Lecture 14: 5 March, 2024

Madhavan Mukund
https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning January-April 2024

Mixture models

- Probabilistic process - parameters Θ

■ Tossing a coin with $\Theta=\{\operatorname{Pr}(H)\}=\{p\}$

Mixture models

- Probabilistic process - parameters Θ
- Tossing a coin with $\Theta=\{\operatorname{Pr}(H)\}=\{p\}$
- Perform an experiment

■ Toss the coin N times, H THH… T

Mixture models

- Probabilistic process - parameters Θ
- Tossing a coin with $\Theta=\{\operatorname{Pr}(H)\}=\{p\}$
- Perform an experiment
- Toss the coin N times, H THH… T
- Estimate parameters from observations
- From h heads, estimate $p=h / N$
- Maximum Likelihood Estimator (MLE)

Mixture models

- Probabilistic process - parameters Θ
- Tossing a coin with $\Theta=\{\operatorname{Pr}(H)\}=\{p\}$
- Perform an experiment
- Toss the coin N times, H THH… T
- Estimate parameters from observations
- From h heads, estimate $p=h / N$
- Maximum Likelihood Estimator (MLE)
- What if we have a mixture of two random processes

Mixture models

- Probabilistic process - parameters Θ
- Tossing a coin with $\Theta=\{\operatorname{Pr}(H)\}=\{p\}$
- Perform an experiment
- Toss the coin N times, H THH… T
- Estimate parameters from observations
- From h heads, estimate $p=h / N$
- Maximum Likelihood Estimator (MLE)
- What if we have a mixture of two random processes
- Two coins, c_{1} and c_{2}, with $\operatorname{Pr}(H)=p_{1}$ and p_{2}, respectively

Mixture models

- Probabilistic process - parameters Θ
- Tossing a coin with $\Theta=\{\operatorname{Pr}(H)\}=\{p\}$
- Perform an experiment
- Toss the coin N times, H THH… T
- Estimate parameters from observations
- From h heads, estimate $p=h / N$
- Maximum Likelihood Estimator (MLE)
- What if we have a mixture of two random processes
- Two coins, c_{1} and c_{2}, with $\operatorname{Pr}(H)=p_{1}$ and p_{2}, respectively
- Repeat N times: choose c_{i} with probability $1 / 2$ and toss it

Mixture models

- Probabilistic process - parameters Θ
- Tossing a coin with $\Theta=\{\operatorname{Pr}(H)\}=\{p\}$
- Perform an experiment
- Toss the coin N times, H THH… T
- Estimate parameters from observations
- From h heads, estimate $p=h / N$
- Maximum Likelihood Estimator (MLE)
- What if we have a mixture of two random processes
- Two coins, c_{1} and c_{2}, with $\operatorname{Pr}(H)=p_{1}$ and p_{2}, respectively
- Repeat N times: choose c_{i} with probability $1 / 2$ and toss it
- Outcome: N_{1} tosses of c_{1} interleaved with N_{2} tosses of $c_{2}, N_{1}+N_{2}=N$

Mixture models

- Probabilistic process - parameters Θ
- Tossing a coin with $\Theta=\{\operatorname{Pr}(H)\}=\{p\}$
- Perform an experiment
- Toss the coin N times, H THH… T
- Estimate parameters from observations
- From h heads, estimate $p=h / N$
- Maximum Likelihood Estimator (MLE)
- What if we have a mixture of two random processes
- Two coins, c_{1} and c_{2}, with $\operatorname{Pr}(H)=p_{1}$ and p_{2}, respectively
- Repeat N times: choose c_{i} with probability $1 / 2$ and toss it
- Outcome: N_{1} tosses of c_{1} interleaved with N_{2} tosses of $c_{2}, N_{1}+N_{2}=N$
- Can we estimate p_{1} and p_{2} ?

Mixture models

■ Two coins, c_{1} and c_{2}, with $\operatorname{Pr}(H)=p_{1}$ and p_{2}, respectively
■ Sequence of N interleaved coin tosses H THH… H H T

Mixture models

■ Two coins, c_{1} and c_{2}, with $\operatorname{Pr}(H)=p_{1}$ and p_{2}, respectively
■ Sequence of N interleaved coin tosses H THH… H H T
■ If the sequence is labelled, we can estimate p_{1}, p_{2} separately

- HTTHHTHEHHTZHTHTH H T H H
- $p_{1}=8 / 12=2 / 3, p_{2}=3 / 8$

Mixture models

■ Two coins, c_{1} and c_{2}, with $\operatorname{Pr}(H)=p_{1}$ and p_{2}, respectively
■ Sequence of N interleaved coin tosses H THH… H H T
■ If the sequence is labelled, we can estimate p_{1}, p_{2} separately
■ HTTHHTHTHHTHTHTHHTHT

- $p_{1}=8 / 12=2 / 3, p_{2}=3 / 8$
- What the observation is unlabelled?

