Lecture 9: 8 February, 2024

Madhavan Mukund
https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning January-April 2024

Bayesian classifiers

- As before
- Attributes $\left\{A_{1}, A_{2}, \ldots, A_{k}\right\}$ and
- Classes $C=\left\{c_{1}, c_{2}, \ldots c_{\ell}\right\}$

Bayesian classifiers

- As before
- Attributes $\left\{A_{1}, A_{2}, \ldots, A_{k}\right\}$ and
- Classes $C=\left\{c_{1}, c_{2}, \ldots c_{\ell}\right\}$
- Each class c_{i} defines a probabilistic model for attributes
- $\operatorname{Pr}\left(A_{1}=a_{1}, \ldots, A_{k}=a_{k} \mid C=c_{i}\right)$

Bayesian classifiers

- As before
- Attributes $\left\{A_{1}, A_{2}, \ldots, A_{k}\right\}$ and
- Classes $C=\left\{c_{1}, c_{2}, \ldots c_{\ell}\right\}$
- Each class c_{i} defines a probabilistic model for attributes
- $\operatorname{Pr}\left(A_{1}=a_{1}, \ldots, A_{k}=a_{k} \mid C=c_{i}\right)$

■ Given a data item $d=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$, identify the best class c for d

Bayesian classifiers

- As before
- Attributes $\left\{A_{1}, A_{2}, \ldots, A_{k}\right\}$ and
- Classes $C=\left\{c_{1}, c_{2}, \ldots c_{\ell}\right\}$
- Each class c_{i} defines a probabilistic model for attributes
- $\operatorname{Pr}\left(A_{1}=a_{1}, \ldots, A_{k}=a_{k} \mid C=c_{i}\right)$

■ Given a data item $d=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$, identify the best class c for d
■ Maximize $\operatorname{Pr}\left(C=c_{i} \mid A_{1}=a_{1}, \ldots, A_{k}=a_{k}\right)$

Generative models

- To use probabilities, need to describe how data is randomly generated

■ Generative model

Generative models

- To use probabilities, need to describe how data is randomly generated
- Generative model
- Typically, assume a random instance is created as follows
- Choose a class c_{j} with probability $\operatorname{Pr}\left(c_{j}\right)$
- Choose attributes a_{1}, \ldots, a_{k} with probability $\operatorname{Pr}\left(a_{1}, \ldots, a_{k} \mid c_{j}\right)$

Generative models

- To use probabilities, need to describe how data is randomly generated
- Generative model
- Typically, assume a random instance is created as follows
- Choose a class c_{j} with probability $\operatorname{Pr}\left(c_{j}\right)$
- Choose attributes a_{1}, \ldots, a_{k} with probability $\operatorname{Pr}\left(a_{1}, \ldots, a_{k} \mid c_{j}\right)$

■ Generative model has associated parameters $\theta=\left(\theta_{1}, \ldots, \theta_{m}\right)$

- Each class probability $\operatorname{Pr}\left(c_{j}\right)$ is a parameter
- Each conditional probability $\operatorname{Pr}\left(a_{1}, \ldots, a_{k} \mid c_{j}\right)$ is a parameter

Generative models

- To use probabilities, need to describe how data is randomly generated
- Generative model
- Typically, assume a random instance is created as follows
- Choose a class c_{j} with probability $\operatorname{Pr}\left(c_{j}\right)$
- Choose attributes a_{1}, \ldots, a_{k} with probability $\operatorname{Pr}\left(a_{1}, \ldots, a_{k} \mid c_{j}\right)$

■ Generative model has associated parameters $\theta=\left(\theta_{1}, \ldots, \theta_{m}\right)$

- Each class probability $\operatorname{Pr}\left(c_{j}\right)$ is a parameter
- Each conditional probability $\operatorname{Pr}\left(a_{1}, \ldots, a_{k} \mid c_{j}\right)$ is a parameter

■ We need to estimate these parameters

Maximum Likelihood Estimators

- Our goal is to estimate parameters (probabilities) $\theta=\left(\theta_{1}, \ldots, \theta_{m}\right)$

Maximum Likelihood Estimators

- Our goal is to estimate parameters (probabilities) $\theta=\left(\theta_{1}, \ldots, \theta_{m}\right)$
- Law of large numbers allows us to estimate probabilities by counting frequencies

Maximum Likelihood Estimators

■ Our goal is to estimate parameters (probabilities) $\theta=\left(\theta_{1}, \ldots, \theta_{m}\right)$
■ Law of large numbers allows us to estimate probabilities by counting frequencies
■ Example: Tossing a biased coin, single parameter $\theta=\operatorname{Pr}$ (heads)

- N coin tosses, H heads and T tails
- Why is $\hat{\theta}=H / N$ the best estimate?

Maximum Likelihood Estimators

■ Our goal is to estimate parameters (probabilities) $\theta=\left(\theta_{1}, \ldots, \theta_{m}\right)$
■ Law of large numbers allows us to estimate probabilities by counting frequencies
■ Example: Tossing a biased coin, single parameter $\theta=\operatorname{Pr}$ (heads)

- N coin tosses, H heads and T tails
- Why is $\hat{\theta}=H / N$ the best estimate?

