model

Example revisited

• Want to classify A = m, B = q

•
$$Pr(A = m, B = q | C = t) = Pr(A = m, B = q | C = f) = 0$$

A	В	С
m	b	t
m	S	t
g	q	t
h	S	t
g	\boldsymbol{q}	t
g	\boldsymbol{q}	f
g	S	f
h	Ь	f
h	q	f
m	b	f

• • = • • = •

Example revisited

- Want to classify A = m, B = q
- Pr(A = m, B = q | C = t) = Pr(A = m, B = q | C = f) = 0
- Pr(A = m | C = t) = 2/5
- Pr(B = q | C = t) = 2/5

• • = •

Example revisited

- Want to classify A = m, B = q
- Pr(A = m, B = q | C = t) = Pr(A = m, B = q | C = f) = 0
- Pr(A = m | C = t) = 2/5
- Pr(B = q | C = t) = 2/5
- Pr(A = m | C = f) = 1/5
- Pr(B = q | C = f) = 2/5

<i>A</i>	В	С	
m	b	t	
m	S	t	
g	q	t	
h	S	t	
σ	a	+	
6	9	L	
 g	9	f	
g g		f f	
 g g h	q q s b	f f f	
 g g h h	q q s b q	f f f f	
 g g h h m		<i>f</i> <i>f</i> <i>f</i> <i>f</i> <i>f</i> <i>f</i>	

10 / 19
Example revisited

- Want to classify A = m, B = q
- Pr(A = m, B = q | C = t) = Pr(A = m, B = q | C = f) = 0
- Pr(A = m | C = t) = 2/5
- Pr(B = q | C = t) = 2/5
- Pr(A = m | C = f) = 1/5
- Pr(B = q | C = f) = 2/5
- $Pr(A = m | C = t) \cdot Pr(B = q | C = t) \cdot Pr(C = t) = 2/25$

A	В	С
m	b	t
m	S	t
g	q	t
h	S	t
g	q	t
g	q	f
g	S	f
h	Ь	f
h	q	f
m	b	f

Example revisited

- Want to classify A = m, B = q
- Pr(A = m, B = q | C = t) = Pr(A = m, B = q | C = f) = 0
- Pr(A = m | C = t) = 2/5
- Pr(B = q | C = t) = 2/5
- Pr(A = m | C = f) = 1/5
- Pr(B = q | C = f) = 2/5
- $Pr(A = m | C = t) \cdot Pr(B = q | C = t) \cdot Pr(C = t) = 2/25$
- $Pr(A = m | C = f) \cdot Pr(B = q | C = f) \cdot Pr(C = f) = 1/25$

A	В	С
m	b	t
m	S	t
g	q	t
h	S	t
g	q	t
g	q	f
g	S	f
h	b	f
h	q	f
m	b	f

Example revisited

- Want to classify A = m, B = q
- Pr(A = m, B = q | C = t) = Pr(A = m, B = q | C = f) = 0
- Pr(A = m | C = t) = 2/5
- Pr(B = q | C = t) = 2/5
- Pr(A = m | C = f) = 1/5
- Pr(B = q | C = f) = 2/5
- $Pr(A = m | C = t) \cdot Pr(B = q | C = t) \cdot Pr(C = t) = 2/25$
- $Pr(A = m | C = f) \cdot Pr(B = q | C = f) \cdot Pr(C = f) = 1/25$

A	В	С	
m	b	t	
m	S	t	
g	q	t	
h	S	t	
g	q	t	
g	q	f	
g	S	f	
h	b	f	
h	q	f	
т	b	f	

• Hence predict C = t

Madhavan Mukund

• Suppose A = a never occurs in the test set with C = c

Zero counts

• Suppose A = a never occurs in the test set with C = c

• Setting
$$Pr(A = a | C = c) = 0$$
 wipes out any product $\prod_{i=1}^{k} Pr(A_i = a_i | C = c)$

in which this term appears

• • = • • = •

Zero counts

• Suppose A = a never occurs in the test set with C = c

• Setting
$$Pr(A = a | C = c) = 0$$
 wipes out any product $\prod_{i=1}^{k} Pr(A_i = a_i | C = c)$

in which this term appears

• Assume A_i takes m_i values $\{a_{i1}, \ldots, a_{im_i}\}$

Zero counts

• Suppose A = a never occurs in the test set with C = c

• Setting
$$Pr(A = a | C = c) = 0$$
 wipes out any product $\prod_{i=1}^{k} Pr(A_i = a_i | C = c)$

in which this term appears

- Assume A_i takes m_i values $\{a_{i1}, \ldots, a_{im_i}\}$
- "Pad" training data with one sample for each value $a_j m_i$ extra data items

