Lecture 15: 7 March, 2024

Madhavan Mukund
https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning January-April 2024

Unsupervised learning

- Supervised learning requires labelled data
- Vast majority of data is unlabelled
- What insights can you get into unlabelled data?
"If intelligence was a cake, unsupervised learning would be the cake, supervised learning would be the icing on the cake

Applications

- Customer segmentation
- Marketing campaigns
- Anomaly detection
- Outliers

- Semi-supervised learning
- Propagate limited labels
- Image segmentation
- Object detection

Semi-supervised learning

- Labelling training data is a bottleneck of
supervised learning
- Handwritten digits $0,1, \ldots, 9$
• 1797 images
- Standard logistic regression model has
$\begin{aligned} & \text { 96.9\% accuracy } \\ & \text { - Suppose we take } 50 \text { random samples as } \\ & \text { training set }\end{aligned}$
- Logistic regression gives 83.3\%

Image

Semi-supervised learning

- Instead of 50 random samples, 50 clusters using K means
- Use image nearest to each centroid as training set
- 50 representative images
- Logistic regression accuracy jumps to 92.2\%

Semi-supervised learning

- Propagate representative image label to entire cluster
- Logistic regression improves to 93.3\%
- Propagage representive image label to only 20% items closest to centroid
- Logistic regression improves to 94\%
- Only 50 actual labels used, about 5 per class!

Image segmentation

- An image is a matrix of pixels
- Each pixel has (R,G,B) values
- K means clustering on these values merges colours

Image segmentation

- An image is a matrix of pixels
- Each pixel has (R,G,B) values
- K means clustering on these values merges colours
- With 10 clusters, not much change

10 colors

Image segmentation

- An image is a matrix of pixels
- Each pixel has (R,G,B) values
- K means clustering on these values merges colours
- With 10 clusters, not much change
- Same with 8

Image segmentation

- An image is a matrix of pixels
- Each pixel has (R,G,B) values
- K means clustering on these values merges colours
- With 10 clusters, not much change
- Same with 8
- At 6 colours, ladybug red goes

6 colors

Image segmentation

- An image is a matrix of pixels
- Each pixel has (R,G,B) values
- K means clustering on these values merges colours
- With 10 clusters, not much change
- Same with 8
- At 6 colours, ladybug red goes
- 4 colours

4 colors

Image segmentation

- An image is a matrix of pixels
- Each pixel has (R,G,B) values
- K means clustering on these values merges colours
- With 10 clusters, not much change
- Same with 8
- At 6 colours, ladybug red goes
- 4 colours

- Finally 2 colours, flower and rest

Summary

- Unsupervised learning is useful as a preprocessing step
- Semi supervised learning
- Identify a small subset of items to label manually
- Propagate labels via cluster
- Image segmentation
- Highlight objects by colour

A geometric view of supervised learning

- Think of data as points in space

■ Find a separating curve (surface)

A geometric view of supervised learning

- Think of data as points in space

■ Find a separating curve (surface)

- Separable case
- Each class is a connected region

- A single curve can separate them

A geometric view of supervised learning

- Think of data as points in space

■ Find a separating curve (surface)

- Separable case
- Each class is a connected region

- A single curve can separate them

■ More complex scenario

- Classes form multiple connected regions

■ Need multiple separators

Linear separators

Linear

- Simplest case - linearly separable data

Nonlinear

Linear separators

Linear

- Simplest case - linearly separable data
- Dual of linear regression
- Find a line that passes close to a set of points
- Find a line that separates the two sets of points

Nonlinear

Linear separators

Linear

- Simplest case - linearly separable data
- Dual of linear regression
- Find a line that passes close to a set of points
- Find a line that separates the two sets of points

- Many lines are possible
- How do we find the best one?
- What is a good notion of "cost" to optimize?

Linear separators

- Each input x has n attributes $\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$

Linear separators

- Each input x has n attributes

$$
\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle
$$

- Linear separator has the form $w_{1} x_{1}+w_{2} x_{2}+\cdots w_{n} x_{n}+b$

Linear separators

- Each input x has n attributes

$$
\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle
$$

- Linear separator has the form

$$
w_{1} x_{1}+w_{2} x_{2}+\cdots w_{n} x_{n}+b
$$

- Classification criterion
- $w_{1} x_{1}+w_{2} x_{2}+\cdots w_{n} x_{n}+b>0$, classify yes, +1
- $w_{1} x_{1}+w_{2} x_{2}+\cdots w_{n} x_{n}+b<0$, classify no, -1

Linear separators

■ Dot product $w \cdot x$

$$
\begin{aligned}
& \left\langle w_{1}, w_{2}, \ldots, w_{n}\right\rangle \cdot\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle= \\
& w_{1} x_{1}+w_{2} x_{2}+\cdots+w_{n} x_{n}
\end{aligned}
$$