■ Likelihood

- Actual coin toss sequence is $\tau=t_{1} t_{2} \ldots t_{N}$

■ Given an estimate of θ, compute $\operatorname{Pr}(\tau \mid \theta)$ - likelihood $L(\theta)$

Maximum Likelihood Estimators

■ Our goal is to estimate parameters (probabilities) $\theta=\left(\theta_{1}, \ldots, \theta_{m}\right)$
■ Law of large numbers allows us to estimate probabilities by counting frequencies
■ Example: Tossing a biased coin, single parameter $\theta=\operatorname{Pr}$ (heads)

- N coin tosses, H heads and T tails
- Why is $\hat{\theta}=H / N$ the best estimate?
- Likelihood
- Actual coin toss sequence is $\tau=t_{1} t_{2} \ldots t_{N}$
- Given an estimate of θ, compute $\operatorname{Pr}(\tau \mid \theta)$ - likelihood $L(\theta)$
- $\hat{\theta}=H / N$ maximizes this likelihood - $\underset{\theta}{\arg \max } L(\theta)=\hat{\theta}=H / N$
- Maximum Likelihood Estimator (MLE)

Bayesian classification

- Maximize $\operatorname{Pr}\left(C=c_{i} \mid A_{1}=a_{1}, \ldots, A_{k}=a_{k}\right)$

Bayesian classification

■ Maximize $\operatorname{Pr}\left(C=c_{i} \mid A_{1}=a_{1}, \ldots, A_{k}=a_{k}\right)$
■ By Bayes' rule,

$$
\begin{gathered}
\operatorname{Pr}\left(C=c_{i} \mid A_{1}=a_{1}, \ldots, A_{k}=a_{k}\right) \\
=\frac{\operatorname{Pr}\left(A_{1}=a_{1}, \ldots, A_{k}=a_{k} \mid C=c_{i}\right) \cdot \operatorname{Pr}\left(C=c_{i}\right)}{\operatorname{Pr}\left(A_{1}=a_{1}, \ldots, A_{k}=a_{k}\right) ?} \quad \text { Paramelers }
\end{gathered}
$$

Bayesian classification

Maximize $r\left(C=c_{i} \mid A_{1}=a_{1}, \ldots, A_{k}=a_{k}\right)$
■ By Bayes' rule,

$$
\begin{aligned}
& \operatorname{Pr}\left(C=\left(c_{i}\right) A_{1}=a_{1}, \ldots, A_{k}=a_{k}\right) \\
& \left.A_{1}=a_{1}, \ldots, A_{k}=a_{k} \mid C=c_{i}\right) \cdot \operatorname{Pr}\left(C=c_{i}\right. \\
& \operatorname{Pr}\left(A_{1}=a_{1}, \ldots, A_{k}=a_{k}\right) \\
& \left.A_{1}=a_{1}, \ldots, A_{k}=a_{k} \mid C=c_{i}\right) \cdot \operatorname{Pr}\left(C=\left(c_{i}\right)\right. \\
& \operatorname{Pr}\left(A_{1}=a_{1}, \ldots, A_{k}=a_{k} \mid C=c_{j}\right) \cdot \operatorname{Pr}\left(C=c_{j}\right) \\
& \text { Indep ob }
\end{aligned}
$$

Bayesian classification

■ Maximize $\operatorname{Pr}\left(C=c_{i} \mid A_{1}=a_{1}, \ldots, A_{k}=a_{k}\right)$
■ By Bayes' rule,

$$
\begin{gathered}
\operatorname{Pr}\left(C=c_{i} \mid A_{1}=a_{1}, \ldots, A_{k}=a_{k}\right) \\
=\frac{\operatorname{Pr}\left(A_{1}=a_{1}, \ldots, A_{k}=a_{k} \mid C=c_{i}\right) \cdot \operatorname{Pr}\left(C=c_{i}\right)}{\operatorname{Pr}\left(A_{1}=a_{1}, \ldots, A_{k}=a_{k}\right)} \\
=\frac{\operatorname{Pr}\left(A_{1}=a_{1}, \ldots, A_{k}=a_{k} \mid C=c_{i}\right) \cdot \operatorname{Pr}\left(C=c_{i}\right)}{\sum_{j=1}^{\ell} \operatorname{Pr}\left(A_{1}=a_{1}, \ldots, A_{k}=a_{k} \mid C=c_{j}\right) \cdot \operatorname{Pr}\left(C=c_{j}\right)}
\end{gathered}
$$

$P(C \mid A)$

$=\frac{P(A \mid C) P(C)}{P(A)}$
Raner

- Denominator is the same for all c_{i}, so sufficient to maximize

$$
\operatorname{Pr}\left(A_{1}=a_{1}, \ldots, A_{k}=a_{k} \mid C=c_{i}\right) \cdot \operatorname{Pr}\left(C=c_{i}\right)
$$

