Lecture 22: 04 April, 2024

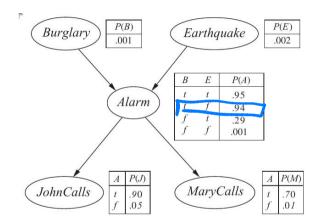
Madhavan Mukund https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning January–April 2024

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Approximate inference

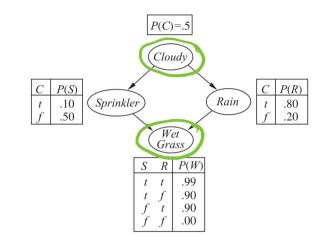
- Exact inference is NP-complete
- Generate random samples, count to estimate probabilities
- Respect conditional probabilities generate in topological order
- Suppose we are interested in P(b | j, m)
- Samples with $\neg j$ or $\neg m$ are useless
- Can we sample more efficiently?



< ∃→

Rejection sampling

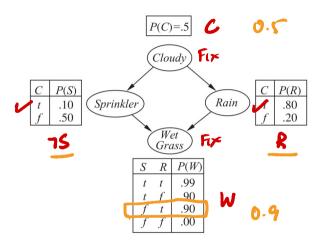
- P(Rain | Cloudy, Wet Grass)
- If we start with ¬*Cloudy*, sample is useless
- Immediately stop and reject this sample — rejection sampling
- General problem with low probability situation — many samples are rejected



Likelihood weighted sampling

- P(Rain | Cloudy, Wet Grass)
- Fix evidence *Cloudy*, *Wet Grass* true
- Then generate the other variables
- Compute likelihood of evidence
- Samples *s*₁, *s*₂, ..., *s*_N with weights *w*₁, *w*₂, ... *w*_N

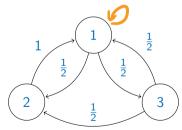
$$P(r \mid c, w) = \frac{\sum_{s_i \text{ has rain } w_i}}{\sum_{1 \le j \le N} w_j}$$



1/15

Markov chains

- Finite set of states, with transition probabilities between states
- For us, a state will be an assignment of values to variables
- A three state Markov Chain

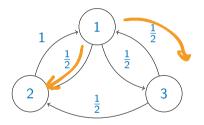


Represent using a transition matrix — stochastic $A = \begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ 1 & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}$

P[j] is probability of being in state j

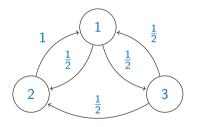
Ergodicity

- Markov chain A is ergodic if there is some t₀ such that for every P, for all t > t₀, for every j, (P^TA^t)[j] > 0.
- Ergodic Markov chain has a stationary distribution π^* , $(\pi^*)^\top A = \pi^*$
- For any starting distribution P, $\lim_{t\to\infty} P^{\top} A^t = \pi^*$
- Stationary distribution represents fraction of visits to each state in a long enough execution
- Sufficient conditions for ergodicity
 - Irreducible (strong connected)
 - Aperiodic (paths of all lengths between states)



Approximate inference using Markov chains

- Bayesian network has variables
 V₁, V₂, ..., V_n
- Each assignment of values to the variables is a state
- Set up a Markov chain based on these states
- Stationary distribution should assign to state s the probability P(s) in the Bayesian network
- How to reverse engineer the transition probabilities to achieve this?



• Ergodic Markov chain with stationary distribution π^* (which we shall write as π)

< ∃ >

- Ergodic Markov chain with stationary distribution π^* (which we shall write as π)
- Transition matrix A, write p_{jk} for A[j][k]
 - Probability of transition from state j to state k

- Ergodic Markov chain with stationary distribution π^* (which we shall write as π)
- Transition matrix A, write p_{jk} for A[j][k]
 - Probability of transition from state j to state k
- Reversibility : $\pi_j \cdot p_{jk} = \pi_k \cdot p_{kj}$, for all j,k (balance equations)
 - In steady state, probability of being in state j and then moving to k same as probability of being in state k and then moving to j

- Ergodic Markov chain with stationary distribution π^* (which we shall write as π)
- Transition matrix A, write p_{jk} for A[j][k]
 - Probability of transition from state j to state k
- Reversibility : $\pi_j \cdot p_{jk} = \pi_k \cdot p_{kj}$, for all j,k (balance equations)
 - In steady state, probability of being in state j and then moving to k same as probability of being in state k and then moving to j
- Derivation of balance equations