■ H T THHTHTHHTHTHTHHTHT

Mixture models . . .

■ Two coins, c_{1} and c_{2}, with $\operatorname{Pr}(H)=p_{1}$ and p_{2}, respectively
■ Sequence of N interleaved coin tosses H THH… H H T
■ If the sequence is labelled, we can estimate p_{1}, p_{2} separately
■ HTTHHTHTHHTHTHTHHTHT

- $p_{1}=8 / 12=2 / 3, p_{2}=3 / 8$

■ What the observation is unlabelled?
■HTTHHTHTHHTHTHTHHTHT

- Iterative algorithm to estimate the parameters
- Make an initial guess for the parameters
- Compute a (fractional) labelling of the outcomes

■ Re-estimate the parameters

Expectation Maximization (EM)

- Iterative algorithm to estimate the parameters
- Make an initial guess for the parameters
- Compute a (fractional) labelling of the outcomes
- Re-estimate the parameters

Expectation Maximization (EM)

- Iterative algorithm to estimate the parameters
- Make an initial guess for the parameters
- Compute a (fractional) labelling of the outcomes
- Re-estimate the parameters

■ H T T H H THTHHTHTHTHHTHT
■ Initial guess: $p_{1}=1 / 2, p_{2}=1 / 4$

Expectation Maximization (EM)

- Iterative algorithm to estimate the parameters
- Make an initial guess for the parameters

Assuming P_{1}, P_{2}

- Compute a (fractional) labelling of the outcomes
- Re-estimate the parameters

■ HT TH H THTHHTHTHTHHTHT
■ Initial guess: $p_{1}=1 / 2, p_{2}=1 / 4$
■ $\operatorname{Pr}\left(c_{1}=T\right)=q_{1}=1 / 2, \operatorname{Pr}\left(c_{2}=T\right)=q_{2}=3 / 4$,

$P(H \mid a)$

 $P\left(H \mid c_{2}\right)$Want $p(c, \mid n)$

Expectation Maximization (EM)

- Iterative algorithm to estimate the parameters
- Make an initial guess for the parameters
- Compute a (fractional) labelling of the outcomes
- Re-estimate the parameters

■ HTTHHTHTHHTHTHTHHTHT
■ Initial guess: $p_{1}=1 / 2, p_{2}=1 / 4$

- $\operatorname{Pr}\left(c_{1}=T\right)=q_{1}=1 / 2, \operatorname{Pr}\left(c_{2}=T\right)=q_{2}=3 / 4$,

■ For each H, likelihood it was $c_{i}, \operatorname{Pr}\left(c_{i} \mid H\right)$, is $p_{i} /\left(p_{1}+p_{2}\right)$

Expectation Maximization (EM)

- Iterative algorithm to estimate the parameters
- Make an initial guess for the parameters
- Compute a (fractional) labelling of the outcomes
- Re-estimate the parameters

■ HTTHHTHTHHTHTHTHHTHT
■ Initial guess: $p_{1}=1 / 2, p_{2}=1 / 4$
■ $\operatorname{Pr}\left(c_{1}=T\right)=q_{1}=1 / 2, \operatorname{Pr}\left(c_{2}=T\right)=q_{2}=3 / 4$,
■ For each H, likelihood it was $c_{i}, \operatorname{Pr}\left(c_{i} \mid H\right)$, is $p_{i} /\left(p_{1}+p_{2}\right)$
■ For each T, likelihood it was $c_{i}, \operatorname{Pr}\left(c_{i} \mid T\right)$, is $q_{i} /\left(q_{1}+q_{2}\right)$

Expectation Maximization (EM)

- Iterative algorithm to estimate the parameters
- Make an initial guess for the parameters
- Compute a (fractional) labelling of the outcomes
- Re-estimate the parameters