$P(C \mid A)=\frac{P(A \wedge C)}{P(A)}$

Example

- To classify $A=g, B=q$

A	B	C
m	b	t
m	s	t
g	q	t
h	s	t
g	q	t
g	q	f
g	s	f
h	b	f
h	q	f
m	b	f

Example

- To classify $A=g, B=q$
- $\operatorname{Pr}(C=t)=5 / 10=1 / 2$

■ $\operatorname{Pr}(A=g, B=q \mid C=t)=2 / 5$

A	B	C
m	b	t
m	s	t
g	q	t
h	s	t
g	q	t
g	q	f
g	s	f
h	b	f
h	q	f
m	b	f

Example

- To classify $A=g, B=q$
- $\operatorname{Pr}(C=t)=5 / 10=1 / 2$
- $\operatorname{Pr}(A=g, B=q \mid C=t)=2 / 5$
- $\operatorname{Pr}(A=g, B=q \mid C=t) \cdot \operatorname{Pr}(C=t)=1 / 5$

A	B	C
m	b	t
m	s	t
g	q	t
h	s	t
g	q	t
g	q	f
g	s	f
h	b	f
h	q	f
m	b	f

Example

- To classify $A=g, B=q$
- $\operatorname{Pr}(C=t)=5 / 10=1 / 2$
- $\operatorname{Pr}(A=g, B=q \mid C=t)=2 / 5$
- $\operatorname{Pr}(A=g, B=q \mid C=t) \cdot \operatorname{Pr}(C=t)=1 / 5$
- $\operatorname{Pr}(C=f)=5 / 10=1 / 2$
- $\operatorname{Pr}(A=g, B=q \mid C=f)=1 / 5$

A	B	C
m	b	t
m	s	t
g	q	t
h	s	t
g	q	t
g	q	f
g	s	f
h	b	f
h	q	f
m	b	f

Example

- To classify $A=g, B=q$

$$
\begin{aligned}
& P(C \mid A)=P(A \mid C) \cdot P(C) \\
& \text { Numerats }
\end{aligned}
$$

- $\operatorname{Pr}(C=t)=5 / 10=1 / 2$
- $\operatorname{Pr}(A=g, B=q \mid C=t)=2 / 5$
- $\operatorname{Pr}(A=g, B=q \mid C=t) \cdot \operatorname{Pr}(C=t)=1 / 5$
- $\operatorname{Pr}(C=f)=5 / 10=1 / 2$
- $\operatorname{Pr}(A=g, B=q \mid C=f)=1 / 5$
- $\operatorname{Pr}(A=g, B=q \mid C=f) \cdot \operatorname{Pr}(C=f)=1 / 10$

Example

- To classify $A=g, B=q$
- $\operatorname{Pr}(C=t)=5 / 10=1 / 2$
- $\operatorname{Pr}(A=g, B=q \mid C=t)=2 / 5$

■ $\operatorname{Pr}(A=g, B=q \mid C=t) \cdot \operatorname{Pr}(C=t)=1 / 5$

- $\operatorname{Pr}(C=f)=5 / 10=1 / 2$
- $\operatorname{Pr}(A=g, B=q \mid C=f)=1 / 5$
- $\operatorname{Pr}(A=g, B=q \mid C=f) \cdot \operatorname{Pr}(C=f)=1 / 10$

A	B	C
m	b	t
m	s	t
g	q	t
h	s	t
g	q	t
g	q	f
g	s	f
h	b	f
h	q	f
m	b	f

- Hence, predict $C=t$

Example . . .

- What if we want to classify $A=m, B=q$?

Example . . .

- What if we want to classify $A=m, B=q$?
- $\operatorname{Pr}(A=m, B=q \mid C=t)=0$

A	B	C
m	b	t
m	s	t
g	q	t
h	s	t
g	q	t
g	q	f
g	s	f
h	b	f
h	q	f
m	b	f

Example . . .

- What if we want to classify $A=m, B=q$?
- $\operatorname{Pr}(A=m, B=q \mid C=t)=0$
- Also $\operatorname{Pr}(A=m, B=q \mid C=f)=0$!

A	B	C
m	b	t
m	s	t
g	q	t
h	s	t
g	q	t
g	q	f
g	s	f
h	b	f
h	q	f
m	b	f

Example . . .

- What if we want to classify $A=m, B=q$?
- $\operatorname{Pr}(A=m, B=q \mid C=t)=0$
- Also $\operatorname{Pr}(A=m, B=q \mid C=f)=0$!
- To estimate joint probabilities across all combinations of attributes, we need a much larger set of training data

A	B	C
m	b	t
m	s	t
g	q	t
h	s	t
g	q	t
g	q	f
g	s	f
h	b	f
h	q	f
m	b	f

Naïve Bayes classifier

- Strong simplifying assumption: attributes are pairwise independent

$$
\underline{\operatorname{Pr}\left(A_{1}=a_{1}, \ldots, A_{k}=a_{k} \mid C=c_{i}\right)}=\prod_{j=1}^{k} \operatorname{Pr}\left(A_{j}=a_{j} \mid C=c_{i}\right)
$$

- $\operatorname{Pr}\left(C=c_{i}\right)$ is fraction of training data with class c_{i}
- $\operatorname{Pr}\left(A_{j}=a_{j} \mid C=c_{i}\right)$ is fraction of training data labelled c_{i} for which $A_{j}=a_{j}$