- Ergodic Markov chain with stationary distribution π^* (which we shall write as π)
- Transition matrix A, write p_{jk} for A[j][k]
 - Probability of transition from state j to state k
- Reversibility : $\pi_j \cdot p_{jk} = \pi_k \cdot p_{kj}$, for all j, k (balance equations)
 - In steady state, probability of being in state j and then moving to k same as probability of being in state k and then moving to j
- Derivation of balance equations
 - Given an evolution $x_1x_2...$, for large n, $P[x_n = j \mid x_{n-1} = k] = P[x_{n-1} = j \mid x_n = k]$

► 4 Ξ ►

- Ergodic Markov chain with stationary distribution π^* (which we shall write as π)
- Transition matrix A, write p_{jk} for A[j][k]
 - Probability of transition from state j to state k
- Reversibility : $\pi_j \cdot p_{jk} = \pi_k \cdot p_{kj}$, for all j, k (balance equations)
 - In steady state, probability of being in state j and then moving to k same as probability of being in state k and then moving to j
- Derivation of balance equations
 - Given an evolution $x_1x_2...$, for large n, $P[x_n = j \mid x_{n-1} = k] = P[x_{n-1} = j \mid x_n = k]$

$$P[x_{n-1} = j \mid x_n = k] = P[x_n = k \mid x_{n-1} = j] \cdot \frac{P[x_{n-1} = j]}{P[x_n = k]} \prod_{k=1}^{n} \prod_{k$$

A B < A B </p>

- Ergodic Markov chain with stationary distribution π^* (which we shall write as π)
- Transition matrix A, write p_{jk} for A[j][k]
 - Probability of transition from state j to state k
- Reversibility : $\pi_j \cdot p_{jk} = \pi_k \cdot p_{kj}$, for all j,k (balance equations)
 - In steady state, probability of being in state j and then moving to k same as probability of being in state k and then moving to j
- Derivation of balance equations
 - Given an evolution $x_1x_2...$, for large n, $P[x_n = j \mid x_{n-1} = k] = P[x_{n-1} = j \mid x_n = k]$

•
$$P[x_{n-1} = j \mid x_n = k] = P[x_n = k \mid x_{n-1} = j] \cdot \frac{\pi_j}{\pi_k}$$
, in steady state

► 4 Ξ ►

- Ergodic Markov chain with stationary distribution π^* (which we shall write as π)
- Transition matrix A, write p_{jk} for A[j][k]
 - Probability of transition from state j to state k
- Reversibility : $\pi_j \cdot p_{jk} = \pi_k \cdot p_{kj}$, for all j, k (balance equations)
 - In steady state, probability of being in state j and then moving to k same as probability of being in state k and then moving to j
- Derivation of balance equations
 - Given an evolution $x_1x_2...$, for large n, $P[x_n = j \mid x_{n-1} = k] = P[x_{n-1} = j \mid x_n = k]$
 - $P[x_{n-1} = j \mid x_n = k] = P[x_n = k \mid x_{n-1} = j] \cdot \frac{\pi_j}{\pi_k}$, in steady state

•
$$p_{kj} = p_{jk} \frac{\pi_j}{\pi_k}$$
, so $\pi_j \cdot p_{jk} = \pi_k \cdot p_{kj}$

Ergodic Markov chain

→ < ∃→

- Ergodic Markov chain
- Suppose $a^{\top} = (a_1, a_2, \dots, a_n)$ satifies reversibility balance equations for all j, k
 - $\bullet a_j \cdot p_{jk} = a_k \cdot p_{kj}$
 - Ty Pire = The Piej

A B < A B </p>

- Ergodic Markov chain
- Suppose $a^{\top} = (a_1, a_2, \dots, a_n)$ satifies reversibility balance equations for all j, k
- $a_j \cdot p_{jk} = a_k \cdot p_{kj}$ $\sum_k a_j p_{jk} = \sum_k a_k \cdot p_{kj}$

< ∃ ▶

- Ergodic Markov chain
- Suppose $a^{\top} = (a_1, a_2, \dots, a_n)$ satifies reversibility balance equations for all j, k
- $a_j \cdot p_{jk} = a_k \cdot p_{kj}$ $\sum_k a_j \cdot p_{jk} = \sum_k a_k \cdot p_{kj}$ $a_j \sum_k p_{jk} = \sum_k a_k \cdot p_{kj}$

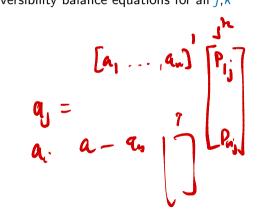
★ 3 ★ 3

Ergodic Markov chain

• Suppose $a^{\top} = (a_1, a_2, \dots, a_n)$ satifies reversibility balance equations for all j, k

