Lecture 14: 5 March, 2024

Madhavan Mukund https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning January–April 2024

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Probabilistic process — parameters ⊖

• Tossing a coin with $\Theta = \{Pr(H)\} = \{p\}$

- Probabilistic process parameters ⊖
 - Tossing a coin with $\Theta = \{Pr(H)\} = \{p\}$
- Perform an experiment
 - Toss the coin N times, $H T H H \cdots T$

4 E N

- Probabilistic process parameters ⊖
 - Tossing a coin with $\Theta = \{Pr(H)\} = \{p\}$
- Perform an experiment
 - Toss the coin N times, $H T H H \cdots T$
- Estimate parameters from observations
 - From *h* heads, estimate p = h/N
 - Maximum Likelihood Estimator (MLE)

- Probabilistic process parameters ⊖
 - Tossing a coin with $\Theta = \{Pr(H)\} = \{p\}$
- Perform an experiment
 - Toss the coin N times, $H T H H \cdots T$
- Estimate parameters from observations
 - From *h* heads, estimate p = h/N
 - Maximum Likelihood Estimator (MLE)
- What if we have a mixture of two random processes

- Probabilistic process parameters ⊖
 - Tossing a coin with $\Theta = \{Pr(H)\} = \{p\}$
- Perform an experiment
 - Toss the coin N times, $H T H H \cdots T$
- Estimate parameters from observations
 - From *h* heads, estimate p = h/N
 - Maximum Likelihood Estimator (MLE)
- What if we have a mixture of two random processes
 - Two coins, c_1 and c_2 , with $Pr(H) = p_1$ and p_2 , respectively

- Probabilistic process parameters ⊖
 - Tossing a coin with $\Theta = \{Pr(H)\} = \{p\}$
- Perform an experiment
 - Toss the coin N times, $H T H H \cdots T$
- Estimate parameters from observations
 - From *h* heads, estimate p = h/N
 - Maximum Likelihood Estimator (MLE)
- What if we have a mixture of two random processes
 - Two coins, c_1 and c_2 , with $Pr(H) = p_1$ and p_2 , respectively
 - Repeat N times: choose c_i with probability 1/2 and toss it

- Probabilistic process parameters ⊖
 - Tossing a coin with $\Theta = \{Pr(H)\} = \{p\}$
- Perform an experiment
 - Toss the coin N times, $H T H H \cdots T$
- Estimate parameters from observations
 - From *h* heads, estimate p = h/N
 - Maximum Likelihood Estimator (MLE)
- What if we have a mixture of two random processes
 - Two coins, c_1 and c_2 , with $Pr(H) = p_1$ and p_2 , respectively
 - Repeat N times: choose c_i with probability 1/2 and toss it
 - Outcome: N_1 tosses of c_1 interleaved with N_2 tosses of c_2 , $N_1 + N_2 = N$

- Probabilistic process parameters ⊖
 - Tossing a coin with $\Theta = \{Pr(H)\} = \{p\}$
- Perform an experiment
 - Toss the coin N times, $H T H H \cdots T$
- Estimate parameters from observations
 - From *h* heads, estimate p = h/N
 - Maximum Likelihood Estimator (MLE)
- What if we have a mixture of two random processes
 - Two coins, c_1 and c_2 , with $Pr(H) = p_1$ and p_2 , respectively
 - Repeat N times: choose c_i with probability 1/2 and toss it
 - Outcome: N_1 tosses of c_1 interleaved with N_2 tosses of c_2 , $N_1 + N_2 = N_1$
 - Can we estimate p_1 and p_2 ?

Mixture models . . .

• Two coins, c_1 and c_2 , with $Pr(H) = p_1$ and p_2 , respectively

• Sequence of N interleaved coin tosses $H T H H \cdots H H T$

→

Mixture models ...

