Lecture 21: 2 April, 2024

Madhavan Mukund
https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning January-April 2024

D-Separation

- Check if $X \perp Y \mid Z$

$P(x \mid y, z)=P(x \mid z)$

- Dependence should be blocked on every trail from X to Y
- Each undirected path from X to Y is a sequence of basic trails
- For (a), (b), (c), need Z present

■ For (d), need Z absent
■ In general, V-structure includes
 descendants of the bottom node

- x and y are D-separated given z if all trails are blocked

■ Variation of breadth first search (BFS) to check if y is reachable from x through some trail

■ Extends to sets - each $x \in X$ is D-separated from each $y \in Y$

Markov blanket

- $M B(X)$ Markov blanket of X

Markov blanket

- $M B(X)$ - Markov blanket of X
- Parents(X)

Markov blanket

- $M B(X)$ - Markov blanket of X
- Parents (X)
- Children (X)

Markov blanket

- $M B(X)$ - Markov blanket of X
- Parents (X)
- Children(X)
- Parents of Children (X)

Markov blanket

Computing with probabilistic graphical models

- John and Mary call Pearl. What is the probability that there has been a burglary?

Computing with probabilistic graphical models

- John and Mary call Pearl. What is the probability that there has been a burglary?
- Want $P(b \mid m, j)$

Computing with probabilistic graphical models

- John and Mary call Pearl. What is the probability that there has been a burglary?
- Want $P(b \mid m, j)$
- $\frac{P(b, m, j)}{P(m, j)}$ or

Computing with probabilistic graphical models

- John and Mary call Pearl. What is the probability that there has been a burglary?
- Want $P(b \mid m, j)$
- $\frac{P(b, m, j)}{P(m, j)}$

■ Use chain rule to evaluate joint probabilities

Computing with probabilistic graphical models

- John and Mary call Pearl. What is the probability that there has been a burglary?
- Want $P(b \mid m, j)$
- $\frac{P(b, m, j)}{P(m, j)}$

■ Use chain rule to evaluate joint probabilities

■ Reorder variables appropriately, topological order of graph

Computing with probabilistic graphical models

- $P(m, j, b)=P(b) \sum_{e=0}^{1} P(e) \sum_{a=0}^{1} P(a \mid b, e) P(m \mid a) P(j \mid a)$

Computing with probabilistic graphical models

- $P(m, j, b)=P(b) \sum_{e=0}^{1} P(e) \sum_{a=0}^{1} P(a \mid b, e) P(m \mid a) P(j \mid a)$
- Construct the computation tree

Computing with probabilistic graphical models

- $P(m, j, b)=P(b) \sum_{e=0}^{1} P(e) \sum_{a=0}^{1} P(a \mid b, e) P(m \mid a) P(j \mid a)$
- Construct the computation tree
- Use dynamic programming to avoid duplicated computations

Computing with probabilistic graphical models

- $P(m, j, b)=P(b) \sum_{e=0}^{1} P(e) \sum_{a=0}^{1} P(a \mid b, e) P(m \mid a) P(j \mid a)$
- Construct the computation tree
- Use dynamic programming to avoid duplicated computations
- However, exact inference is NP-complete, in general

Computing with probabilistic graphical models

- $P(m, j, b)=P(b) \sum_{e=0}^{1} P(e) \sum_{a=0}^{1} P(a \mid b, e) P(m \mid a) P(j \mid a)$
- Construct the computation tree
- Use dynamic programming to avoid duplicated computations
- However, exact inference is NP-complete, in general
- Instead, approximate inference through sampling

Approximate inference

- Generate random samples (b, e, a, m, j), count to estimate probabilities

Approximate inference

- Generate random samples (b, e, a, m, j), count to estimate probabilities
- Random samples should respect conditional probabilities

Approximate inference

- Generate random samples (b, e, a, m, j), count to estimate probabilities
- Random samples should respect conditional probabilities
- Fix parents of x before generating x