Naïve Bayes classifier

■ Strong simplifying assumption: attributes are pairwise independent

$$
\operatorname{Pr}\left(A_{1}=a_{1}, \ldots, A_{k}=a_{k} \mid C=c_{i}\right)=\prod_{j=1}^{k} \operatorname{Pr}\left(A_{j}=a_{j} \mid C=c_{i}\right)
$$

- $\operatorname{Pr}\left(C=c_{i}\right)$ is fraction of training data with class c_{i}
- $\operatorname{Pr}\left(A_{j}=a_{j} \mid C=c_{i}\right)$ is fraction of training data labelled c_{i} for which $A_{j}=a_{j}$
- Final classification is

Naïve Bayes classifier . . .

■ Conditional independence is not theoretically justified

Naïve Bayes classifier . . .

- Conditional independence is not theoretically justified

■ For instance, text classification

- Items are documents, attributes are words (absent or present)
- Classes are topics
- Conditional independence says that a document is a set of words: ignores sequence of words
- Meaning of words is clearly affected by relative position, ordering

Naïve Bayes classifier . . .

- Conditional independence is not theoretically justified

■ For instance, text classification

- Items are documents, attributes are words (absent or present)
- Classes are topics
- Conditional independence says that a document is a set of words: ignores sequence of words
- Meaning of words is clearly affected by relative position, ordering

■ However, naive Bayes classifiers work well in practice, even for text classification!

■ Many spam filters are built using this model

Example revisited

- Want to classify $A=m, B=q$

■ $\operatorname{Pr}(A=m, B=q \mid C=t)=\operatorname{Pr}(A=m, B=q \mid C=f)=0$

A	B	C
m	b	t
m	s	t
g	q	t
h	s	t
g	q	t
g	q	f
g	s	f
h	b	f
h	q	f
m	b	f

Example revisited

- Want to classify $A=m, B=q$

■ $\operatorname{Pr}(A=m, B=q \mid C=t)=\operatorname{Pr}(A=m, B=q \mid C=f)=0$

- $\operatorname{Pr}(A=m \mid C=t)=2 / 5$
- $\operatorname{Pr}(B=q \mid C=t)=2 / 5$

A	B	C
m	b	t
b	s	t
g	q	t
h	s	t
g	q	t
g	q	f
g	s	f
h	b	f
h	q	f
m	b	f

Example revisited

- Want to classify $A=m, B=q$

■ $\operatorname{Pr}(A=m, B=q \mid C=t)=\operatorname{Pr}(A=m, B=q \mid C=f)=0$

- $\operatorname{Pr}(A=m \mid C=t)=2 / 5$
- $\operatorname{Pr}(B=q \mid C=t)=2 / 5$
- $\operatorname{Pr}(A=m \mid C=f)=1 / 5$
- $\operatorname{Pr}(B=q \mid C=f)=2 / 5$

A	B	C
m	b	t
m	s	t
g	q	t
h	s	t
g	q	t
g	q	f
g	s	f
h	b	f
h	q	f
m	b	f

Example revisited

- Want to classify $A=m, B=q$

■ $\operatorname{Pr}(A=m, B=q \mid C=t)=\operatorname{Pr}(A=m, B=q \mid C=f)=0$

- $\operatorname{Pr}(A=m \mid C=t)=2 / 5$
- $\operatorname{Pr}(B=q \mid C=t)=2 / 5$
- $\operatorname{Pr}(A=m \mid C=f)=1 / 5$
- $\operatorname{Pr}(B=q \mid C=f)=2 / 5$

$$
\begin{aligned}
& \frac{2}{5} \cdot \frac{2}{3} \cdot \frac{1}{2} \\
& =t=2 / 25
\end{aligned}
$$

A	B	C
m	b	t
m	s	t
g	q	t
h	s	t
g	q	t
g	q	f
g	s	f
h	b	f
h	q	f
m	b	f

Example revisited

- Want to classify $A=m, B=q$

■ $\operatorname{Pr}(A=m, B=q \mid C=t)=\operatorname{Pr}(A=m, B=q \mid C=f)=0$

- $\operatorname{Pr}(A=m \mid C=t)=2 / 5$
- $\operatorname{Pr}(B=q \mid C=t)=2 / 5$
- $\operatorname{Pr}(A=m \mid C=f)=1 / 5$
- $\operatorname{Pr}(B=q \mid C=f)=2 / 5$
- $\operatorname{Pr}(A=m \mid C=t) \cdot \operatorname{Pr}(B=q \mid C=t) \cdot \operatorname{Pr}(C=t)=2 / 25$
- $\operatorname{Pr}(A=m \mid C=f) \cdot \operatorname{Pr}(B=q \mid C=f) \cdot \operatorname{Pr}(C=f)=1 / 25$

