Lecture 15: 7 March, 2024

Madhavan Mukund https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning January–April 2024

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Unsupervised learning

- Supervised learning requires labelled data
- Vast majority of data is unlabelled
- What insights can you get into unlabelled data?

"If intelligence was a cake, unsupervised learning would be the cake, supervised learning would be the icing on the cake ..."

> - Yann LeCun ACM Turing Award 2018

Applications

- Customer segmentation
 - Marketing campaigns
- Anomaly detection
 - Outliers
- Semi-supervised learning
 - Propagate limited labels
- Image segmentation
 - Object detection

< 🗗

< ≣⇒

Semi-supervised learning

- Labelling training data is a bottleneck of supervised learning
- Handwritten digits 0,1,...,9
 - 1797 images
- Standard logistic regression model has 96.9% accuracy
- Suppose we take 50 random samples as training set
- Logistic regression gives 83.3%

Semi-supervised learning

- Instead of 50 random samples, 50 clusters using K means
- Use image nearest to each centroid as training set
 - 50 representative images
- Logistic regression accuracy jumps to 92.2%

Semi-supervised learning

- Propagate representative image label to entire cluster
- Logistic regression improves to 93.3%
- Propagage representive image label to only 20% items closest to centroid
- Logistic regression improves to 94%
- Only 50 actual labels used, about 5 per class!

- An image is a matrix of pixels
- Each pixel has (R,G,B) values
- K means clustering on these values merges colours

- An image is a matrix of pixels
- Each pixel has (R,G,B) values
- K means clustering on these values merges colours
- With 10 clusters, not much change

★□> ★@> ★E> ★E>

- 2

- An image is a matrix of pixels
- Each pixel has (R,G,B) values
- K means clustering on these values merges colours
- With 10 clusters, not much change
- Same with 8

- An image is a matrix of pixels
- Each pixel has (R,G,B) values
- K means clustering on these values merges colours
- With 10 clusters, not much change
- Same with 8
- At 6 colours, ladybug red goes

- An image is a matrix of pixels
- Each pixel has (R,G,B) values
- K means clustering on these values merges colours
- With 10 clusters, not much change
- Same with 8
- At 6 colours, ladybug red goes
- 4 colours

(日) (日) (日) (日) (日)

- 2

- An image is a matrix of pixels
- Each pixel has (R,G,B) values
- K means clustering on these values merges colours
- With 10 clusters, not much change
- Same with 8
- At 6 colours, ladybug red goes
- 4 colours
- Finally 2 colours, flower and rest

(日) (四) (三) (三) (三)

æ

Summary

- Unsupervised learning is useful as a preprocessing step
- Semi supervised learning
 - Identify a small subset of items to label manually
 - Propagate labels via cluster
- Image segmentation
 - Highlight objects by colour

A geometric view of supervised learning

- Think of data as points in space
- Find a separating curve (surface)

A geometric view of supervised learning

- Think of data as points in space
- Find a separating curve (surface)
- Separable case
 - Each class is a connected region
 - A single curve can separate them

A geometric view of supervised learning

- Think of data as points in space
- Find a separating curve (surface)
- Separable case
 - Each class is a connected region
 - A single curve can separate them
- More complex scenario
 - Classes form multiple connected regions
 - Need multiple separators

Lecture 15: 7 March, 2024

Simplest case — linearly separable data

э

- Simplest case linearly separable data
- Dual of linear regression
 - Find a line that passes close to a set of points
 - Find a line that separates the two sets of points

- Simplest case linearly separable data
- Dual of linear regression
 - Find a line that passes close to a set of points
 - Find a line that separates the two sets of points
- Many lines are possible
 - How do we find the best one?
 - What is a good notion of "cost" to optimize?