■ HTTHHTHTHHTHTHTHHTHT
■ Initial guess: $p_{1}=1 / 2, p_{2}=1 / 4$
■ $\operatorname{Pr}\left(c_{1}=T\right)=q_{1}=1 / 2, \operatorname{Pr}\left(c_{2}=T\right)=q_{2}=3 / 4$,
■ For each H, likelihood it was $c_{i}, \operatorname{Pr}\left(c_{i} \mid H\right)$, is $p_{i} /\left(p_{1}+p_{2}\right)$
■ For each T, likelihood it was $c_{i}, \operatorname{Pr}\left(c_{i} \mid T\right)$, is $q_{i} /\left(q_{1}+q_{2}\right)$
■ Assign fractional count $\operatorname{Pr}\left(c_{i} \mid H\right)$ to each $H: 2 / 3 \times c_{1}, 1 / 3 \times c_{2}$

Expectation Maximization (EM)

- Iterative algorithm to estimate the parameters
- Make an initial guess for the parameters
- Compute a (fractional) labelling of the outcomes
- Re-estimate the parameters

■ HT THHTHTHHTHTHTHHTHT

- Initial guess: $p_{1}=1 / 2, p_{2}=1 / 4$
- $\operatorname{Pr}\left(c_{1}=T\right)=q_{1}=1 / 2, \operatorname{Pr}\left(c_{2}=T\right)=q_{2}=3 / 4$,

■ For each H, likelihood it was $c_{i}, \operatorname{Pr}\left(c_{i} \mid H\right)$, is $p_{i} /\left(p_{1}+p_{2}\right)$

- For each T, likelihood it was $c_{i}, \operatorname{Pr}\left(c_{i} \mid T\right)$, is $q_{i} /\left(q_{1}+q_{2}\right)$

- Assign fractional count $\operatorname{Pr}\left(c_{i} \mid H\right)$ to each $H: 2 / 3 \times c_{1}, 1 / 3 \times c_{2}$
- Likewise, assign fractional count $\operatorname{Pr}\left(c_{i} \mid T\right)$ to each $T: 2 / 5 \times c_{1}, 3 / 5 \times c_{2}$

Expectation Maximization (EM)

■HTTHHTHTHHTHTHTHHTHT

- Initial guess: $p_{1}=1 / 2, p_{2}=1 / 4$

■ Fractional counts: each H is $2 / 3 \times c_{1}, 1 / 3 \times c_{2}$, each $T: 2 / 5 \times c_{1}, 3 / 5 \times c_{2}$

Expectation Maximization (EM)
■ HTTHHTHTHHTHTHTHHTHT

- Initial guess: $p_{1}=1 / 2, p_{2}=1 / 4$

■ Fractional counts: each H is $2 / 3 \times c_{1}, 1 / 3 \times c_{2}$, each $T: 2 / 5 \times c_{1}, 3 / 5 \times c_{2}$

- Add up the fractional counts
- $c_{1}: 11 \cdot(2 / 3)=22 / 3$ heads, $9 \cdot(2 / 5)=18 / 5$ tails $=\mathbf{N}_{\mathbf{1}}$
- $c_{2}: 11 \cdot(1 / 3)=11 / 3$ heads, $9 \cdot(3 / 5)=27 / 5$ tails $=N_{\mathbf{z}}$

$$
P_{1}=\frac{h_{1}}{N_{1}}
$$

N_{1}
N_{2}

$$
h_{1} \bigwedge_{\substack{w_{1}-h_{1}}}^{t_{1}}
$$

Expectation Maximization (EM)

■ HTTHHTHTHHTHTHTHHTHT
■ Initial guess: $p_{1}=1 / 2, p_{2}=1 / 4$
■ Fractional counts: each H is $2 / 3 \times c_{1}, 1 / 3 \times c_{2}$, each $T: 2 / 5 \times c_{1}, 3 / 5 \times c_{2}$

- Add up the fractional counts
- $c_{1}: 11 \cdot(2 / 3)=22 / 3$ heads, $9 \cdot(2 / 5)=18 / 5$ tails
- $c_{2}: 11 \cdot(1 / 3)=11 / 3$ heads, $9 \cdot(3 / 5)=27 / 5$ tails

■ Re-estimate the parameters

- $p_{1}=\frac{22 / 3}{22 / 3+18 / 5}=110 / 164=0.67, q_{1}=1-p_{1}=0.33$
- $p_{2}=\frac{11 / 3}{11 / 3+27 / 5}=55 / 136=0.40, q_{2}=1-p_{2}=\underline{0.60}$