A	B	C
m	b	t
m	s	t
g	q	t
h	s	t
g	q	t
g	q	f
g	s	f
h	b	f
h	q	f
m	b	f

Example revisited

- Want to classify $A=m, B=q$

■ $\operatorname{Pr}(A=m, B=q \mid C=t)=\operatorname{Pr}(A=m, B=q \mid C=f)=0$

- $\operatorname{Pr}(A=m \mid C=t)=2 / 5$
- $\operatorname{Pr}(B=q \mid C=t)=2 / 5$
- $\operatorname{Pr}(A=m \mid C=f)=1 / 5$
- $\operatorname{Pr}(B=q \mid C=f)=2 / 5$
- $\operatorname{Pr}(A=m \mid C=t) \cdot \operatorname{Pr}(B=q \mid C=t) \cdot \operatorname{Pr}(C=t)=2 / 25$
- $\operatorname{Pr}(A=m \mid C=f) \cdot \operatorname{Pr}(B=q \mid C=f) \cdot \operatorname{Pr}(C=f)=1 / 25$

A	B	C
m	b	t
m	s	t
g	q	t
h	s	t
g	q	t
g	q	f
g	s	f
h	b	f
h	q	f
m	b	f

- Hence predict $C=t$

Zero counts

■ Suppose $A=a$ never occurs in the test set with $C=c$

Zero counts

■ Suppose $A=a$ never occurs in the test set with $C=c$
■ Setting $\operatorname{Pr}(A=a \mid C=c)=0$ wipes out any product $\prod_{i=1}^{k} \operatorname{Pr}\left(A_{i}=a_{i} \mid C=c\right)$ in which this term appears

Zero counts

- Suppose $A=$ a never occurs in the test set with $C=c$

■ Setting $\operatorname{Pr}(A=a \mid C=c)=0$ wipes out any product $\prod_{i=1}^{k} \operatorname{Pr}\left(A_{i}=a_{i} \mid C=c\right)$ in which this term appears

- Assume A_{i} takes m_{i} values $\left\{a_{i 1}, \ldots, a_{i m_{i}}\right\}$

Zero counts

- Suppose $A=a$ never occurs in the test set with $C=c$
- Setting $\operatorname{Pr} A=a \mid C=c)=0$ wipes out any product $\prod_{i=1}^{k} \operatorname{Pr}\left(A_{i}=a_{i} \mid C=c\right)$ in which this term appears
- Assume A_{i} takes m_{i} values $\left\{a_{i 1}, \ldots, a_{i m_{i}}\right\}$

■ "Pad" training data with one sample for each value $a_{j}-m_{i}$ extra data items

Zero counts

- Suppose $A=$ a never occurs in the test set with $C=c$

■ Setting $\operatorname{Pr}(A=a \mid C=c)=0$ wipes out any product $\prod_{i=1}^{k} \operatorname{Pr}\left(A_{i}=a_{i} \mid C=c\right)$ in which this term appears

- Assume A_{i} takes m_{i} values $\left\{a_{i 1}, \ldots, a_{i m_{i}}\right\}$
- "Pad" training data with one sample for each value $a_{j}-m_{i}$ extra data items
- Adjust $\operatorname{Pr}\left(A_{i}=a_{i} \mid C=c_{j}\right)$ to $\left[\frac{n_{i j}+1}{n_{j}+m_{i}}\right.$ number of $\left(a_{i}, c_{j}\right)$ where
- $n_{i j}$ is number of samples with $A_{i}=a_{i}, C=c_{j}$
- n_{j} is number of samples with $C=c_{j}$

Smoothing

- Laplace's law of succession
$\operatorname{Pr}\left(A_{i}=a_{i} \mid C=c_{j}\right)=\frac{n_{i j}-1}{n_{j}-m_{i}}$ fudge factor

Smoothing

- Laplace's law of succession

$$
\operatorname{Pr}\left(A_{i}=a_{i} \mid C=c_{j}\right)=\frac{n_{i j}+1}{n_{j}+m_{i}}
$$

■ More generally, Lidstone's law of succession, or smoothing

$$
\operatorname{Pr}\left(A_{i}=a_{i} \mid C=c_{j}\right)=\frac{n_{i j}+\lambda}{n_{j}+\lambda m_{i}}
$$

Smoothing

- Laplace's law of succession

$$
\operatorname{Pr}\left(A_{i}=a_{i} \mid C=c_{j}\right)=\frac{n_{i j}+1}{n_{j}+m_{i}}
$$

■ More generally, Lidstone's law of succession, or smoothing

$$
\operatorname{Pr}\left(A_{i}=a_{i} \mid C=c_{j}\right)=\frac{n_{i j}+\lambda}{n_{j}+\lambda m_{i}}
$$

- $\lambda=1$ is Laplace's law of succession

Text classification

■ Classify text documents using topics

Text classification

■ Classify text documents using topics
■ Useful for automatic segregation of newsfeeds, other internet content

Text classification

- Classify text documents using topics

■ Useful for automatic segregation of newsfeeds, other internet content

- Training data has a unique topic label per document - e.g., Sports, Politics, Entertainment

Text classification

- Classify text documents using topics

■ Useful for automatic segregation of newsfeeds, other internet content

- Training data has a unique topic label per document - e.g., Sports, Politics, Entertainment

■ Want to use a naïve Bayes classifier

Text classification

- Classify text documents using topics

■ Useful for automatic segregation of newsfeeds, other internet content

- Training data has a unique topic label per document - e.g., Sports, Politics, Entertainment
- Want to use a naïve Bayes classifier

■ Need to define a generative model

Text classification

- Classify text documents using topics

■ Useful for automatic segregation of newsfeeds, other internet content

- Training data has a unique topic label per document - e.g., Sports, Politics, Entertainment

■ Want to use a naïve Bayes classifier

- Need to define a generative model

■ How do we represent documents?