•
$$a_j \cdot p_{jk} = a_k \cdot p_{kj}$$

• $\sum_k a_j \cdot p_{jk} = \sum_k a_k \cdot p_{kj}$
• $a_j \sum_k p_{jk} = \sum_k a_k \cdot p_{kj}$
• $a_j \cdot 1 = \sum_k a_k \cdot p_{kj}$



- Ergodic Markov chain
- Suppose $a^{\top} = (a_1, a_2, \dots, a_n)$ satifies reversibility balance equations for all j, k
 - $\bullet a_j \cdot p_{jk} = a_k \cdot p_{kj}$

$$\sum_{k} a_j \cdot p_{jk} = \sum_{k} a_k \cdot p_{kj}$$

•
$$a_j \sum_k p_{jk} = \sum_k a_k \cdot p_{kj}$$

• $a_j \cdot 1 = \sum_k a_k \cdot p_{kj}$

• $a^{\top} = a^{\top}A$, so a^{\top} is the stationary distribution of A

A B M
 A
 B M
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A

• State of a Bayesian network is a valuation of variables (V_1, V_2, \ldots, V_n)

→ < ∃→

- State of a Bayesian network is a valuation of variables $(V_1, V_2, ..., V_n)$ $\Rightarrow 2^n states$
- Move probabilistically from $s_j = (x_1, x_2, \dots, x_n)$ to $s_k = (y_1, y_2, \dots, y_n)$

< ∃ ▶

- State of a Bayesian network is a valuation of variables (V_1, V_2, \ldots, V_n)
- Move probabilistically from $s_j = (x_1, x_2, \dots, x_n)$ to $s_k = (y_1, y_2, \dots, y_n)$
- Allow such a move only when s_j , s_k differ at exactly one position
 - $s_j = (x_1, x_2, \ldots, x_{i-1}, x_i, x_{i+1}, \ldots, x_n)$
 - $s_k = (x_1, x_2, ..., x_{i-1}, y_i, x_{i+1}, ..., x_n)$

10/15

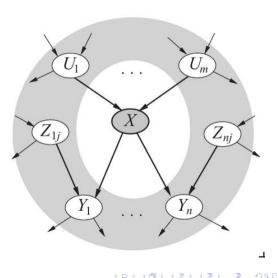
- State of a Bayesian network is a valuation of variables (V_1, V_2, \ldots, V_n)
- Move probabilistically from $s_j = (x_1, x_2, \dots, x_n)$ to $s_k = (y_1, y_2, \dots, y_n)$
- Allow such a move only when s_j , s_k differ at exactly one position
 - $s_j = (x_1, x_2, ..., x_{i-1}, x_i, x_{i+1}, ..., x_n)$
 - $s_k = (x_1, x_2, \dots, x_{i-1}, y_i, x_{i+1}, \dots, x_n)$
- Sampling algorithm
 - Current state is $s_j = (x_1, x_2, \dots, x_n)$
 - Choose *i* uniformly in [1, *n*]
 - Resample x_i given current values $(x_1, x_2, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n)$

- State of a Bayesian network is a valuation of variables (V_1, V_2, \ldots, V_n)
- Move probabilistically from $s_j = (x_1, x_2, \dots, x_n)$ to $s_k = (y_1, y_2, \dots, y_n)$
- Allow such a move only when s_j , s_k differ at exactly one position
 - $s_j = (x_1, x_2, ..., x_{i-1}, x_i, x_{i+1}, ..., x_n)$
 - $s_k = (x_1, x_2, \dots, x_{i-1}, y_i, x_{i+1}, \dots, x_n)$
- Sampling algorithm
 - Current state is $s_j = (x_1, x_2, \ldots, x_n)$
 - Choose *i* uniformly in [1, *n*]
 - Resample x_i given current values $(x_1, x_2, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n)$
- Need to compute $P[y_i | x_1, x_2, ..., x_{i-1}, x_{i+1}, ..., x_n]$

э

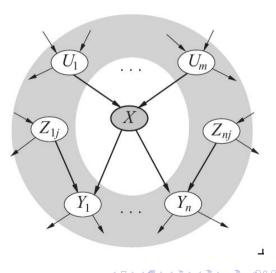
10/15

- Recall MB(X) Markov blanket of X
 - Parents(X)
 - Children(X)
 - Parents of Children(X)
- $\blacksquare X \perp \neg MB(X) \mid MB(X)$