Expectation Maximization (EM)

■HTTHHTHTHHTHTHTHHTHT

- Initial guess: $p_{1}=1 / 2, p_{2}=1 / 4$

■ Fractional counts: each H is $2 / 3 \times c_{1}, 1 / 3 \times c_{2}$, each $T: 2 / 5 \times c_{1}, 3 / 5 \times c_{2}$

- Add up the fractional counts
- $c_{1}: 11 \cdot(2 / 3)=22 / 3$ heads, $9 \cdot(2 / 5)=18 / 5$ tails
- $c_{2}: 11 \cdot(1 / 3)=11 / 3$ heads, $9 \cdot(3 / 5)=27 / 5$ tails
- Re-estimate the parameters
- $p_{1}=\frac{22 / 3}{22 / 3+18 / 5}=110 / 164=0.67, q_{1}=1-p_{1}=0.33$
- $p_{2}=\frac{11 / 3}{11 / 3+27 / 5}=55 / 136=0.40, q_{2}=1-p_{2}=0.60$

■ Repeat until convergence

Expectation Maximization (EM)

■ Mixture of probabilistic models $\left(M_{1}, M_{2}, \ldots, M_{k}\right)$ with parameters $\Theta=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{k}\right)$

Expectation Maximization (EM)

■ Mixture of probabilistic models $\left(M_{1}, M_{2}, \ldots, M_{k}\right)$ with parameters $\Theta=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{k}\right)$

- Observation $O=o_{1} O_{2} \ldots o_{N}$

Expectation Maximization (EM)

■ Mixture of probabilistic models $\left(M_{1}, M_{2}, \ldots, M_{k}\right)$ with parameters $\Theta=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{k}\right)$

- Observation $O=o_{1} o_{2} \ldots o_{N}$
- Expectation step
- Compute likelihoods $\operatorname{Pr}\left(M_{i} \mid o_{j}\right)$ for each M_{i}, o_{j}

Expectation Maximization (EM)

■ Mixture of probabilistic models $\left(M_{1}, M_{2}, \ldots, M_{k}\right)$ with parameters $\Theta=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{k}\right)$

- Observation $O=o_{1} O_{2} \ldots o_{N}$
- Expectation step
- Compute likelihoods $\operatorname{Pr}\left(M_{i} \mid o_{j}\right)$ for each M_{i}, o_{j}
- Maximization step
- Recompute MLE for each M_{i} using fraction of O assigned using likelihood

Expectation Maximization (EM)

■ Mixture of probabilistic models $\left(M_{1}, M_{2}, \ldots, M_{k}\right)$ with parameters $\Theta=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{k}\right)$

- Observation $O=o_{1} O_{2} \ldots o_{N}$
- Expectation step
- Compute likelihoods $\operatorname{Pr}\left(M_{i} \mid o_{j}\right)$ for each M_{i}, o_{j}
- Maximization step
- Recompute MLE for each M_{i} using fraction of O assigned using likelihood
- Repeat until convergence

■ Why should it converge?

- If the value converges, what have we computed?

EM - another example

- Two biased coins, choose a coin and toss 10 times, repeat 5 times

HTTTHHTHTH

HHHHTHHHHH
HTHHHHHTHH
HTHTTTHHTT
THHHTHHHTH

EM - another example

- Two biased coins, choose a coin and toss 10 times, repeat 5 times

A HHHHTHHHHH
(A) HTHTTTHHTT
THHHTHHHTH

- If we know the breakup, we can separately compute MLE for each coin

Coin A	Coin B	
	$5 \mathrm{H}, 5 \mathrm{~T}$	
$9 \mathrm{H}, 1 \mathrm{~T}$		$\hat{\theta}_{A}=\frac{24}{24+6}=0.80$
$8 \mathrm{H}, 2 \mathrm{~T}$		
	$4 \mathrm{H}, 6 \mathrm{~T}$	
$7 \mathrm{H}, 3 \mathrm{~T}$		
$24 \mathrm{H}, 6 \mathrm{~T}$	$9 \mathrm{H}, 11 \mathrm{~T}$	

EM - another example

EM - another example

- ExpectationMaximization
- Initial estimates, $\theta_{A}=0.6, \theta_{B}=0.5$

EM - another example

- ExpectationMaximization
- Initial estimates, $\theta_{A}=0.6, \theta_{B}=0.5$
- Compute likelihood of each sequence: $\theta^{n_{H}}(1-\theta)^{n_{T}}$