Set of words model

- Each document is a set of words over a vocabulary $V=\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$

Set of words model

- Each document is a set of words over a vocabulary $V=\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$
- Topics come from a set $C=\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}$

Set of words model

■ Each document is a set of words over a vocabulary $V=\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$

- Topics come from a set $C=\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}$
- Each topic c has probability $\operatorname{Pr}(c)$

Set of words model

- Each document is a set of words over a vocabulary $V=\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$
- Topics come from a set $C=\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}$
- Each topic c has probability $\operatorname{Pr}(c)$
- Each word $w_{i} \in V$ has conditional probability ${ }^{`} \operatorname{Pr}\left(w_{i} \mid c_{j}\right)$ with respect to each $c_{j} \in C$

Toss m coins

Set of words model

■ Each document is a set of words over a vocabulary $V=\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$

- Topics come from a set $C=\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}$
- Each topic c has probability $\operatorname{Pr}(c)$
- Each word $w_{i} \in V$ has conditional probability $\operatorname{Pr}\left(w_{i} \mid c_{j}\right)$ with respect to each $c_{j} \in C$
- Generating a random document d
- Choose a topic c with probability $\operatorname{Pr}(c)$
- For each $w \in V$, toss a coin, include w in d with probability $\operatorname{Pr}(w \mid c)$

Set of words model

- Each document is a set of words over a vocabulary $V=\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$
- Topics come from a set $C=\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}$
- Each topic c has probability $\operatorname{Pr}(c)$
- Each word $w_{i} \in V$ has conditional probability $\operatorname{Pr}\left(w_{i} \mid c_{j}\right)$ with respect to each $c_{j} \in C$
- Generating a random document d
- Choose a topic c with probability $\operatorname{Pr}(c)$
- For each $w \in V$, toss a coin, include w in d with probability $\operatorname{Pr}(w \mid c)$
- $\operatorname{Pr}(d \mid c)=\prod_{w_{i} \in d} \operatorname{Pr}\left(w_{i} \mid c\right) \prod_{w_{i} \notin d}\left(1-\operatorname{Pr}\left(w_{i} \mid c\right)\right)$

Set of words model

- Each document is a set of words over a vocabulary $V=\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$
- Topics come from a set $C=\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}$
- Each topic c has probability $\operatorname{Pr}(c)$
- Each word $w_{i} \in V$ has conditional probability $\operatorname{Pr}\left(w_{i} \mid c_{j}\right)$ with respect to each $c_{j} \in C$
- Generating a random document d
- Choose a topic c with probability $\operatorname{Pr}(c)$
- For each $w \in V$, toss a coin, include w in d with probability $\operatorname{Pr}(w \mid c)$
- $\operatorname{Pr}(d \mid c)=\prod_{w_{i} \in d} \operatorname{Pr}\left(w_{i} \mid c\right) \prod_{w_{i} \notin d}\left(1-\operatorname{Pr}\left(w_{i} \mid c\right)\right)$
- $\operatorname{Pr}(d)=\sum_{c \in C} \operatorname{Pr}(d \mid c)$

Naïve Bayes classifier

Training set $D=\left\{d_{1}, d_{2}, \ldots, d_{n}\right\}$

$$
V=\begin{array}{ccccc}
w_{1} & w_{2} & u_{m} \\
0 & 1 & 1 & \ldots & 1
\end{array}
$$

■ Each $d_{i} \subseteq V$ is assigned a unique label from C

$$
d: v \rightarrow\{0,1\}
$$

Naïve Bayes classifier

- Training set $D=\left\{d_{1}, d_{2}, \ldots, d_{n}\right\}$

■ Each $d_{i} \subseteq V$ is assigned a unique label from C

- $\operatorname{Pr}\left(c_{j}\right)$ is fraction of D labelled c_{j}

Naïve Bayes classifier

- Training set $D=\left\{d_{1}, d_{2}, \ldots, d_{n}\right\}$

■ Each $d_{i} \subseteq V$ is assigned a unique label from C

- $\operatorname{Pr}\left(c_{j}\right)$ is fraction of D labelled c_{j}
- $\operatorname{Pr}\left(w_{i} \mid c_{j}\right)$ is fraction of documents labelled c_{j} in which w_{i} appears

Naïve Bayes classifier

- Training set $D=\left\{d_{1}, d_{2}, \ldots, d_{n}\right\}$

■ Each $d_{i} \subseteq V$ is assigned a unique label from C

- $\operatorname{Pr}\left(c_{j}\right)$ is fraction of D labelled c_{j}
- $\operatorname{Pr}\left(w_{i} \mid c_{j}\right)$ is fraction of documents labelled c_{j} in which w_{i} appears
- Given a new document $d \subseteq V$, we want to compute $\arg \max _{c} \operatorname{Pr}(c \mid d)$