Linear separators

■ Dot product $w \cdot x$

$$
\begin{aligned}
& \left\langle w_{1}, w_{2}, \ldots, w_{n}\right\rangle \cdot\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle= \\
& w_{1} x_{1}+w_{2} x_{2}+\cdots+w_{n} x_{n}
\end{aligned}
$$

- Collapsed form

$$
w \cdot x+b>0, w \cdot x+b<0
$$

Linear separators

■ Dot product $w \cdot x$

$$
\begin{aligned}
& \left\langle w_{1}, w_{2}, \ldots, w_{n}\right\rangle \cdot\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle= \\
& w_{1} x_{1}+w_{2} x_{2}+\cdots+w_{n} x_{n}
\end{aligned}
$$

- Collapsed form

$$
w \cdot x+b>0, w \cdot x+b<0
$$

- Rename bias b as w_{0}, create fictitious $x_{0}=1$

Linear separators

- Dot product $w \cdot x$

$$
\begin{aligned}
& \left\langle w_{1}, w_{2}, \ldots, w_{n}\right\rangle \cdot\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle= \\
& w_{1} x_{1}+w_{2} x_{2}+\cdots+w_{n} x_{n}
\end{aligned}
$$

- Collapsed form

$$
w \cdot x+b>0, w \cdot x+b<0
$$

- Rename bias b as w_{0}, create fictitious $x_{0}=1$
- Classification criteria become $w \cdot x>0, w \cdot x<0$

Perceptron algorithm

(Frank Rosenblatt, 1958)

- Each training input is $\left(x_{i}, y_{i}\right)$, where

$$
x_{i}=\left\langle x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n}}\right\rangle \text { and } y_{i}=+1 \text { or }-1
$$

■ Need to find $w=\left\langle w_{0}, w_{1}, \ldots, w_{n}\right\rangle$

- Recall $x_{i_{0}}=1$, always

$$
\begin{array}{ll}
W \cdot x<0 & \text { if } y=-1 \\
W \cdot x>0 & \text { if } y=+1 \\
(W \cdot x) y>0 & \text { always }
\end{array}
$$

Perceptron algorithm

(Frank Rosenblatt, 1958)

- Each training input is $\left(x_{i}, y_{i}\right)$, where

$$
x_{i}=\left\langle x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n}}\right\rangle \text { and } y_{i}=+1 \text { or }-1
$$

■ Need to find $w=\left\langle w_{0}, w_{1}, \ldots, w_{n}\right\rangle$

- Recall $x_{i_{0}}=1$, always

Initialize $w=\langle 0,0, \ldots, 0\rangle$
While there exists x_{i}, y_{i} such that

$$
\begin{aligned}
& y_{i}=+1 \text { and } w \cdot x_{i}<0, \text { or } \\
& y_{i}=-1 \text { and } w \cdot x_{i}>0
\end{aligned}
$$

Update w to $w+x_{i} y_{i}$

Perceptron algorithm ...

- Keep updating w as long as some training data item is misclassified

■ Update is an offset by misclassified input

Perceptron algorithm ...

- Keep updating w as long as some training data item is misclassified
- Update is an offset by misclassified input

■ Need not stabilize, potentially an infinite loop

Perceptron algorithm . . .

- Keep updating w as long as some training data item is misclassified

■ Update is an offset by misclassified input
■ Need not stabilize, potentially an infinite loop

Theorem

If the points are linearly separable, the Perceptron algorithm always terminates with a valid separator

Perceptron algorithm ...

Theorem

If the points are linearly separable, the
Perceptron algorithms always terminates with a valid separator

Perceptron algorithm ...

Theorem

If the points are linearly separable, the Perceptron algorithms always terminates with a valid separator

- Termination time depends on two factors

Perceptron algorithm ...

Theorem

If the points are linearly separable, the Perceptron algorithms always terminates with a valid separator

- Termination time depends on two factors
- Width of the band separating the positive and negative points
- Narrow band takes longer to converge

Perceptron algorithm ...

Theorem

If the points are linearly separable, the Perceptron algorithms always terminates with a valid separator

- Termination time depends on two factors
- Width of the band separating the positive and negative points

■ Narrow band takes longer to converge

- Magnitude of the \times values

■ Larger spread of points takes longer to
 converge

三

Theorem
If there is w^{*} satisfying $\left(w^{*} \cdot x_{i}\right) y_{i} \geq 1$ for all i, then the Perceptron Algorithm finds a solution w with $\left(w \cdot x_{i}\right) y_{i}>0$ for all i in at most $r^{2}\left|w^{*}\right|^{2}$ updates, where

Perceptron Algorithm — Proof

Theorem

If there is w^{*} satisfying $\left(w^{*} \cdot x_{i}\right) y_{i} \geq 1$ for all i, then the Perceptron Algorithm finds a solution w with $\left(w \cdot x_{i}\right) y_{i}>0$ for all i in at most $r^{2}\left|w^{*}\right|^{2}$ updates, where $r=\max _{i}\left|x_{i}\right|$.