Lecture 15: 7 March, 2024

■ Each input *x* has *n* attributes ⟨*x*₁, *x*₂,...,*x*_n⟩

э

- Each input x has n attributes ⟨x₁, x₂,..., x_n⟩
- Linear separator has the form $w_1x_1 + w_2x_2 + \cdots + w_nx_n + b$

- Each input x has n attributes ⟨x₁, x₂,...,x_n⟩
- Linear separator has the form $w_1x_1 + w_2x_2 + \cdots + w_nx_n + b$
- Classification criterion
 - $w_1x_1 + w_2x_2 + \cdots + w_nx_n + b > 0$, classify yes, +1
 - $w_1 x_1 + w_2 x_2 + \cdots + w_n x_n + b < 0$, classify no, -1

Dot product $w \cdot x$

 $\langle w_1, w_2, \ldots, w_n \rangle \cdot \langle x_1, x_2, \ldots, x_n \rangle =$ $w_1 x_1 + w_2 x_2 + \cdots + w_n x_n$

э

- Dot product $w \cdot x$ $\langle w_1, w_2, \dots, w_n \rangle \cdot \langle x_1, x_2, \dots, x_n \rangle =$ $w_1 x_1 + w_2 x_2 + \dots + w_n x_n$
- Collapsed form $w \cdot x + b > 0, w \cdot x + b < 0$

- Dot product $w \cdot x$ $\langle w_1, w_2, \dots, w_n \rangle \cdot \langle x_1, x_2, \dots, x_n \rangle =$ $w_1 x_1 + w_2 x_2 + \dots + w_n x_n$
- Collapsed form $w \cdot x + b > 0, w \cdot x + b < 0$
- Rename bias b as w₀, create fictitious
 x₀ = 1

- Dot product $w \cdot x$ $\langle w_1, w_2, \dots, w_n \rangle \cdot \langle x_1, x_2, \dots, x_n \rangle =$ $w_1 x_1 + w_2 x_2 + \dots + w_n x_n$
- Collapsed form $w \cdot x + b > 0, w \cdot x + b < 0$
- Rename bias b as w₀, create fictitious
 x₀ = 1
- Classification criteria become
 w · x > 0, w · x < 0

(Frank Rosenblatt, 1958)

- Each training input is (x_i, y_i) , where $x_i = \langle x_{i_1}, x_{i_2}, \dots, x_{i_n} \rangle$ and $y_i = +1$ or -1
- Need to find $w = \langle w_0, w_1, \dots, w_n \rangle$
 - Recall $x_{i_0} = 1$, always

Perceptron algorithm

(Frank Rosenblatt, 1958)

Perceptron algorithm

- Keep updating w as long as some training data item is misclassified
- Update is an offset by misclassified input

Perceptron algorithm ...

- Keep updating w as long as some training data item is misclassified
- Update is an offset by misclassified input
- Need not stabilize, potentially an infinite loop

Perceptron algorithm ...

- Keep updating w as long as some training data item is misclassified
- Update is an offset by misclassified input
- Need not stabilize, potentially an infinite loop

Theorem

If the points are linearly separable, the Perceptron algorithm always terminates with a valid separator

If the points are linearly separable, the Perceptron algorithms always terminates with a valid separator

If the points are linearly separable, the Perceptron algorithms always terminates with a valid separator

Termination time depends on two factors

If the points are linearly separable, the Perceptron algorithms always terminates with a valid separator

- Termination time depends on two factors
 - Width of the band separating the positive and negative points
 - Narrow band takes longer to converge

If the points are linearly separable, the Perceptron algorithms always terminates with a valid separator

- Termination time depends on two factors
 - Width of the band separating the positive and negative points
 - Narrow band takes longer to converge
 - Magnitude of the x values
 - Larger spread of points takes longer to converge

Perceptron Algorithm — Proof

A B M A B M

If there is w^* satisfying $(w^* \cdot x_i)y_i \ge 1$ for all *i*, then the Perceptron Algorithm finds a solution *w* with $(w \cdot x_i)y_i > 0$ for all *i* in at most $r^2|w^*|^2$ updates, where $r = \max_i |x_i|$.