Approximate inference

- Generate random samples (b, e, a, m, j), count to estimate probabilities
- Random samples should respect conditional probabilities
- Fix parents of x before generating x
- Generate in topological order
- Generate b, e with probabilities $P(b)$ and $P(e)$
- Generate a with probability
 $P(a \mid b, e)$

■ Generate j, m with probabilities $P(j \mid a), P(m \mid a)$

Approximate inference

- We are interested in $P(b \mid j, m)$

Approximate inference

- We are interested in $P(b \mid j, m)$

■ Samples with $\neg j$ or $\neg m$ are useless

Approximate inference

- We are interested in $P(b \mid j, m)$

■ Samples with $\neg j$ or $\neg m$ are useless

- Can we sample more efficiently?

Rejection sampling

- $P($ Rain \mid Cloudy, Wet Grass $)$

Rejection sampling

- $P($ Rain \mid Cloudy, Wet Grass)
- Topological order
- Generate Cloudy
- Generate Sprinkler, Rain
- Generate Wet Grass

Rejection sampling

- $P($ Rain \mid Cloudy, Wet Grass $)$
- Topological order
- Generate Cloudy
- Generate Sprinkler, Rain
- Generate Wet Grass

■ If we start with \neg Cloudy, sample is useless

Rejection sampling

- $P($ Rain \mid Cloudy, Wet Grass $)$
- Topological order
- Generate Cloudy
- Generate Sprinkler, Rain
- Generate Wet Grass

■ If we start with \neg Cloudy, sample is useless

- Immediately stop and reject this sample - rejection sampling

Rejection sampling

- $P($ Rain \mid Cloudy, Wet Grass)
- Topological order
- Generate Cloudy

■ Generate Sprinkler, Rain

- Generate Wet Grass

■ If we start with \neg Cloudy, sample is useless

- Immediately stop and reject this sample - rejection sampling
- General problem with low probability
 situation - many samples are rejected

Likelihood weighted sampling

- $P($ Rain \mid Cloudy, Wet Grass $)$

Likelihood weighted sampling

- $P($ Rain \mid Cloudy, Wet Grass $)$

■ Fix evidence Cloudy, Wet Grass true

Likelihood weighted sampling

- $P($ Rain \mid Cloudy, Wet Grass $)$

■ Fix evidence Cloudy, Wet Grass true

- Then generate the other variables

Likelihood weighted sampling

- $P($ Rain \mid Cloudy, Wet Grass $)$

■ Fix evidence Cloudy, Wet Grass true

- Then generate the other variables
- Suppose we generate $c, \neg s, r, w$

Likelihood weighted sampling

- $P($ Rain \mid Cloudy, Wet Grass)

■ Fix evidence Cloudy, Wet Grass true

- Then generate the other variables
- Suppose we generate $c, \neg s, r, w$
- Compute likelihood of evidence: $0.5 \times 0.9=0.45$

Likelihood weighted sampling

- $P($ Rain \mid Cloudy, Wet Grass)

■ Fix evidence Cloudy, Wet Grass true

- Then generate the other variables
- Suppose we generate $c, \neg s, r, w$
- Compute likelihood of evidence: $0.5 \times 0.9=0.45$
- 0.45 is likelihood weight of sample

Likelihood weighted sampling

- $P($ Rain \mid Cloudy, Wet Grass)

■ Fix evidence Cloudy, Wet Grass true

- Then generate the other variables
- Suppose we generate $c, \neg s, r, w$
- Compute likelihood of evidence: $0.5 \times 0.9=0.45$
- 0.45 is likelihood weight of sample

■ Samples $s_{1}, s_{2}, \ldots, s_{N}$ with weights $w_{1}, w_{2}, \ldots w_{N}$

Likelihood weighted sampling

- $P($ Rain \mid Cloudy, Wet Grass)

■ Fix evidence Cloudy, Wet Grass true

- Then generate the other variables
- Suppose we generate $c, \neg s, r, w$
- Compute likelihood of evidence:

$$
0.5 \times 0.9=0.45
$$

- 0.45 is likelihood weight of sample

■ Samples $s_{1}, s_{2}, \ldots, s_{N}$ with weights $w_{1}, w_{2}, \ldots w_{N}$