- Two coins, c_1 and c_2 , with $Pr(H) = p_1$ and p_2 , respectively
- Sequence of N interleaved coin tosses H T H H ··· H H T
- If the sequence is labelled, we can estimate p_1 , p_2 separately
 - H T T H H T H T H T H H T H T H T H H T H

4 E N

Mixture models ...

- Two coins, c_1 and c_2 , with $Pr(H) = p_1$ and p_2 , respectively
- Sequence of N interleaved coin tosses $H T H H \cdots H H T$
- If the sequence is labelled, we can estimate p_1 , p_2 separately

• *H T T H H T H <i>T H T H T H T H T H T H T H T H T H T H T H <i>T H T H T H T H <i>T H T H T*

 $\bullet p_1 = 8/12 = 2/3, \ p_2 = 3/8$

What the observation is unlabelled?

Mixture models ...

- Two coins, c_1 and c_2 , with $Pr(H) = p_1$ and p_2 , respectively
- Sequence of N interleaved coin tosses $H T H H \cdots H H T$
- If the sequence is labelled, we can estimate p_1 , p_2 separately
 - *H T T H H T H <i>T H T H T H T H T H T H T H*
 - $\bullet p_1 = 8/12 = 2/3, \ p_2 = 3/8$
- What the observation is unlabelled?

HTTHHTHTHHHTHTHTHHTHT

- Iterative algorithm to estimate the parameters
 - Make an initial guess for the parameters
 - Compute a (fractional) labelling of the outcomes
 - Re-estimate the parameters

- Iterative algorithm to estimate the parameters
 - Make an initial guess for the parameters
 - Compute a (fractional) labelling of the outcomes
 - Re-estimate the parameters

- Iterative algorithm to estimate the parameters
 - Make an initial guess for the parameters
 - Compute a (fractional) labelling of the outcomes
 - Re-estimate the parameters
- HTTHHTHTHHHTHTHTHHTHT
 - Initial guess: $p_1 = 1/2$, $p_2 = 1/4$

- Iterative algorithm to estimate the parameters
 - Make an initial guess for the parameters
 - Compute a (fractional) labelling of the outcomes
 - Re-estimate the parameters
- HTTHHTHTHHHTHTHTHHTHT
 - Initial guess: $p_1 = 1/2$, $p_2 = 1/4$
 - $Pr(c_1 = T) = q_1 = 1/2$, $Pr(c_2 = T) = q_2 = 3/4$,

P(H|G) P(H|C2) Want P(C1 |H)

4/14

- Iterative algorithm to estimate the parameters
 - Make an initial guess for the parameters
 - Compute a (fractional) labelling of the outcomes
 - Re-estimate the parameters
- HTTHHTHTHHHHTHTHTHHTHT
 - Initial guess: $p_1 = 1/2$, $p_2 = 1/4$
 - $Pr(c_1 = T) = q_1 = 1/2$, $Pr(c_2 = T) = q_2 = 3/4$,
 - For each *H*, likelihood it was c_i , $Pr(c_i | H)$, is $p_i/(p_1 + p_2)$

- Iterative algorithm to estimate the parameters
 - Make an initial guess for the parameters
 - Compute a (fractional) labelling of the outcomes
 - Re-estimate the parameters

HTTHHTHTHHHHTHTHTHHTHT

- Initial guess: $p_1 = 1/2$, $p_2 = 1/4$
- $Pr(c_1 = T) = q_1 = 1/2$, $Pr(c_2 = T) = q_2 = 3/4$,
- For each *H*, likelihood it was c_i , $Pr(c_i | H)$, is $p_i/(p_1 + p_2)$
- For each T, likelihood it was c_i , $Pr(c_i | T)$, is $q_i/(q_1 + q_2)$

- Iterative algorithm to estimate the parameters
 - Make an initial guess for the parameters
 - Compute a (fractional) labelling of the outcomes
 - Re-estimate the parameters