Perceptron Algorithm — Proof

Theorem

If there is w^{*} satisfying $\left(w^{*} \cdot x_{i}\right) y_{i} \geq 1$ for all i, then the Perceptron Algorithm finds a solution w with $\left(w \cdot x_{i}\right) y_{i}>0$ for all i n at most $r^{2}\left|w^{*}\right|^{2}$ updates, where
$r=\max _{i}\left|x_{i}\right|$.

- Assume w^{*} exists. Keep track of two quantities: $w^{\top} w^{*},|w|^{2}$.
- Each update increases $w^{\top} w^{*}$ by at least J

$$
\begin{aligned}
& \left(w+x_{i} y_{i}\right)^{\top} w^{*}=w^{\top} w^{*}+\dot{x}_{i}^{\top} y_{i} w^{*} \geq w^{\top} w^{*}+1 \\
& \text { updated } \\
& \text { value } \\
& \text { always } \geq 1
\end{aligned}
$$

Perceptron Algorithm — Proof

Theorem

If there is w^{*} satisfying $\left(w^{*} \cdot x_{i}\right) y_{i} \geq 1$ for all i, then the Perceptron Algorithm finds a solution w with $\left(w \cdot x_{i}\right) y_{i}>0$ for all i in at most $r^{2}\left|w^{*}\right|^{2}$ updates, where

■ Assume w^{*} exists. Keep track of two quantities: $w^{\top} w^{*},|w|^{2}$.

- Each update increases $w^{\top} w^{*}$ by at least 1.

$$
\left(w+x_{i} y_{i}\right)^{\top} w^{*}=w^{\top} w^{*}+x_{i}^{\top} y_{i} w^{*} \geq w^{\top} w^{*}+1
$$

- Each update increases $|w|^{2}$ by at most r^{2}

■ Note that we update only when $x_{i} y_{i} w<\bar{\square}$

Perceptron Algorithm — Proof (cont'd)

■ Assume Perceptron Algorithm makes m updates

Perceptron Algorithm — Proof (cont'd)

■ Assume Perceptron Algorithm makes m updates

- Then, $w^{\top} w^{*} \geq m,|w|^{2} \leq m r^{2}$

Perceptron Algorithm — Proof (cont'd)

■ Assume Perceptron Algorithm makes m updates

- Then, $w^{\top} w^{*} \geq m,|w|^{2} \leq m r^{2}$
- $m \leq|w| w^{*} \mid$, because $a \cdot b=|a||b| \cos \theta$

Perceptron Algorithm — Proof (cont'd)

Perceptron Algorithm — Proof (cont'd)

■ Assume Perceptron Algorithm makes m updates

- Then, $w^{\top} w^{*} \geq m,|w|^{2} \leq m r^{2}$

$$
\begin{aligned}
m & \leq|w|\left|w^{*}\right| \\
m /\left|w^{*}\right| & \leq|w| \\
m /\left|w^{*}\right| & \leq r \sqrt{m}, \text { because }|w|^{2} \leq m r^{2}
\end{aligned}
$$

Perceptron Algorithm — Proof (cont'd)

■ Assume Perceptron Algorithm makes m updates

- Then, $w^{\top} w^{*} \geq m,|w|^{2} \leq m r^{2}$

$$
\begin{aligned}
m & \leq|w|\left|w^{*}\right| \\
m /\left|w^{*}\right| & \leq|w| \\
m /\left|w^{*}\right| & \leq r \sqrt{m} \\
\sqrt{m} & \leq r\left|w^{*}\right|
\end{aligned}
$$

Perceptron Algorithm — Proof (cont'd)

■ Assume Perceptron Algorithm makes m updates

- Then, $w^{\top} w^{*} \geq m,|w|^{2} \leq m r^{2}$

$$
\begin{aligned}
m & \leq|w|\left|w^{*}\right| \\
m /\left|w^{*}\right| & \leq|w| \\
m /\left|w^{*}\right| & \leq r \sqrt{m} \\
\sqrt{m} & \leq r\left|w^{*}\right| \\
m & \leq r^{2}\left|w^{*}\right|^{2}
\end{aligned}
$$

Perceptron Algorithm — Proof (cont'd)

■ Assume Perceptron Algorithm makes m updates

- Then, $w^{\top} w^{*} \geq m,|w|^{2} \leq m r^{2}$

- $m \leq|w|\left|w^{*}\right|$
$m /\left|w^{*}\right| \leq|w|$
$m /\left|w^{*}\right| \leq r \sqrt{m}$
$\sqrt{m} \leq r\left|w^{*}\right|$
$m \leq r^{2}\left|w^{*}\right|^{2}$

■ Note (for later) that final w is of the form $\sum_{i} n_{i} x_{i}$

Linear separators

- Simplest case - linearly separable data
- Perceptron algorithm is a simple procedure to find a linear separator, if one exists
- Many lines are possible
- Does the Perceptron algorithm find the best one?
- What is a good notion of "cost" to optimize?