- $P(r \mid c, w)=\frac{\sum_{s_{i} \text { has rain }} w_{i}}{\sum_{1 \leq j \leq N} w_{j}}$

GIBBS SAMPLING

Approximate inference using Markov chains

Markov chains

- Finite set of states, with transition probabilities between states

Approximate inference using Markov chains

Markov chains

- Finite set of states, with transition probabilities between states

■ For us, a state will be an assignment of values to variables

Approximate inference using Markov chains

Markov chains

- Finite set of states, with transition probabilities between states
- For us, a state will be an assignment of values to variables
- A three state Markov Chain

Approximate inference using Markov chains

Markov chains

- Finite set of states, with transition probabilities between states
- For us, a state will be an assignment of values to variables
- A three state Markov Chain
rows sum

■ Represent using a transition matrix - stochastic

Approximate inference using Markov chains

Markov chains

- Finite set of states, with transition probabilities between states

■ For us, a state will be an assignment of values to variables

- A three state Markov Chain
- Represent using a transition matrix - stochastic

$$
A=\left[\begin{array}{lll}
0 & \frac{1}{2} & \frac{1}{2} \\
1 & 0 & 0 \\
\frac{1}{2} & \frac{1}{2} & 0
\end{array}\right]
$$

- $P[j]$ is probability of being in state j

Approximate inference using Markov chains

Markov chains

- Finite set of states, with transition probabilities between states

■ For us, a state will be an assignment of values to variables

- A three state Markov Chain
- Represent using a transition matrix - stochastic

$$
A=\left[\begin{array}{lll}
0 & \frac{1}{2} & \frac{1}{2} \\
1 & 0 & 0 \\
\frac{1}{2} & \frac{1}{2} & 0
\end{array}\right]
$$

- $P[j]$ is probability of being in state j

Shane

- Start in state 1 , so initially $P=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right] \downarrow \begin{aligned} & \text { Sum } \\ & \text { to } \mid\end{aligned}$

Markov chains . . .

- After one step:

$$
P^{\top} A=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
0 & \frac{1}{2} & \frac{1}{2} \\
1 & 0 & 0 \\
\frac{1}{2} & \frac{1}{2} & 0
\end{array}\right]=\left[\begin{array}{lll}
0 & \frac{1}{2} & \frac{1}{2}
\end{array}\right]
$$

Markov chains . . .

- After one step:

$$
P^{\top} A=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
0 & \frac{1}{2} & \frac{1}{2} \\
1 & 0 & 0 \\
\frac{1}{2} & \frac{1}{2} & 0
\end{array}\right]=\left[\begin{array}{lll}
0 & \frac{1}{2} & \frac{1}{2}
\end{array}\right]
$$

- After second step:

$$
\left[\begin{array}{lll}
0 & \frac{1}{2} & \frac{1}{2}
\end{array}\right]\left[\begin{array}{lll}
0 & \frac{1}{2} & \frac{1}{2} \\
1 & 0 & 0 \\
\frac{1}{2} & \frac{1}{2} & 0
\end{array}\right]=\left[\begin{array}{lll}
\frac{3}{4} & \frac{1}{4} & 0
\end{array}\right]
$$

Markov chains . . .

- After one step:

$$
P^{\top} A=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & \frac{1}{2} & \frac{1}{2} \\
1 & 0 & 0 \\
\frac{1}{2} & \frac{1}{2} & 0
\end{array}\right]=\left[\begin{array}{lll}
0 & \frac{1}{2} & \frac{1}{2}
\end{array}\right]
$$

- After second step:

$$
\left[\begin{array}{lll}
0 & \frac{1}{2} & \frac{1}{2}
\end{array}\right]\left[\begin{array}{ccc}
0 & \frac{1}{2} & \frac{1}{2} \\
1 & 0 & 0 \\
\frac{1}{2} & \frac{1}{2} & 0
\end{array}\right]=\left[\begin{array}{lll}
\frac{3}{4} & \frac{1}{4} & 0
\end{array}\right]
$$

- After k steps, $P[j]$ is probability of being in state j

$$
P^{\top} \cdot A^{K}
$$

Markov chains . . .