HTTHHTHTHHHHTHTHTHHTHT

- Initial guess: $p_1 = 1/2$, $p_2 = 1/4$
- $Pr(c_1 = T) = q_1 = 1/2$, $Pr(c_2 = T) = q_2 = 3/4$,
- For each *H*, likelihood it was c_i , $Pr(c_i | H)$, is $p_i/(p_1 + p_2)$
- For each T, likelihood it was c_i , $Pr(c_i | T)$, is $q_i/(q_1 + q_2)$
- Assign fractional count $Pr(c_i | H)$ to each $H: 2/3 \times c_1, 1/3 \times c_2$

- Iterative algorithm to estimate the parameters
 - Make an initial guess for the parameters
 - Compute a (fractional) labelling of the outcomes
 - Re-estimate the parameters
- HTTHHTHTHHHTHTHTHHTHT
 - Initial guess: $p_1 = 1/2$, $p_2 = 1/4$
 - $Pr(c_1 = T) = q_1 = 1/2$, $Pr(c_2 = T) = q_2 = 3/4$,
 - For each H, likelihood it was c_i , $Pr(c_i | H)$, is $p_i/(p_1 + p_2)$
 - For each T, likelihood it was c_i , $Pr(c_i | T)$, is $q_i/(q_1 + q_2)$
 - Assign fractional count $Pr(c_i | H)$ to each $H: 2/3 \times c_1, 1/3 \times c_2$
 - Likewise, assign fractional count $Pr(c_i | T)$ to each $T: 2/5 \times c_1, 3/5 \times c_2$

HTTHHTHTHHHHTHTHTHHTHT

- Initial guess: $p_1 = 1/2$, $p_2 = 1/4$
- Fractional counts: each H is $2/3 \times c_1$, $1/3 \times c_2$, each T: $2/5 \times c_1$, $3/5 \times c_2$

< ∃ ▶

HTTHHTHTHHHHTHTHTHHTHT

- Initial guess: $p_1 = 1/2$, $p_2 = 1/4$
- Fractional counts: each H is $2/3 \times c_1$, $1/3 \times c_2$, each T: $2/5 \times c_1$, $3/5 \times c_2$

HTTHHTHTHHHHTHTHTHHTHT

- Initial guess: $p_1 = 1/2$, $p_2 = 1/4$
- Fractional counts: each H is $2/3 \times c_1$, $1/3 \times c_2$, each T: $2/5 \times c_1$, $3/5 \times c_2$
- Add up the fractional counts
 - c_1 : $11 \cdot (2/3) = 22/3$ heads, $9 \cdot (2/5) = 18/5$ tails
 - c_2 : $11 \cdot (1/3) = 11/3$ heads, $9 \cdot (3/5) = 27/5$ tails
- Re-estimate the parameters

$$p_1 = \frac{22/3}{22/3 + 18/5} = 110/164 = 0.67, \ q_1 = 1 - p_1 = 0.33$$
$$p_2 = \frac{11/3}{11/3 + 27/5} = 55/136 = 0.40, \ q_2 = 1 - p_2 = 0.60$$

HTTHHTHTHHHHTHTHTHHTHT

- Initial guess: $p_1 = 1/2$, $p_2 = 1/4$
- Fractional counts: each H is $2/3 \times c_1$, $1/3 \times c_2$, each T: $2/5 \times c_1$, $3/5 \times c_2$
- Add up the fractional counts
 - c_1 : $11 \cdot (2/3) = 22/3$ heads, $9 \cdot (2/5) = 18/5$ tails
 - c_2 : $11 \cdot (1/3) = 11/3$ heads, $9 \cdot (3/5) = 27/5$ tails
- Re-estimate the parameters

•
$$p_1 = \frac{22/3}{22/3 + 18/5} = 110/164 = 0.67, q_1 = 1 - p_1 = 0.33$$

• $p_2 = \frac{11/3}{11/3 + 27/5} = 55/136 = 0.40, q_2 = 1 - p_2 = 0.60$

Repeat until convergence

Madhavan Mukund

• Mixture of probabilistic models (M_1, M_2, \ldots, M_k) with parameters $\Theta = (\theta_1, \theta_2, \ldots, \theta_k)$