EM - another example

- ExpectationMaximization
- Initial estimates, $\theta_{A}=0.6, \theta_{B}=0.5$
- Compute likelihood of each sequence: $\theta^{n_{H}}(1-\theta)^{n_{T}}$
- Assign each sequence

EM - another example

- ExpectationMaximization
- Initial estimates, $\theta_{A}=0.6, \theta_{B}=0.5$
- Compute likelihood of each sequence: $\theta^{n_{H}}(1-\theta)^{n_{T}}$
- Assign each sequence

Coin A	Coin B
$\approx 2.2 \mathrm{H}, 2.2 \mathrm{~T}$	$\approx 2.8 \mathrm{H}, 2.8 \mathrm{~T}$
$\approx 7.2 \mathrm{H}, 0.8 \mathrm{~T}$	$\approx 1.8 \mathrm{H}, 0.2 \mathrm{~T}$
$\approx 5.9 \mathrm{H}, 1.5 \mathrm{~T}$	$\approx 2.1 \mathrm{H}, 0.5 \mathrm{~T}$
$\approx 1.4 \mathrm{H}, 2.1 \mathrm{~T}$	$\approx 2.6 \mathrm{H}, 3.9 \mathrm{~T}$
$\approx 4.5 \mathrm{H}, 1.9 \mathrm{~T}$	$\approx 2.5 \mathrm{H}, 1.1 \mathrm{~T}$
$\approx 21.3 \mathrm{H}, 8.6 \mathrm{~T}$	$\approx 11.7 \mathrm{H}, 8.4 \mathrm{~T}$

- Converge to $\theta_{A}=0.8, \theta_{B}=0.52$

EM - mixture of Gaussians

■ Sample uniformly from multiple Gaussians, $\mathcal{N}\left(\mu_{i}, \sigma_{i}\right)$

EM - mixture of Gaussians

■ Sample uniformly from multiple Gaussians, $\mathcal{N}\left(\mu_{i}, \sigma_{i}\right)$

■ For simplicity, assume all $\sigma_{i}=\sigma$

EM - mixture of Gaussians

■ Sample uniformly from multiple Gaussians, $\mathcal{N}\left(\mu_{i}, \sigma_{i}\right)$

- For simplicity, assume all $\sigma_{i}=\sigma$

■ N sample points $z_{1}, z_{2}, \ldots, z_{N}$

EM - mixture of Gaussians

■ Sample uniformly from multiple Gaussians, $\mathcal{N}\left(\mu_{i}, \sigma_{i}\right)$

■ For simplicity, assume all $\sigma_{i}=\sigma$
■ N sample points $z_{1}, z_{2}, \ldots, z_{N}$
■ Make an initial guess for each μ_{j}

EM - mixture of Gaussians

■ Sample uniformly from multiple Gaussians, $\mathcal{N}\left(\mu_{i}, \sigma_{i}\right)$

■ For simplicity, assume all $\sigma_{i}=\sigma$
■ N sample points $z_{1}, z_{2}, \ldots, z_{N}$
■ Make an initial guess for each μ_{j}

■ $\operatorname{Pr}\left(z_{i} \mid \mu_{j}\right)=\exp \left(-\frac{1}{2 \sigma^{2}}\left(z_{i}-\mu_{j}\right)^{2}\right)$

EM - mixture of Gaussians

■ Sample uniformly from multiple Gaussians, $\mathcal{N}\left(\mu_{i}, \sigma_{i}\right)$

■ For simplicity, assume all $\sigma_{i}=\sigma$
■ N sample points $z_{1}, z_{2}, \ldots, z_{N}$
■ Make an initial guess for each μ_{j}

- $\operatorname{Pr}\left(z_{i} \mid \mu_{j}\right)=\exp \left(-\frac{1}{2 \sigma^{2}}\left(z_{i}-\mu_{j}\right)^{2}\right)$
- $\operatorname{Pr}\left(\mu_{j} \mid z_{i}\right)=c_{i j}=\frac{\operatorname{Pr}\left(z_{i} \mid \mu_{j}\right)}{\sum_{k} \operatorname{Pr}\left(z_{i} \mid \mu_{k}\right)}$

EM - mixture of Gaussians

■ Sample uniformly from multiple Gaussians, $\mathcal{N}\left(\mu_{i}, \sigma_{i}\right)$