Naïve Bayes classifier

- Training set $D=\left\{d_{1}, d_{2}, \ldots, d_{n}\right\}$
- Each $d_{i} \subseteq V$ is assigned a unique label from C
- $\operatorname{Pr}\left(c_{j}\right)$ is fraction of D labelled c_{j}
- $\operatorname{Pr}\left(w_{i} \mid c_{j}\right)$ is fraction of documents labelled c_{j} in which w_{i} appears
- Given a new document $d \subseteq V$, we want to compute arg $\max _{c} \operatorname{Pr}(c \mid d)$
- By Bayes' rule, $\operatorname{Pr}(c \mid d)=\frac{\operatorname{Pr}(d \mid c) \operatorname{Pr}(c)}{\underline{\operatorname{Pr}(d)}}$
- As usual, discard the common denominator and compute arg max ${ }_{c} \operatorname{Pr}(d \mid c) \operatorname{Pr}(c)$

Naïve Bayes classifier

- Training set $D=\left\{d_{1}, d_{2}, \ldots, d_{n}\right\}$
- Each $d_{i} \subseteq V$ is assigned a unique label from C
- $\operatorname{Pr}\left(c_{j}\right)$ is fraction of D labelled c_{j}
- $\operatorname{Pr}\left(w_{i} \mid c_{j}\right)$ is fraction of documents labelled c_{j} in which w_{i} appears

■ Given a new document $d \subseteq V$, we want to compute $\arg \max _{c} \operatorname{Pr}(c \mid d)$

- By Bayes' rule, $\operatorname{Pr}(c \mid d)=\frac{\operatorname{Pr}(d \mid c) \operatorname{Pr}(c)}{\operatorname{Pr}(d)}$
- As usual, discard the common denominator and compute arg max ${ }_{c} \operatorname{Pr}(d \mid c) \operatorname{Pr}(c)$
- Recall $\operatorname{Pr}(d \mid c)=\prod_{w_{i} \in d} \operatorname{Pr}\left(w_{i} \mid c\right) \prod_{w_{i} \notin d}\left(1-\operatorname{Pr}\left(w_{i} \mid c\right)\right)$

Bag of words model

- Each document is a multiset or bag of words over a vocabulary

$$
\begin{array}{ll}
V=\left\{w_{1}, w_{2}, \ldots, w_{m}\right\} \\
=\text { Count multiplicities of each word }
\end{array} \quad \begin{aligned}
& \text { Set } \\
& \\
& \\
& \\
& \text { Multiset } / \text { by }
\end{aligned} f: V \rightarrow\{0,1\}
$$

Bag of words model

■ Each document is a multiset or bag of words over a vocabulary $V=\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$

- Count multiplicities of each word
- As before
- Each topic c has probability $\operatorname{Pr}(c)$
- Each word $w_{i} \in V$ has conditional probability $\operatorname{Pr}\left(w_{i} \mid c_{j}\right)$ with respect to each $c_{j} \in C$ (but we will estimate these differently)
- Note that $\sum_{i=1}^{m} \operatorname{Pr}\left(w_{i} \mid c_{j}\right)=1$
- Assume document length is independent of the class

Bag of words model

- Generating a random document d
- Choose a document length ℓ with $\operatorname{Pr}(\ell)$
- Choose a topic c with probability $\operatorname{Pr}(c)$
- Recall $|V|=m$.

- To generate a single word, throw an m-sided die that displays w with probability $\operatorname{Pr}(w \mid c)$
- Repeat ℓ times

Bag of words model

- Generating a random document d
- Choose a document length ℓ with $\operatorname{Pr}(\ell)$
- Choose a topic c with probability $\operatorname{Pr}(c)$
- Recall $|V|=m$.
- To generate a single word, throw an m-sided die that displays w with probability $\operatorname{Pr}(w \mid c)$
- Repeat ℓ times
- Let n_{j} be the number of occurrences of w_{j} in d

Bag of words model

- Generating a random document d
- Choose a document length ℓ with $\operatorname{Pr}(\ell)$
- Choose a topic c with probability $\operatorname{Pr}(c)$
- Recall $|V|=m$.
- To generate a single word, throw an m-sided die that displays w with probability $\operatorname{Pr}(w \mid c)$
- Repeat ℓ times
- Let n_{j} be the number of occurrences of w_{j} in d
$\begin{aligned} & \square \operatorname{Pr}(d \mid c)= \\ & \operatorname{Pr}(\ell) \ell!\prod_{j=1}^{m} \frac{\operatorname{Pr}\left(w_{j} \mid c\right)^{n_{j}}}{n_{j}!}<\mathbf{l} \\ & \text { Order }\end{aligned}$

Parameter estimation

- Training set $D=\left\{d_{1}, d_{2}, \ldots, d_{n}\right\}$
- Each d_{i} is a multiset over V of size ℓ_{i}