▶ < ∃ ▶</p>

- Mixture of probabilistic models (M_1, M_2, \ldots, M_k) with parameters $\Theta = (\theta_1, \theta_2, \ldots, \theta_k)$
- Observation $O = o_1 o_2 \dots o_N$

▶ < ∃ ▶</p>

- Mixture of probabilistic models (M_1, M_2, \dots, M_k) with parameters $\Theta = (\theta_1, \theta_2, \dots, \theta_k)$
- Observation $O = o_1 o_2 \dots o_N$
- Expectation step
 - Compute likelihoods $Pr(M_i|o_j)$ for each M_i , o_j

▶ < ∃ ▶</p>

- Mixture of probabilistic models (M_1, M_2, \ldots, M_k) with parameters $\Theta = (\theta_1, \theta_2, \ldots, \theta_k)$
- Observation $O = o_1 o_2 \dots o_N$
- Expectation step
 - Compute likelihoods $Pr(M_i|o_j)$ for each M_i , o_j
- Maximization step
 - Recompute MLE for each M_i using fraction of O assigned using likelihood

- Mixture of probabilistic models $(M_1, M_2, ..., M_k)$ with parameters $\Theta = (\theta_1, \theta_2, ..., \theta_k)$
- Observation $O = o_1 o_2 \dots o_N$
- Expectation step
 - Compute likelihoods $Pr(M_i|o_j)$ for each M_i , o_j
- Maximization step
 - Recompute MLE for each M_i using fraction of O assigned using likelihood
- Repeat until convergence
 - Why should it converge?
 - If the value converges, what have we computed?

 Two biased coins, choose a coin and toss 10 times, repeat 5 times

нтттннтнтн

ннннтнннн

нтннннтнн

НТНТТТННТТ

 Two biased coins, choose a coin and toss 10 times, repeat 5 times If we know the breakup, we can separately compute MLE for each coin

	Н	Т	Т	Т	Н	Н	Т	Н	Т	Н	
--	---	---	---	---	---	---	---	---	---	---	--

ннннтннннн

нтннннтнн

нтнтттннтт

тнннтнннтн

Coin A	Coin B	
	5 H, 5 T	
9 H, 1 T		$\hat{\theta}_{A} = \frac{24}{24+6} = 0.80$
8 H, 2 T		â 9 a tr
	4 H, 6 T	$\hat{\theta}_{B} = \frac{9}{9+11} = 0.45$
7 H, 3 T		
24 H, 6 T	9 H, 11 T	

0.6

1-1

Expectation-Maximization ß

1.1 0.55 0.45

- Expectation-Maximization
- Initial estimates, $\theta_A = 0.6, \ \theta_B = 0.5$

- Expectation-Maximization
- Initial estimates, $\theta_A = 0.6, \ \theta_B = 0.5$
- Compute likelihood of each sequence: θ^{n_H}(1 - θ)^{n_T}

- Expectation-Maximization
- Initial estimates, $\theta_A = 0.6, \ \theta_B = 0.5$
- Compute likelihood of each sequence: θ^{n_H}(1 - θ)^{n_T}
- Assign each sequence proportionately

- Expectation-Maximization
- Initial estimates, $\theta_A = 0.6, \ \theta_B = 0.5$
- Compute likelihood of each sequence: θ^{n_H}(1 - θ)^{n_T}
- Assign each sequence proportionately

• Converge to $\theta_A = 0.8, \ \theta_B = 0.52$

 Sample uniformly from multiple Gaussians, *N*(μ_i, σ_i)

э

- Sample uniformly from multiple Gaussians, *N*(μ_i, σ_i)
- For simplicity, assume all $\sigma_i = \sigma$