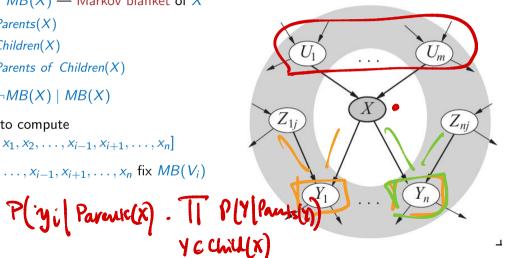


11/15

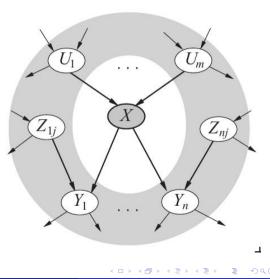
- Recall MB(X) Markov blanket of X
 - Parents(X)
 - Children(X)
 - Parents of Children(X)
- $\blacksquare X \perp \neg MB(X) \mid MB(X)$
- Need to compute $P[y_i \mid x_1, x_2, \dots, x_{i-1}, x_{i+1}, \dots, x_n]$



- Recall MB(X) Markov blanket of X
 - \blacksquare Parents(X)
 - Children(X)
 - Parents of Children(X)
- $\blacksquare X \perp \neg MB(X) \mid MB(X)$
- Need to compute $P[y_i | x_1, x_2, \dots, x_{i-1}, x_{i+1}, \dots, x_n]$
- $x_1, x_2, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n$ fix $MB(V_i)$



- Recall MB(X) Markov blanket of X
 - Parents(X)
 - Children(X)
 - Parents of Children(X)
- $\blacksquare X \perp \neg MB(X) \mid MB(X)$
- Need to compute *P*[*y_i* | *x*₁, *x*₂, ..., *x_i*−1, *x_i*+1, ..., *x_n*]
- $x_1, x_2, ..., x_{i-1}, x_{i+1}, ..., x_n$ fix $MB(V_i)$
- Can compute
 P[y_i | x₁, x₂,..., x_{i-1}, x_{i+1},..., x_n] given conditional probability tables in the network



• Move from $s_j = (x_1, x_2, \dots, x_{i-1}, \mathbf{x}_i, x_{i+1}, \dots, x_n)$ to $s_k = (x_1, x_2, \dots, x_{i-1}, \mathbf{y}_i, x_{i+1}, \dots, x_n)$

- Move from $s_j = (x_1, x_2, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_n)$ to $s_k = (x_1, x_2, \dots, x_{i-1}, y_i, x_{i+1}, \dots, x_n)$
- Let $\bar{x} = (x_1, x_2, \dots, x_{i-1}, x_{i+1}, \dots, x_n)$

► 4 Ξ ►

- Move from $s_j = (x_1, x_2, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_n)$ to $s_k = (x_1, x_2, \dots, x_{i-1}, y_i, x_{i+1}, \dots, x_n)$
- Let $\bar{x} = (x_1, x_2, \dots, x_{i-1}, x_{i+1}, \dots, x_n)$
- $\bullet p_{jk} = \frac{1}{n} P[y_i \mid \bar{x}]$

★ 3 ★ 3 ±

- Move from $s_j = (x_1, x_2, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_n)$ to $s_k = (x_1, x_2, \dots, x_{i-1}, y_i, x_{i+1}, \dots, x_n)$
- Let $\bar{x} = (x_1, x_2, \dots, x_{i-1}, x_{i+1}, \dots, x_n)$ • $p_{jk} = \frac{1}{n} P[y_i \mid \bar{x}] = \frac{1}{n} \frac{P(s_k)}{P(\bar{x})}$ $\chi_{l-\chi_{ln}}, \chi_{ln}, \dots, \chi_n$

(신문) 문

• Move from
$$s_j = (x_1, x_2, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_n)$$
 to
 $s_k = (x_1, x_2, \dots, x_{i-1}, y_i, x_{i+1}, \dots, x_n)$

• Let $\bar{x} = (x_1, x_2, \dots, x_{i-1}, x_{i+1}, \dots, x_n)$ • $p_{jk} = \frac{1}{n} P[y_i \mid \bar{x}] = \frac{1}{n} \frac{P(s_k)}{P(\bar{x})}$ • Likewise $p_{kj} = \frac{1}{n} P[x_i \mid \bar{x}] = \frac{1}{n} \frac{P(s_j)}{P(\bar{x})}$

★ 3 ★ 3 ±

• Move from
$$s_j = (x_1, x_2, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_n)$$
 to
 $s_k = (x_1, x_2, \dots, x_{i-1}, y_i, x_{i+1}, \dots, x_n)$