• Adjust $Pr(A_i = a_i | C = c_j)$ to $\frac{n_{ij} + 1}{n_j + m_i}$ number (ac, Cj) where

•
$$n_{ij}$$
 is number of samples with $A_i = a_i$, $C = c_j$

•
$$n_j$$
 is number of samples with $C = c_j$

Smoothing

• Laplace's law of succession $Pr(A_i = a_i | C = c_j) = \frac{n_{ij} + 1}{n_j + m_i}$ fudge factor

Smoothing

Laplace's law of succession

$$Pr(A_i = a_i \mid C = c_j) = \frac{n_{ij} + 1}{n_j + m_i}$$

More generally, Lidstone's law of succession, or smoothing

$${\it Pr}(A_i=a_i\mid C=c_j)=rac{n_{ij}+\lambda}{n_j+\lambda m_i}$$

▶ < ∃ ▶</p>

Smoothing

Laplace's law of succession

$$Pr(A_i = a_i \mid C = c_j) = \frac{n_{ij} + 1}{n_j + m_i}$$

More generally, Lidstone's law of succession, or smoothing

$$Pr(A_i = a_i \mid C = c_j) = rac{n_{ij} + \lambda}{n_j + \lambda m_i}$$

• $\lambda = 1$ is Laplace's law of succession

< ⊒ ▶

Classify text documents using topics

< E

- Classify text documents using topics
- Useful for automatic segregation of newsfeeds, other internet content

- Classify text documents using topics
- Useful for automatic segregation of newsfeeds, other internet content
- Training data has a unique topic label per document e.g., Sports, Politics, Entertainment

1 E N

- Classify text documents using topics
- Useful for automatic segregation of newsfeeds, other internet content
- Training data has a unique topic label per document e.g., Sports, Politics, Entertainment
- Want to use a naïve Bayes classifier

- Classify text documents using topics
- Useful for automatic segregation of newsfeeds, other internet content
- Training data has a unique topic label per document e.g., Sports, Politics, Entertainment
- Want to use a naïve Bayes classifier
- Need to define a generative model

- Classify text documents using topics
- Useful for automatic segregation of newsfeeds, other internet content
- Training data has a unique topic label per document e.g., Sports, Politics, Entertainment
- Want to use a naïve Bayes classifier
- Need to define a generative model
- How do we represent documents?

• Each document is a set of words over a vocabulary $V = \{w_1, w_2, \dots, w_m\}$

- Each document is a set of words over a vocabulary $V = \{w_1, w_2, \dots, w_m\}$
- Topics come from a set $C = \{c_1, c_2, \dots, c_k\}$

< ⊒ ▶

- Each document is a set of words over a vocabulary $V = \{w_1, w_2, \dots, w_m\}$
- Topics come from a set $C = \{c_1, c_2, \dots, c_k\}$
- Each topic c has probability Pr(c)

1 E N

- Each document is a set of words over a vocabulary $V = \{w_1, w_2, \dots, w_m\}$
- Topics come from a set $C = \{c_1, c_2, \dots, c_k\}$
- Each topic c has probability Pr(c)
- Each word $w_i \in V$ has conditional probability $Pr(w_i | c_j)$ with respect to each $c_j \in C$ Toss m. Quins

- Each document is a set of words over a vocabulary $V = \{w_1, w_2, \dots, w_m\}$
- Topics come from a set $C = \{c_1, c_2, \dots, c_k\}$
- Each topic c has probability Pr(c)
- Each word $w_i \in V$ has conditional probability $Pr(w_i \mid c_j)$ with respect to each $c_j \in C$
- Generating a random document d
 - Choose a topic c with probability Pr(c)
 - For each $w \in V$, toss a coin, include w in d with probability $Pr(w \mid c)$

- Each document is a set of words over a vocabulary $V = \{w_1, w_2, \dots, w_m\}$
- Topics come from a set $C = \{c_1, c_2, \dots, c_k\}$
- Each topic c has probability Pr(c)
- Each word $w_i \in V$ has conditional probability $Pr(w_i \mid c_j)$ with respect to each $c_j \in C$
- Generating a random document d
 - Choose a topic c with probability Pr(c)
 - For each $w \in V$, toss a coin, include w in d with probability $Pr(w \mid c)$

•
$$Pr(d \mid c) = \prod_{w_i \in d} Pr(w_i \mid c) \prod_{w_i \notin d} (1 - Pr(w_i \mid c))$$

- Each document is a set of words over a vocabulary $V = \{w_1, w_2, \dots, w_m\}$
- Topics come from a set $C = \{c_1, c_2, \dots, c_k\}$
- Each topic c has probability Pr(c)
- Each word $w_i \in V$ has conditional probability $Pr(w_i \mid c_j)$ with respect to each $c_j \in C$
- Generating a random document d
 - Choose a topic c with probability Pr(c)
 - For each $w \in V$, toss a coin, include w in d with probability $Pr(w \mid c)$