Parameter estimation

- Training set $D=\left\{d_{1}, d_{2}, \ldots, d_{n}\right\}$
- Each d_{i} is a multiset over V of size ℓ_{i}
- As before, $\operatorname{Pr}\left(c_{j}\right)$ is fraction of D labelled c_{j}

Parameter estimation

- Training set $D=\left\{d_{1}, d_{2}, \ldots, d_{n}\right\}$
- Each d_{i} is a multiset over V of size ℓ_{i}
- As before, $\operatorname{Pr}\left(c_{j}\right)$ is fraction of D labelled c_{j}

■ $\operatorname{Pr}\left(w_{i} \mid c_{j}\right)$ - fraction of occurrences of w_{i} over documents $D_{j} \subseteq D$ labelled c_{j}

- $n_{i d}$ - occurrences of w_{i} in d

Parameter estimation

- Training set $D=\left\{d_{1}, d_{2}, \ldots, d_{n}\right\}$
- Each d_{i} is a multiset over V of size ℓ_{i}
- As before, $\operatorname{Pr}\left(c_{j}\right)$ is fraction of D labelled c_{j}

■ $\operatorname{Pr}\left(w_{i} \mid c_{j}\right)$ - fraction of occurrences of w_{i} over documents $D_{j} \subseteq D$ labelled c_{j}
■ $n_{i d}$ - occurrences of w_{i} in d
■ $\operatorname{Pr}\left(w_{i} \mid c_{j}\right)=\frac{\sum_{d \in D_{j}} n_{i d}}{\sum_{t=1}^{m} \sum_{d \in D_{j}} n_{t d}}=\frac{\sum_{d \in D} n_{i d} \operatorname{Pr}\left(c_{j} \mid d\right)}{\sum_{t=1}^{m} \sum_{d \in D} n_{t d} \operatorname{Pr}\left(c_{j} \mid d\right)}$,

$$
\sin \operatorname{Ce} \operatorname{Pr}\left(c_{j} \mid d\right)= \begin{cases}1 & \text { if } d \in D_{j} \\ 0 & \text { otherwise }\end{cases}
$$

Classification

- $\operatorname{Pr}(c \mid d)=\frac{\operatorname{Pr}(d \mid c) \operatorname{Pr}(c)}{\operatorname{Pr}(d)}$

Classification

- $\operatorname{Pr}(c \mid d)=\frac{\operatorname{Pr}(d \mid c) \operatorname{Pr}(c)}{\operatorname{Pr}(d)}$
- Want arg max $\operatorname{Pr}(c \mid d)$

Classification

- $\operatorname{Pr}(c \mid d)=\frac{\operatorname{Pr}(d \mid c) \operatorname{Pr}(c)}{\operatorname{Pr}(d)}$
- Want arg max $\operatorname{Pr}(c \mid d)$
c
- As before, discard the denominator $\operatorname{Pr}(d)$

Classification

- $\operatorname{Pr}(c \mid d)=\frac{\operatorname{Pr}(d \mid c) \operatorname{Pr}(c)}{\operatorname{Pr}(d)}$
- Want arg max $\operatorname{Pr}(c \mid d)$
c
- As before, discard the denominator $\operatorname{Pr}(d)$
- Recall, $\operatorname{Pr}(d \mid c)=\operatorname{Pr}(\ell) \ell!\prod_{j=1}^{m} \frac{\operatorname{Pr}\left(w_{j} \mid c\right)^{n_{j}}}{n_{j}!}$, where $|d|=\ell$

Classification

- $\operatorname{Pr}(c \mid d)=\frac{\operatorname{Pr}(d \mid c) \operatorname{Pr}(c)}{\operatorname{Pr}(d)}$
- Want arg max $\operatorname{Pr}(c \mid d)$
- As before, discard the denominator $\operatorname{Pr}(d)$
- Recall, $\operatorname{Pr}(d \mid c)=\operatorname{Pr}(\ell) \ell!\prod_{j=1}^{m} \frac{\operatorname{Pr}\left(w_{j} \mid c\right)^{n_{j}}}{n_{j}!}$, where $|d|=\ell$
- Discard $\operatorname{Pr}(\ell), \ell$! since they do not depend on c

Classification

- $\operatorname{Pr}(c \mid d)=\frac{\operatorname{Pr}(d \mid c) \operatorname{Pr}(c)}{\operatorname{Pr}(d)}$
- Want arg max $\operatorname{Pr}(c \mid d)$
c

Subset of word

model

- As before, discard the denominator $\operatorname{Pr}(d)$

■ Recall, $\operatorname{Pr}(d \mid c)=\operatorname{Pr}(\ell) \ell!\prod_{j=1}^{m} \frac{\operatorname{Pr}\left(w_{j} \mid c\right)^{n_{j}}}{n_{j}!}$, where $|d|=\ell$

- Discard $\operatorname{Pr}(\ell), \ell$! since they do not depend on c
- Compute $\underset{c}{\arg \max } \operatorname{Pr}(c) \prod_{j=1}^{m} \frac{\operatorname{Pr}\left(w_{j} \mid c\right)^{n_{j}}}{n_{j}!}$