■ For simplicity, assume all $\sigma_{i}=\sigma$
■ N sample points $z_{1}, z_{2}, \ldots, z_{N}$
■ Make an initial guess for each μ_{j}

■ $\operatorname{Pr}\left(z_{i} \mid \mu_{j}\right)=\exp \left(-\frac{1}{2 \sigma^{2}}\left(z_{i}-\mu_{j}\right)^{2}\right)$

- $\operatorname{Pr}\left(\mu_{j} \mid z_{i}\right)=c_{i j}=\frac{\operatorname{Pr}\left(z_{i} \mid \mu_{j}\right)}{\sum_{k} \operatorname{Pr}\left(z_{i} \mid \mu_{k}\right)}$

■ MLE of μ_{j} is sample mean, $\frac{\sum_{i} c_{i j} z_{i}}{\sum_{i} c_{i j}}$

EM - mixture of Gaussians

■ Sample uniformly from multiple Gaussians, $\mathcal{N}\left(\mu_{i}, \sigma_{i}\right)$

■ For simplicity, assume all $\sigma_{i}=\sigma$
■ N sample points $z_{1}, z_{2}, \ldots, z_{N}$
■ Make an initial guess for each μ_{j}

■ $\operatorname{Pr}\left(z_{i} \mid \mu_{j}\right)=\exp \left(-\frac{1}{2 \sigma^{2}}\left(z_{i}-\mu_{j}\right)^{2}\right)$

- $\operatorname{Pr}\left(\mu_{j} \mid z_{i}\right)=c_{i j}=\frac{\operatorname{Pr}\left(z_{i} \mid \mu_{j}\right)}{\sum_{k} \operatorname{Pr}\left(z_{i} \mid \mu_{k}\right)}$
- MLE of μ_{j} is sample mean, $\frac{\sum_{i} c_{i j} z_{i}}{\sum_{i} c_{i j}}$

■ Update estimates for μ_{j} and repeat

Theoretical foundations of EM

- Mixture of probabilistic models ($M_{1}, M_{2}, \ldots, M_{k}$) with parameters
$\Theta=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{k}\right)$

Theoretical foundations of EM

- Mixture of probabilistic models $\left(M_{1}, M_{2}, \ldots, M_{k}\right)$ with parameters
$\Theta=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{k}\right)$
- Observation
$O=o_{1} O_{2} \ldots o_{N}$

Theoretical foundations of EM

- Mixture of probabilistic models $\left(M_{1}, M_{2}, \ldots, M_{k}\right)$ with parameters
$\Theta=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{k}\right)$
- Observation
$O=o_{1} O_{2} \ldots o_{N}$
- EM builds a sequence of estimates $\Theta_{1}, \Theta_{2}, \ldots, \Theta_{n}$

Theoretical foundations of EM

- Mixture of probabilistic models ($M_{1}, M_{2}, \ldots, M_{k}$) with parameters
$\Theta=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{k}\right)$
- Observation
$O=o_{1} O_{2} \ldots o_{N}$
- EM builds a sequence of estimates $\Theta_{1}, \Theta_{2}, \ldots, \Theta_{n}$
- $L\left(\Theta_{j}\right)$ - log-likelihood function, $\ln \operatorname{Pr}\left(O \mid \Theta_{j}\right)$

Theoretical foundations of EM

- Mixture of probabilistic models ($M_{1}, M_{2}, \ldots, M_{k}$) with parameters
$\Theta=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{k}\right)$
- Observation
$O=o_{1} O_{2} \ldots o_{N}$
- EM builds a sequence of estimates $\Theta_{1}, \Theta_{2}, \ldots, \Theta_{n}$
- $L\left(\Theta_{j}\right)$ - log-likelihood function, $\ln \operatorname{Pr}\left(O \mid \Theta_{j}\right)$
- Want to extend the sequence with Θ_{n+1} such that $L\left(\Theta_{n+1}\right)>L\left(\Theta_{n}\right)$

Theoretical foundations of EM

- Mixture of probabilistic models $\left(M_{1}, M_{2}, \ldots, M_{k}\right)$ with parameters
$\Theta=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{k}\right)$
- Observation
$O=o_{1} O_{2} \ldots o_{N}$
- EM builds a sequence of estimates $\Theta_{1}, \Theta_{2}, \ldots, \Theta_{n}$
- $L\left(\Theta_{j}\right)$ - log-likelihood function, $\ln \operatorname{Pr}\left(O \mid \Theta_{j}\right)$