- After one step:

$$
P^{\top} A=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
0 & \frac{1}{2} & \frac{1}{2} \\
1 & 0 & 0 \\
\frac{1}{2} & \frac{1}{2} & 0
\end{array}\right]=\left[\begin{array}{lll}
0 & \frac{1}{2} & \frac{1}{2}
\end{array}\right]
$$

- After second step:

$$
\left[\begin{array}{lll}
0 & \frac{1}{2} & \frac{1}{2}
\end{array}\right]\left[\begin{array}{ccc}
0 & \frac{1}{2} & \frac{1}{2} \\
1 & 0 & 0 \\
\frac{1}{2} & \frac{1}{2} & 0
\end{array}\right]=\left[\begin{array}{lll}
\frac{3}{4} & \frac{1}{4} & 0
\end{array}\right]
$$

- After k steps, $P[j]$ is probability of being in state j
- Continuing our example,
$\left[\begin{array}{ccc}\frac{3}{4} & \frac{1}{4} & 0\end{array}\right] \rightarrow\left[\begin{array}{ccc}\frac{1}{4} & \frac{3}{8} & \frac{3}{8}\end{array}\right] \rightarrow\left[\begin{array}{ccc}\frac{9}{16} & \frac{5}{16} & \frac{1}{8}\end{array}\right]$

Ergodicity

- Is it the case that $P[j]>0$ for all j continuously, after some point?

Ergodicity

■ Is it the case that $P[j]>0$ for all j continuously, after some point?

- Markov chain A is ergodic if there is some t_{0} such that for every P, for all $t>t_{0}$, for every j, $\left(P^{\top} A^{t}\right)[j]>0$.

Ergodicity

■ Is it the case that $P[j]>0$ for all j continuously, after some point?

- Markov chain A is ergodic if there is some t_{0} such that for every P, for all $t>t_{0}$, for every j, $\left(P^{\top} A^{t}\right)[j]>0$.
- No matter where we start, after $t>t_{0}$ steps, every state has a nonzero probability of being visited in step t

Ergodicity

■ Is it the case that $P[j]>0$ for all j continuously, after some point?

- Markov chain A is ergodic if there is some t_{0} such that for every P, for all $t>t_{0}$, for every j, $\left(P^{\top} A^{t}\right)[j]>0$.
- No matter where we start, after $t>t_{0}$ steps, every state has a nonzero probability of being visited in step t
- Properties of ergodic Markov chains

- There is a stationary distribution $\pi^{*},\left(\pi^{*}\right)^{\top} A=\pi^{*}$
- π^{*} is a left eigenvector of A

Ergodicity

■ Is it the case that $P[j]>0$ for all j continuously, after some point?

- Markov chain A is ergodic if there is some t_{0} such that for every P, for all $t>t_{0}$, for every j, $\left(P^{\top} A^{t}\right)[j]>0$.
- No matter where we start, after $t>t_{0}$ steps, every state has a nonzero probability of being visited in step t
- Properties of ergodic Markov chains

- There is a stationary distribution $\pi^{*},\left(\pi^{*}\right)^{\top} A=\pi^{*}$
- π^{*} is a left eigenvector of A
- For any starting distribution $P, \lim _{t \rightarrow \infty} P^{\top} A^{t}=\pi^{*}$

Ergodicity . .

- How can ergodicity fail?

Ergodicity ...

■ How can ergodicity fail?

- Starting from i, we reach a set of states from which there is no path back to i

Ergodicity ...
How can ergodicity fail?

- Starting from i, we reach a set of states from which there is no path back to i
- We have a cycle $i \rightarrow j \rightarrow k \rightarrow i \rightarrow j \rightarrow k \cdots$, so we can only visit some states periodically

Ergodicity . . .