•
$$Pr(d \mid c) = \prod_{w_i \in d} Pr(w_i \mid c) \prod_{w_i \notin d} (1 - Pr(w_i \mid c))$$

 $Pr(d) = \sum Pr(d \mid c)$

• Training set $D = \{d_1, d_2, \ldots, d_n\}$

• Each $d_i \subseteq V$ is assigned a unique label from C

d: V→ {0,13

 $W_1 W_2 - U_m$ 0 | | - 0 - 1

V=

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

• Training set $D = \{d_1, d_2, \ldots, d_n\}$

• Each $d_i \subseteq V$ is assigned a unique label from C

• $Pr(c_j)$ is fraction of D labelled c_j

▶ < ∃ ▶</p>

- Training set $D = \{d_1, d_2, \ldots, d_n\}$
 - Each $d_i \subseteq V$ is assigned a unique label from C
- $Pr(c_j)$ is fraction of D labelled c_j
- $Pr(w_i | c_j)$ is fraction of documents labelled c_j in which w_i appears

→

• Training set $D = \{d_1, d_2, \ldots, d_n\}$

• Each $d_i \subseteq V$ is assigned a unique label from C

- $Pr(c_j)$ is fraction of D labelled c_j
- $Pr(w_i | c_j)$ is fraction of documents labelled c_j in which w_j appears
- Given a new document $d \subseteq V$, we want to compute $\arg \max_c Pr(c \mid d)$

Image: A matrix and a matrix

• Training set $D = \{d_1, d_2, \ldots, d_n\}$

• Each $d_i \subseteq V$ is assigned a unique label from C

- $Pr(c_j)$ is fraction of D labelled c_j
- $Pr(w_i | c_j)$ is fraction of documents labelled c_j in which w_i appears
- Given a new document $d \subseteq V$, we want to compute $\arg \max_c Pr(c \mid d)$
- By Bayes' rule, $Pr(c \mid d) = \frac{Pr(d \mid c)Pr(c)}{Pr(d)}$

• As usual, discard the common denominator and compute $\arg \max_{c} Pr(d \mid c)Pr(c)$

• = •

• Training set $D = \{d_1, d_2, \ldots, d_n\}$

• Each $d_i \subseteq V$ is assigned a unique label from C

- $Pr(c_j)$ is fraction of *D* labelled c_j
- $Pr(w_i | c_j)$ is fraction of documents labelled c_j in which w_i appears
- Given a new document $d \subseteq V$, we want to compute $\arg \max_c Pr(c \mid d)$
- By Bayes' rule, $Pr(c \mid d) = \frac{Pr(d \mid c)Pr(c)}{Pr(d)}$

• As usual, discard the common denominator and compute $\arg \max_{c} Pr(d \mid c)Pr(c)$

• Recall
$$Pr(d \mid c) = \prod_{w_i \in d} Pr(w_i \mid c) \prod_{w_i \notin d} (1 - Pr(w_i \mid c))$$

• = •

- Each document is a multiset or bag of words over a vocabulary $V = \{w_1, w_2, \dots, w_m\}$
 - Count multiplicities of each word

Set $f: V \rightarrow \{0, i\}$ Multiset/Leg $f: V \rightarrow N_0$

→

- Each document is a multiset or bag of words over a vocabulary
 V = {w₁, w₂, ..., w_m}
 - Count multiplicities of each word
- As before
 - Each topic c has probability Pr(c)
 - Each word $w_i \in V$ has conditional probability $Pr(w_i | c_j)$ with respect to each $c_j \in C$ (but we will estimate these differently)
 - Note that $\sum_{i=1}^{m} Pr(w_i \mid c_j) = 1$
 - Assume document length is independent of the class

- Generating a random document *d*
 - Choose a document length ℓ with $Pr(\ell)$
 - Choose a topic c with probability Pr(c)
 - Recall |V| = m.

- To generate a single word, throw an *m*-sided die that displays *w* with probability $Pr(w \mid c)$
- Repeat ℓ times

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

- Generating a random document *d*
 - Choose a document length ℓ with $Pr(\ell)$
 - Choose a topic c with probability Pr(c)
 - Recall |V| = m.
 - To generate a single word, throw an *m*-sided die that displays *w* with probability $Pr(w \mid c)$
 - Repeat ℓ times
- Let n_j be the number of occurrences of w_j in d

→

- Generating a random document *d*
 - Choose a document length ℓ with $Pr(\ell)$
 - Choose a topic c with probability Pr(c)
 - Recall |V| = m.
 - To generate a single word, throw an *m*-sided die that displays *w* with probability $Pr(w \mid c)$
 - Repeat ℓ times
- Let n_j be the number of occurrences of w_j in d