- EM performs a form of gradient descenct
- Want to extend the sequence with Θ_{n+1} such that $L\left(\Theta_{n+1}\right)>L\left(\Theta_{n}\right)$

Theoretical foundations of EM

- Mixture of probabilistic models $\left(M_{1}, M_{2}, \ldots, M_{k}\right)$ with parameters
$\Theta=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{k}\right)$
- Observation
$O=o_{1} O_{2} \ldots o_{N}$
- EM builds a sequence of estimates $\Theta_{1}, \Theta_{2}, \ldots, \Theta_{n}$
- $L\left(\Theta_{j}\right)$ - log-likelihood function, $\ln \operatorname{Pr}\left(O \mid \Theta_{j}\right)$
- Want to extend the sequence with Θ_{n+1} such that $L\left(\Theta_{n+1}\right)>L\left(\Theta_{n}\right)$

- EM performs a form of gradient descenct
- If we update Θ_{n} to Θ^{\prime} we get an new likelihood $L\left(\Theta_{n}\right)+\Delta\left(\Theta^{\prime}, \Theta_{n}\right)$ which we call $\ell\left(\Theta^{\prime} \mid \Theta_{n}\right)$

Theoretical foundations of EM

- Mixture of probabilistic models ($M_{1}, M_{2}, \ldots, M_{k}$) with parameters
$\Theta=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{k}\right)$
- Observation
$O=o_{1} O_{2} \ldots o_{N}$
- EM builds a sequence of estimates $\Theta_{1}, \Theta_{2}, \ldots, \Theta_{n}$
- $L\left(\Theta_{j}\right)$ - log-likelihood function, $\ln \operatorname{Pr}\left(O \mid \Theta_{j}\right)$
- Want to extend the sequence with Θ_{n+1} such that $L\left(\Theta_{n+1}\right)>L\left(\Theta_{n}\right)$

- EM performs a form of gradient descenct
- If we update Θ_{n} to Θ^{\prime} we get an new likelihood $L\left(\Theta_{n}\right)+\Delta\left(\Theta^{\prime}, \Theta_{n}\right)$ which we call $\ell\left(\Theta^{\prime} \mid \Theta_{n}\right)$
- Choose Θ_{n+1} to maximize $\ell\left(\Theta^{\prime} \mid \Theta_{n}\right)$

Semi-supervised learning

- Supervised learning requires labelled training data

Semi-supervised learning

- Supervised learning requires labelled training data
- What if we don't have enough labelled data?

Semi-supervised learning

- Supervised learning requires labelled training data
- What if we don't have enough labelled data?
- For a probabilistic classifier we can apply EM

Semi-supervised learning

- Supervised learning requires labelled training data
- What if we don't have enough labelled data?
- For a probabilistic classifier we can apply EM

■ Use available training data to assign initial probabilities

Semi-supervised learning

- Supervised learning requires labelled training data
- What if we don't have enough labelled data?
- For a probabilistic classifier we can apply EM

■ Use available training data to assign initial probabilities

- Label the rest of the data using this model - fractional labels

Semi-supervised learning

- Supervised learning requires labelled training data
- What if we don't have enough labelled data?
- For a probabilistic classifier we can apply EM
- Use available training data to assign initial probabilities
- Label the rest of the data using this model - fractional labels
- Add up counts and re-estimate the parameters

Semi-supervised topic classification

■ Each document is a multiset or bag of words over a vocabulary $V=\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$

Semi-supervised topic classification

■ Each document is a multiset or bag of words over a vocabulary $V=\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$

- Each topic c has probability $\operatorname{Pr}(c)$

Semi-supervised topic classification

- Each document is a multiset or bag of words over a vocabulary $V=\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$
- Each topic c has probability $\operatorname{Pr}(c)$

■ Each word $w_{i} \in V$ has conditional probability $\operatorname{Pr}\left(w_{i} \mid c_{j}\right)$, for $c_{j} \in C$

- Note that $\sum_{i=1}^{m} \operatorname{Pr}\left(w_{i} \mid c_{j}\right)=1$

Semi-supervised topic classification

■ Each document is a multiset or bag of words over a vocabulary $V=\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$

- Each topic c has probability $\operatorname{Pr}(c)$

■ Each word $w_{i} \in V$ has conditional probability $\operatorname{Pr}\left(w_{i} \mid c_{j}\right)$, for $c_{j} \in C$