- How can ergodicity fail?
- Starting from i, we reach a set of states from which there is no path back to i
■ We have a cycle $i \rightarrow j \rightarrow k \rightarrow i \rightarrow j \rightarrow k \cdots$, so we can only visit some states periodically
- Sufficient conditions for ergodicity

Ergodicity . . .

- How can ergodicity fail?
- Starting from i, we reach a set of states from which there is no path back to i
■ We have a cycle $i \rightarrow j \rightarrow k \rightarrow i \rightarrow j \rightarrow k \cdots$, so we can only visit some states periodically
- Sufficient conditions for ergodicity
- Irreducibility: When viewed as a directed graph, A is strongly connected
- For all states i, j, there is a path from i to j and a path from j to i

Ergodicity . . .

- How can ergodicity fail?
- Starting from i, we reach a set of states from which there is no path back to i
- We have a cycle $i \rightarrow j \rightarrow k \rightarrow i \rightarrow j \rightarrow k \cdots$, so we can only visit some states periodically
- Sufficient conditions for ergodicity
- Irreducibility: When viewed as a directed graph, A is strongly connected
- For all states i, j, there is a path from i to j and a path from j to i

- Aperiodicity: For any pair of vertices i, j, the gcd of the lengths of all paths from i to j is 1
- In particular, paths (loops) from i to i do not all have lengths that are multiples of some $k \geq 2$ prevents bad cycles

Ergodicity ...

- Can efficiently approximate $\lim _{t \rightarrow \infty} P^{\top} A^{t}$ by repeated squaring: $P^{\top} A^{2}, P^{\top} A^{4}$,
$P^{T} A^{k}$ for la ye k

$$
\begin{aligned}
& P^{\top} A^{8}, \ldots, P^{\top} A^{2^{k}}, \ldots \\
& \text { - Mixing time }- \text { how fast this } \\
& \text { converges to } \pi^{*}
\end{aligned}
$$

Ergodicity

- Can efficiently approximate $\lim _{t \rightarrow \infty} P^{\top} A^{t}$ by repeated squaring: $P^{\top} A^{2}, P^{\top} A^{4}$, $P^{\top} A^{8}, \ldots, P^{\top} A^{2^{k}}, \ldots$
- Mixing time - how fast this converges to π^{*}

■ Stationary distribution represents fraction of visits to each state in a long enough execution

Ergodicity . . .

- Can efficiently approximate $\lim _{t \rightarrow \infty} P^{\top} A^{t}$ by repeated squaring: $P^{\top} A^{2}, P^{\top} A^{4}$,

$$
P^{\top} A^{8}, \ldots, P^{\top} A^{2^{k}}, \ldots
$$

- Mixing time - how fast this converges to π^{*}

■ Stationary distribution represents fraction of visits to each state in a long enough execution

- Can we create a Markov chain from a Bayesian network so that the stationary distribution is meaningful?

Approximate inference using Markov chains

- Bayesian network has variables
$v_{1}, v_{2}, \ldots, v_{n}$

Approximate inference using Markov chains

- Bayesian network has variables

$$
v_{1}, v_{2}, \ldots, v_{n}
$$

■ Each assignment of values to the variables is a state

Approximate inference using Markov chains

■ Bayesian network has variables

$$
v_{1}, v_{2}, \ldots, v_{n}
$$

■ Each assignment of values to the variables is a state

- Set up a Markov chain based on these states

Approximate inference using Markov chains

■ Bayesian network has variables
$v_{1}, v_{2}, \ldots, v_{n}$
■ Each assignment of values to the variables is a state

- Set up a Markov chain based on these states
- Stationary distribution should assign to state s the probability $P(s)$ in the
 Bayesian network

Approximate inference using Markov chains

- Bayesian network has variables
$v_{1}, v_{2}, \ldots, v_{n}$
■ Each assignment of values to the variables is a state
- Set up a Markov chain based on these states

■ Stationary distribution should assign to state s the probability $P(s)$ in the
 Bayesian network

■ How to reverse engineer the transition probabilities to achieve this?