Perceptron Algorithm — Proof

Theorem If there is w^* satisfying $(w^* \cdot x_i)y_i \ge 1$ for all *i*, then the Perceptron Algorithm finds a solution *w* with $(w \cdot x_i)y_i > 0$ for all *i* in at most $r^2|w^*|^2$ updates, where $r = \max_i |x_i|$.

• Assume w^* exists. Keep track of two quantities: $w^{\top}w^*$, $|w|^2$.

• Each update increases $w^{\top}w^*$ by at least ψ

$$(w + x_i y_i)^\top w^* = w^\top w^* + x_i^\top y_i w^* \ge w^\top w^* + 1$$

upleted
Veloce
Veloce

If there is w^* satisfying $(w^* \cdot x_i)y_i \ge 1$ for all *i*, then the Perceptron Algorithm finds a solution *w* with $(w \cdot x_i)y_i > 0$ for all *i* in at most $r^2|w^*|^2$ updates, where $r = \max_i |x_i|$.

- Assume w^* exists. Keep track of two quantities: $w^{\top}w^*$, $|w|^2$.
- Each update increases $w^{\top}w^*$ by at least 1.

 $(w + x_i y_i)^{\top} w^* = w^{\top} w^* + x_i^{\top} y_i w^* \ge w^{\top} w^* + 1$

Each update increases $|w|^2$ by at most r^2 $(w + x_i y_i)^\top (w + x_i y_i) = |w|^2 + (2x_i) x_i w + |x_i y_i|^2 \le |w|^2 + |x_i|^2 \le |w|^2 + r^2$ Note that we update only when $x_i^\top y_i w < 0$

X' y: w < 0

Assume Perceptron Algorithm makes *m* updates

▶ < ∃ ▶</p>

э

- Assume Perceptron Algorithm makes *m* updates
- Then, $w^{\top}w^* \ge m$, $|w|^2 \le mr^2$

Image: A image: A

3

Assume Perceptron Algorithm makes *m* updates

Then,
$$w^{\top}w^* \ge m$$
, $|w|^2 \le mr^2$
 $m \le |w||w^*|$, because $a \cdot b = |a||b|\cos\theta$

▶ < ∃ ▶</p>

э

Assume Perceptron Algorithm makes *m* updates

- Assume Perceptron Algorithm makes *m* updates
- Then, $w^{\top}w^* \ge m$, $|w|^2 \le mr^2$

 $m \leq |w||w^*|$ $m/|w^*| \leq |w|$ $m/|w^*| \leq r\sqrt{m}, \text{ because } |w|^2 \leq mr^2$

(신문) 문

- Assume Perceptron Algorithm makes *m* updates
- Then, $w^{\top}w^* \ge m$, $|w|^2 \le mr^2$

 $m \leq |w||w^*|$ $m/|w^*| \leq |w|$ $m/|w^*| \leq r\sqrt{m}$ $\sqrt{m} \leq r|w^*|$

(신문) 문

- Assume Perceptron Algorithm makes *m* updates
- Then, $w^{\top}w^* \ge m$, $|w|^2 \le mr^2$

```
  m \leq |w||w^*| 
  m/|w^*| \leq |w| 
  m/|w^*| \leq r\sqrt{m} 
  \sqrt{m} \leq r|w^*| 
  m \leq r^2|w^*|^2
```

★ 3 ★ 3 ±

- Assume Perceptron Algorithm makes *m* updates
- Then, $w^{\top}w^* \ge m$, $|w|^2 \le mr^2$
- $\begin{array}{c|cccc} m & \leq & |w||w^*| \\ m/|w^*| & \leq & |w| \\ m/|w^*| & \leq & r\sqrt{m} \\ \sqrt{m} & \leq & r|w^*| \\ m & \leq & r^2|w^*|^2 \end{array}$

• Note (for later) that final w is of the form $\sum_{i} n_i x_i$

Simplest case — linearly separable data

- Perceptron algorithm is a simple procedure to find a linear separator, if one exists
- Many lines are possible
 - Does the Perceptron algorithm find the best one?
 - What is a good notion of "cost" to optimize?