- Note that $\sum_{i=1}^{m} \operatorname{Pr}\left(w_{i} \mid c_{j}\right)=1$
- Assume document length is independent of the class

Semi-supervised topic classification

■ Each document is a multiset or bag of words over a vocabulary $V=\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$

- Each topic c has probability $\operatorname{Pr}(c)$

■ Each word $w_{i} \in V$ has conditional probability $\operatorname{Pr}\left(w_{i} \mid c_{j}\right)$, for $c_{j} \in C$

- Note that $\sum_{i=1}^{m} \operatorname{Pr}\left(w_{i} \mid c_{j}\right)=1$
- Assume document length is independent of the class

■ Only a small subset of documents is labelled

- Use this subset for initial estimate of $\operatorname{Pr}(c), \operatorname{Pr}\left(w_{i} \mid c_{j}\right)$

Semi-supervised topic classification

■ Current model $\operatorname{Pr}(c), \operatorname{Pr}\left(w_{i} \mid c_{j}\right)$

Semi-supervised topic classification

■ Current model $\operatorname{Pr}(c), \operatorname{Pr}\left(w_{i} \mid c_{j}\right)$
■ Compute $\operatorname{Pr}\left(c_{j} \mid d\right)$ for each unlabelled document d

- Normally we assign the maximum among these as the class for d
- Here we keep fractional values

Semi-supervised topic classification

■ Current model $\operatorname{Pr}(c), \operatorname{Pr}\left(w_{i} \mid c_{j}\right)$

- Compute $\operatorname{Pr}\left(c_{j} \mid d\right)$ for each unlabelled document d
- Normally we assign the maximum among these as the class for d

■ Here we keep fractional values

- Recompute $\operatorname{Pr}\left(c_{j}\right)=\frac{\sum_{d \in D} \operatorname{Pr}\left(c_{j} \mid D\right)}{|D|}$
- For labelled $d, \operatorname{Pr}\left(c_{j} \mid d\right) \in\{0,1\}$
- For unlabelled $d, \operatorname{Pr}\left(c_{j} \mid d\right)$ is fractional value computed from current parameters

Semi-supervised topic classification

■ Current model $\operatorname{Pr}(c), \operatorname{Pr}\left(w_{i} \mid c_{j}\right)$
■ Compute $\operatorname{Pr}\left(c_{j} \mid d\right)$ for each unlabelled document d

- Normally we assign the maximum among these as the class for d
- Here we keep fractional values
- Recompute $\operatorname{Pr}\left(c_{j}\right)=\frac{\sum_{d \in D} \operatorname{Pr}\left(c_{j} \mid D\right)}{|D|}$
- For labelled $d, \operatorname{Pr}\left(c_{j} \mid d\right) \in\{0,1\}$
- For unlabelled $d, \operatorname{Pr}\left(c_{j} \mid d\right)$ is fractional value computed from current parameters
- Recompute $\operatorname{Pr}\left(w_{i} \mid c_{j}\right)$ - fraction of occurrences of w_{i} in documents labelled c_{j}
- $n_{i d}$ - occurrences of w_{i} in d

■ $\operatorname{Pr}\left(w_{i} \mid c_{j}\right)=\frac{\sum_{d \in D} n_{i d} \operatorname{Pr}\left(c_{j} \mid d\right)}{\sum_{t=1}^{m} \sum_{d \in D} n_{t d} \operatorname{Pr}\left(c_{j} \mid d\right)}$

Clustering

- Data points from a mixture of Gaussian distributions

Clustering

- Data points from a mixture of Gaussian distributions

■ Use EM to estimate the parameters of each Gaussian distribution

Clustering

- Data points from a mixture of Gaussian distributions

■ Use EM to estimate the parameters of each Gaussian distribution

■ Assign each point to "best" Gaussian

Clustering

- Data points from a mixture of Gaussian distributions

■ Use EM to estimate the parameters of each Gaussian distribution

- Assign each point to "best" Gaussian

- Can tweak the shape of the clusters by constraining the covariance matrix

Clustering

- Data points from a mixture of Gaussian distributions

■ Use EM to estimate the parameters of each Gaussian distribution

- Assign each point to "best" Gaussian

- Can tweak the shape of the clusters by constraining the covariance matrix
- Outliers are those that are outside $k \sigma$ for all the Gaussians