- Sample uniformly from multiple Gaussians, *N*(μ_i, σ_i)
- For simplicity, assume all $\sigma_i = \sigma$
- N sample points z_1, z_2, \ldots, z_N

- Sample uniformly from multiple Gaussians, *N*(μ_i, σ_i)
- For simplicity, assume all $\sigma_i = \sigma$
- N sample points z_1, z_2, \ldots, z_N
- Make an initial guess for each μ_j

- Sample uniformly from multiple Gaussians, $\mathcal{N}(\mu_i, \sigma_i)$
- For simplicity, assume all $\sigma_i = \sigma$
- N sample points z_1, z_2, \ldots, z_N
- Make an initial guess for each μ_i
- $Pr(z_i \mid \mu_j) = exp(-\frac{1}{2\sigma^2}(z_i \mu_j)^2)$

- Sample uniformly from multiple Gaussians, $\mathcal{N}(\mu_i, \sigma_i)$
- For simplicity, assume all $\sigma_i = \sigma$
- N sample points z_1, z_2, \ldots, z_N
- Make an initial guess for each μ_i
- $Pr(z_i \mid \mu_j) = exp(-\frac{1}{2\sigma^2}(z_i \mu_j)^2)$ • $Pr(\mu_j \mid z_i) = c_{ij} = \frac{Pr(z_i \mid \mu_j)}{\sum_{i} Pr(z_i \mid \mu_k)}$

Lecture 14: 5 March, 2024

- Sample uniformly from multiple Gaussians, *N*(μ_i, σ_i)
- For simplicity, assume all $\sigma_i = \sigma$
- N sample points z_1, z_2, \ldots, z_N
- Make an initial guess for each μ_j
- $Pr(z_i \mid \mu_j) = exp(-\frac{1}{2\sigma^2}(z_i \mu_j)^2)$
- $Pr(\mu_j \mid z_i) = c_{ij} = \frac{Pr(z_i \mid \mu_j)}{\sum_k Pr(z_i \mid \mu_k)}$
- MLE of μ_j is sample mean, $\frac{\sum_i c_{ij} z_i}{\sum_i c_{ii}}$

9/14

- Sample uniformly from multiple Gaussians, *N*(μ_i, σ_i)
- For simplicity, assume all $\sigma_i = \sigma$
- *N* sample points z_1, z_2, \ldots, z_N
- Make an initial guess for each μ_j
- $Pr(z_i \mid \mu_j) = exp(-\frac{1}{2\sigma^2}(z_i \mu_j)^2)$
- $Pr(\mu_j \mid z_i) = c_{ij} = \frac{Pr(z_i \mid \mu_j)}{\sum_k Pr(z_i \mid \mu_k)}$
- MLE of μ_j is sample mean, $\frac{\sum_i c_{ij} z_i}{\sum_i c_{ii}}$
- Update estimates for μ_j and repeat

Lecture 14: 5 March, 2024

9/14

• Mixture of probabilistic models (M_1, M_2, \dots, M_k) with parameters $\Theta = (\theta_1, \theta_2, \dots, \theta_k)$

- Mixture of probabilistic models (M_1, M_2, \dots, M_k) with parameters $\Theta = (\theta_1, \theta_2, \dots, \theta_k)$
- Observation $O = o_1 o_2 \dots o_N$

- Mixture of probabilistic models (M₁, M₂,..., M_k) with parameters Θ = (θ₁, θ₂,..., θ_k)
- Observation $O = o_1 o_2 \dots o_N$
- EM builds a sequence of estimates $\Theta_1, \Theta_2, \dots, \Theta_n$

- Mixture of probabilistic models (M₁, M₂,..., M_k) with parameters Θ = (θ₁, θ₂,..., θ_k)
- Observation $O = o_1 o_2 \dots o_N$
- EM builds a sequence of estimates ⊖₁, ⊖₂, ..., ⊖_n
- $L(\Theta_j)$ log-likelihood function, $\ln Pr(O \mid \Theta_j)$