• Let $\bar{x} = (x_1, x_2, \dots, x_{i-1}, x_{i+1}, \dots, x_n)$ • $p_{jk} = \frac{1}{n} P[y_i \mid \bar{x}] = \frac{1}{n} \frac{P(s_k)}{P(\bar{x})}$ • Likewise $p_{kj} = \frac{1}{n} P[x_i \mid \bar{x}] = \frac{1}{n} \frac{P(s_j)}{P(\bar{x})}$ Therefore, $\frac{p_{jk}}{p_{kj}} = \frac{P(s_k)}{P(s_j)}$, so $P(s_j) \cdot p_{jk} = P(s_k) \cdot p_{kj}$ and this chain is reversible

• Move from
$$s_j = (x_1, x_2, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_n)$$
 to
 $s_k = (x_1, x_2, \dots, x_{i-1}, y_i, x_{i+1}, \dots, x_n)$

• Let
$$\bar{x} = (x_1, x_2, \dots, x_{i-1}, x_{i+1}, \dots, x_n)$$

• $p_{jk} = \frac{1}{n} P[y_i \mid \bar{x}] = \frac{1}{n} \frac{P(s_k)}{P(\bar{x})}$

• Likewise
$$p_{kj} = \frac{1}{n} P[x_i \mid \bar{x}] = \frac{1}{n} \frac{P(s_j)}{P(\bar{x})}$$

• Therefore, $\frac{p_{jk}}{p_{kj}} = \frac{P(s_k)}{P(s_j)}$, so $P(s_j) \cdot p_{jk} = P(s_k) \cdot p_{kj}$ and this chain is reversible

By our previous observation about any vector a[⊤] satisfying balance equations, we must have (P(s₁), P(s₂),..., P(s_n)) = (π₁, π₂,..., π_n) for the current Markov chain

• Move from $s_j = (x_1, x_2, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_n)$ to $s_k = (x_1, x_2, \dots, x_{i-1}, y_i, x_{i+1}, \dots, x_n)$ P[j]

- $\bullet \pi_j \cdot p_{jk} = \pi_k \cdot p_{kj}$
- We have created a reversible Markov chain whose stationary distribution provides the true probabilities of the original Bayesian network!

▶ < ∃ ▶</p>

- Move from $s_j = (x_1, x_2, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_n)$ to $s_k = (x_1, x_2, \dots, x_{i-1}, y_i, x_{i+1}, \dots, x_n)$
- $\bullet \pi_j \cdot p_{jk} = \pi_k \cdot p_{kj}$
- We have created a reversible Markov chain whose stationary distribution provides the true probabilities of the original Bayesian network!
- Gibbs sampling is a special case of the more general Metropolis-Hastings algorithm

► 4 Ξ ►

э.

Since we are dealing with steady state probabilities, it is not necessary to change just one variable at a time

< ∃ >

- Since we are dealing with steady state probabilities, it is not necessary to change just one variable at a time
 - Generate an entirely new sample state (y_1, y_2, \ldots, y_n)

- Since we are dealing with steady state probabilities, it is not necessary to change just one variable at a time
 - Generate an entirely new sample state (y_1, y_2, \dots, y_n)
 - First generate y_1 , given x_2, x_3, \ldots, x_n

- Since we are dealing with steady state probabilities, it is not necessary to change just one variable at a time
 - Generate an entirely new sample state (y_1, y_2, \dots, y_n)
 - First generate y_1 , given x_2, x_3, \ldots, x_n
 - Then generate y_2 , given y_1, x_3, \ldots, x_n

- Since we are dealing with steady state probabilities, it is not necessary to change just one variable at a time
 - Generate an entirely new sample state (y_1, y_2, \dots, y_n)
 - First generate y_1 , given x_2, x_3, \ldots, x_n
 - Then generate y_2 , given y_1, x_3, \ldots, x_n
 - ...
 - Then generate y_n , given $y_1, y_2, \ldots, y_{n-1}$

- Since we are dealing with steady state probabilities, it is not necessary to change just one variable at a time
 - Generate an entirely new sample state (y_1, y_2, \dots, y_n)
 - First generate y_1 , given x_2, x_3, \ldots, x_n
 - Then generate y_2 , given y_1, x_3, \ldots, x_n
 - ...
 - Then generate y_n , given $y_1, y_2, \ldots, y_{n-1}$
- Standard Gibbs sampler again a reversible Markov chain

Approximate inference using Markov chains

- Bayesian network has variables
 V₁, V₂, ..., V_n
- Use Gibbs sampling to set up a reversible Markov chain
- Stationary distribution will assign to each state s its probability P(s) in the Bayesian network