•
$$Pr(d \mid c) = Pr(\ell) \ \ell! \prod_{j=1}^{m} \frac{Pr(w_j \mid c)^{n_j} \checkmark}{n_j!}$$

→

Parameter estimation

- Training set $D = \{d_1, d_2, \dots, d_n\}$
 - Each d_i is a multiset over V of size ℓ_i

▶ < ∃ ▶</p>
Parameter estimation

• Training set $D = \{d_1, d_2, \dots, d_n\}$

• Each d_i is a multiset over V of size ℓ_i

• As before, $Pr(c_j)$ is fraction of D labelled c_j

< ∃ >

э

Parameter estimation

• Training set $D = \{d_1, d_2, \ldots, d_n\}$

• Each d_i is a multiset over V of size ℓ_i

• As before, $Pr(c_j)$ is fraction of D labelled c_j

• $Pr(w_i | c_j)$ — fraction of occurrences of w_i over documents $D_j \subseteq D$ labelled c_j

n_{id} — occurrences of w_i in d

$$Pr(w_i \mid c_j) = \frac{\sum_{d \in D_j} n_{id}}{\sum_{t=1}^{m} \sum_{d \in D_j} n_{td}} - \text{Seeig W}_{L}$$

э

Parameter estimation

Training set $D = \{d_1, d_2, \dots, d_n\}$

• Each d_i is a multiset over V of size ℓ_i

• As before, $Pr(c_i)$ is fraction of D labelled c_i

• $Pr(w_i \mid c_i)$ — fraction of occurrences of w_i over documents $D_i \subseteq D$ labelled c_i

 \square n_{id} — occurrences of w_i in d

•
$$Pr(w_i \mid c_j) = \frac{\sum_{d \in D_j} n_{id}}{\sum_{t=1}^{m} \sum_{d \in D_j} n_{td}} = \frac{\sum_{d \in D} n_{id} Pr(c_j \mid d)}{\sum_{t=1}^{m} \sum_{d \in D} n_{td} Pr(c_j \mid d)}$$
,
since $Pr(c_j \mid d) = \begin{cases} 1 & \text{if } d \in D_j, \\ 0 & \text{otherwise} \end{cases}$

•
$$Pr(c \mid d) = \frac{Pr(d \mid c) Pr(c)}{Pr(d)}$$

A 国
 A 国
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

< □ > < 同

•
$$Pr(c \mid d) = \frac{Pr(d \mid c) Pr(c)}{Pr(d)}$$

• Want $\underset{c}{\operatorname{arg max}} Pr(c \mid d)$

▶ ▲ 国 ▶ ▲ 国 ▶

< □ > < 同

•
$$Pr(c \mid d) = \frac{Pr(d \mid c) Pr(c)}{Pr(d)}$$

- Want $\underset{c}{\operatorname{arg\,max}} Pr(c \mid d)$
- As before, discard the denominator Pr(d)

▶ < ∃ >

•
$$Pr(c \mid d) = \frac{Pr(d \mid c) Pr(c)}{Pr(d)}$$

- Want $\underset{c}{\operatorname{arg\,max}} Pr(c \mid d)$
- As before, discard the denominator Pr(d)

• Recall,
$$Pr(d \mid c) = Pr(\ell) \ \ell! \ \prod_{j=1}^m \frac{Pr(w_j \mid c)^{n_j}}{n_j!}$$
, where $|d| = \ell$

▶ < ∃ >

•
$$Pr(c \mid d) = \frac{Pr(d \mid c) Pr(c)}{Pr(d)}$$

- Want $\underset{c}{\operatorname{arg\,max}} Pr(c \mid d)$
- As before, discard the denominator Pr(d)

• Recall,
$$Pr(d \mid c) = Pr(\ell) \ \ell! \prod_{j=1}^{m} \frac{Pr(w_j \mid c)^{n_j}}{n_j!}$$
, where $|d| = \ell$

Discard $Pr(\ell), \ell!$ since they do not depend on c

< ∃ →

э

•
$$Pr(c \mid d) = \frac{Pr(d \mid c) Pr(c)}{Pr(d)}$$

- Want $\underset{c}{\operatorname{arg\,max}} Pr(c \mid d)$
- As before, discard the denominator Pr(d)
- Recall, $Pr(d \mid c) = Pr(\ell) \ \ell! \prod_{j=1}^{m} \frac{Pr(w_j \mid c)^{n_j}}{n_j!}$, where $|d| = \ell$ by Mrdll
- Discard $Pr(\ell), \ell!$ since they do not depend on c

• Compute
$$\underset{c}{\operatorname{arg\,max}} Pr(c) \prod_{j=1}^{m} \frac{Pr(w_j \mid c)^{n_j}}{n_j!}$$

Subset J words