DMML Jan-Apr 2024

10/14

- Mixture of probabilistic models (M₁, M₂,..., M_k) with parameters Θ = (θ₁, θ₂,..., θ_k)
- Observation $O = o_1 o_2 \dots o_N$
- EM builds a sequence of estimates ⊖₁, ⊖₂, ..., ⊖_n
- $L(\Theta_j)$ log-likelihood function, $\ln Pr(O \mid \Theta_j)$
- Want to extend the sequence with ⊖_{n+1} such that L(⊖_{n+1}) > L(⊖_n)

- Mixture of probabilistic models (M₁, M₂,..., M_k) with parameters Θ = (θ₁, θ₂,..., θ_k)
- Observation $O = o_1 o_2 \dots o_N$
- EM builds a sequence of estimates ⊖₁, ⊖₂, ..., ⊖_n
- $L(\Theta_j)$ log-likelihood function, $\ln Pr(O \mid \Theta_j)$
- Want to extend the sequence with ⊖_{n+1} such that L(⊖_{n+1}) > L(⊖_n)

- Mixture of probabilistic models (M₁, M₂,..., M_k) with parameters Θ = (θ₁, θ₂,..., θ_k)
- Observation $O = o_1 o_2 \dots o_N$
- EM builds a sequence of estimates $\Theta_1, \Theta_2, \dots, \Theta_n$
- $L(\Theta_j)$ log-likelihood function, $\ln Pr(O \mid \Theta_j)$
- Want to extend the sequence with ⊖_{n+1} such that L(⊖_{n+1}) > L(⊖_n)

- EM performs a form of gradient descenct
- If we update Θ_n to Θ' we get an new likelihood $L(\Theta_n) + \Delta(\Theta', \Theta_n)$ which we call $\ell(\Theta' | \Theta_n)$

- Mixture of probabilistic models (M₁, M₂,..., M_k) with parameters
 Θ = (θ₁, θ₂,..., θ_k)
- Observation $O = o_1 o_2 \dots o_N$
- EM builds a sequence of estimates $\Theta_1, \Theta_2, \dots, \Theta_n$
- $L(\Theta_j)$ log-likelihood function, $\ln Pr(O \mid \Theta_j)$
- Want to extend the sequence with ⊖_{n+1} such that L(⊖_{n+1}) > L(⊖_n)

- EM performs a form of gradient descenct
- If we update Θ_n to Θ' we get an new likelihood L(Θ_n) + Δ(Θ', Θ_n) which we call ℓ(Θ' | Θ_n)
- Choose Θ_{n+1} to maximize $\ell(\Theta' \mid \Theta_n)$

Supervised learning requires labelled training data

< ∃ >

э

- Supervised learning requires labelled training data
- What if we don't have enough labelled data?

-

- Supervised learning requires labelled training data
- What if we don't have enough labelled data?
- For a probabilistic classifier we can apply EM

- Supervised learning requires labelled training data
- What if we don't have enough labelled data?
- For a probabilistic classifier we can apply EM
 - Use available training data to assign initial probabilities

- Supervised learning requires labelled training data
- What if we don't have enough labelled data?
- For a probabilistic classifier we can apply EM
 - Use available training data to assign initial probabilities
 - Label the rest of the data using this model fractional labels

- Supervised learning requires labelled training data
- What if we don't have enough labelled data?
- For a probabilistic classifier we can apply EM
 - Use available training data to assign initial probabilities
 - Label the rest of the data using this model fractional labels
 - Add up counts and re-estimate the parameters

11/14

Each document is a multiset or bag of words over a vocabulary
 V = {w₁, w₂, ..., w_m}

< ∃→

э

- Each document is a multiset or bag of words over a vocabulary $V = \{w_1, w_2, \dots, w_m\}$
- Each topic c has probability Pr(c)

- Each document is a multiset or bag of words over a vocabulary $V = \{w_1, w_2, \dots, w_m\}$
- Each topic c has probability Pr(c)
- Each word $w_i \in V$ has conditional probability $Pr(w_i | c_j)$, for $c_j \in C$

• Note that
$$\sum_{i=1}^m Pr(w_i \mid c_j) = 1$$

- Each document is a multiset or bag of words over a vocabulary $V = \{w_1, w_2, \dots, w_m\}$
- Each topic c has probability Pr(c)
- Each word $w_i \in V$ has conditional probability $Pr(w_i | c_j)$, for $c_j \in C$

Note that
$$\sum_{i=1}^m Pr(w_i \mid c_j) = 1$$

Assume document length is independent of the class

- Each document is a multiset or bag of words over a vocabulary $V = \{w_1, w_2, \dots, w_m\}$
- Each topic c has probability Pr(c)
- Each word $w_i \in V$ has conditional probability $Pr(w_i | c_j)$, for $c_j \in C$

• Note that $\sum_{i=1}^{m} Pr(w_i \mid c_j) = 1$

- Assume document length is independent of the class
- Only a small subset of documents is labelled
 - Use this subset for initial estimate of Pr(c), $Pr(w_i | c_j)$

• Current model Pr(c), $Pr(w_i | c_j)$

< ⊒ ▶

э

- Current model Pr(c), $Pr(w_i | c_j)$
- Compute $Pr(c_i \mid d)$ for each unlabelled document d
 - Normally we assign the maximum among these as the class for d
 - Here we keep fractional values

- Current model Pr(c), $Pr(w_i | c_j)$
- Compute $Pr(c_i \mid d)$ for each unlabelled document d
 - Normally we assign the maximum among these as the class for d
 - Here we keep fractional values

• Recompute
$$Pr(c_j) = \frac{\sum_{d \in D} Pr(c_j \mid D)}{|D|}$$

- For labelled d, $Pr(c_j \mid d) \in \{0, 1\}$
- For unlabelled d, $Pr(c_j \mid d)$ is fractional value computed from current parameters

13/14

- Current model Pr(c), $Pr(w_i | c_j)$
- Compute $Pr(c_i \mid d)$ for each unlabelled document d
 - Normally we assign the maximum among these as the class for d
 - Here we keep fractional values

• Recompute
$$Pr(c_j) = \frac{\sum_{d \in D} Pr(c_j \mid D)}{|D|}$$

- For labelled d, $Pr(c_j \mid d) \in \{0, 1\}$
- For unlabelled d, $Pr(c_j \mid d)$ is fractional value computed from current parameters
- Recompute $Pr(w_i | c_j)$ fraction of occurrences of w_i in documents labelled c_j

$$n_{id} - \text{occurrences of } w_i \text{ in } d$$

$$Pr(w_i \mid c_j) = \frac{\sum_{d \in D} n_{id} Pr(c_j \mid d)}{\sum_{t=1}^{m} \sum_{d \in D} n_{td} Pr(c_j \mid d)}$$

 Data points from a mixture of Gaussian distributions

DMML Jan-Apr 2024

< E

э

- Data points from a mixture of Gaussian distributions
- Use EM to estimate the parameters of each Gaussian distribution

- Data points from a mixture of Gaussian distributions
- Use EM to estimate the parameters of each Gaussian distribution
- Assign each point to "best" Gaussian

- Data points from a mixture of Gaussian distributions
- Use EM to estimate the parameters of each Gaussian distribution
- Assign each point to "best" Gaussian
- Can tweak the shape of the clusters by constraining the covariance matrix

Lecture 14: 5 March, 2024

- Data points from a mixture of Gaussian distributions
- Use EM to estimate the parameters of each Gaussian distribution
- Assign each point to "best" Gaussian
- Can tweak the shape of the clusters by constraining the covariance matrix
- Outliers are those that are outside $k\sigma$ for all the Gaussians

Madhavan Mukund

Lecture 14: 5 March, 2024