Lecture 8: 1 February, 2024

Madhavan Mukund
https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning January-April 2024

Regression for classification

- Regression line
- Set a threshold

■ Classifier

- Output below threshold : 0 (No)
- Output above threshold : 1 (Yes)

Regression for classification

- Regression line
- Set a threshold
- Classifier
- Output below threshold: 0 (No)
- Output above threshold : 1 (Yes)
- Classifier output is a step function

Smoothen the step

- Sigmoid function

$$
\sigma(z)=\frac{1}{1+e^{-z}} \boldsymbol{z}^{2} \text { lage, } \boldsymbol{e}^{\text {small }}
$$

Smoothen the step

- Sigmoid function

$$
\sigma(z)=\frac{1}{1+e^{-z}}
$$

- Input z is output of our regression

$$
\sigma(z)=\frac{1}{1+e^{-\left(\theta_{0}+\theta_{1} x_{1}+\cdots+\theta_{k} x_{k}\right)}}
$$

Smoothen the step

- Sigmoid function

$$
\sigma(z)=\frac{1}{1+e^{-z}}
$$

- Input z is output of our regression

$$
\sigma(z)=\frac{1}{1+e^{-\left(\theta_{0}+\theta_{1} x_{1}+\cdots+\theta_{k} x_{k}\right)}}
$$

- Adjust parameters to fix horizontal position and steepness of step

Logistic regression

■ Compute the coefficients?
■ Solve by gradient descent

Logistic regression

■ Compute the coefficients?

- Solve by gradient descent

■ Need derivatives to exist

- Hence smooth sigmoid, not step function
- $\sigma^{\prime}(z)=\sigma(z)(1-\sigma(z))$

Logistic regression

■ Compute the coefficients?

- Solve by gradient descent
- Need derivatives to exist
- Hence smooth sigmoid, not step function
- $\sigma^{\prime}(z)=\sigma(z)(1-\sigma(z))$

■ Need a cost function to minimize

Loss function for logistic regression

■ Goal is to maximize log likelihood

Loss function for logistic regression

- Goal is to maximize log likelihood
- Let $h_{\theta}\left(x_{i}\right)=\sigma\left(z_{i}\right)$.

Loss function for logistic regression

- Goal is to maximize log likelihood

■ Let $h_{\theta}\left(x_{i}\right)=\sigma\left(z_{i}\right)$. So, $\quad P\left(y_{i}=1 \mid x_{i} ; \theta\right)=h_{\theta}\left(x_{i}\right)$,
$P\left(y_{i}=0 \mid x_{i} ; \theta\right)=1-h_{\theta}\left(x_{i}\right)$

- Combine as $P\left(y_{i} \mid x_{i} ; \theta\right)=h_{\theta}\left(x_{i}\right)_{\mathbf{1}}^{y_{i}} \cdot\left(1-h_{\theta}\left(x_{i}\right)\right)^{1-y_{i}}$

$$
\begin{aligned}
& y_{l}=0 \rightarrow 1-h_{\theta}\left(x_{i}\right) \\
& y_{i}=1 \rightarrow h_{\theta}\left(x_{i}\right)
\end{aligned}
$$

Loss function for logistic regression

- Goal is to maximize log likelihood

■ Let $h_{\theta}\left(x_{i}\right)=\sigma\left(z_{i}\right)$. So, $\quad P\left(y_{i}=1 \mid x_{i} ; \theta\right)=h_{\theta}\left(x_{i}\right)$,

$$
P\left(y_{i}=0 \mid x_{i} ; \theta\right)=1-h_{\theta}\left(x_{i}\right)
$$

- Combine as $P\left(y_{i} \mid x_{i} ; \theta\right)=h_{\theta}\left(x_{i}\right)^{y_{i}} \cdot\left(1-h_{\theta}\left(x_{i}\right)\right)^{1-y_{i}}$
- Likelihood: $\mathcal{L}(\theta)=\prod_{i=1}^{n} h_{\theta}\left(x_{i}\right)^{y_{i}} \cdot\left(1-h_{\theta}\left(x_{i}\right)\right)^{1-y_{i}}$

Loss function for logistic regression

- Goal is to maximize log likelihood

■ Let $h_{\theta}\left(x_{i}\right)=\sigma\left(z_{i}\right)$. So, $\quad P\left(y_{i}=1 \mid x_{i} ; \theta\right)=h_{\theta}\left(x_{i}\right)$,

$$
P\left(y_{i}=0 \mid x_{i} ; \theta\right)=1-h_{\theta}\left(x_{i}\right)
$$

■ Combine as $P\left(y_{i} \mid x_{i} ; \theta\right)=h_{\theta}\left(x_{i}\right)^{y_{i}} \cdot\left(1-h_{\theta}\left(x_{i}\right)\right)^{1-y_{i}}$

- Likelihood: $\mathcal{L}(\theta)=\prod_{i=1}^{n} \frac{h_{\theta}\left(x_{i}\right)^{y_{i}}}{\log }+\frac{\left(1-h_{\theta}\left(x_{i}\right)\right)^{1-y_{i}}}{\log }$
- Log-likelihood: $\ell(\theta)=\sum_{i=1}^{n} y_{i} \log h_{\theta}\left(x_{i}\right)+\left(1-y_{i}\right) \log \left(1-h_{\theta}\left(x_{i}\right)\right)$

Loss function for logistic regression

- Goal is to maximize log likelihood

■ Let $h_{\theta}\left(x_{i}\right)=\sigma\left(z_{i}\right)$. So, $\quad P\left(y_{i}=1 \mid x_{i} ; \theta\right)=h_{\theta}\left(x_{i}\right)$,

$-\sum_{p i} \log p i$

$$
P\left(y_{i}=0 \mid x_{i} ; \theta\right)=1-h_{\theta}\left(x_{i}\right)
$$

■ Combine as $P\left(y_{i} \mid x_{i} ; \theta\right)=h_{\theta}\left(x_{i}\right)^{y_{i}} \cdot\left(1-h_{\theta}\left(x_{i}\right)\right)^{1-y_{i}}$

- Likelihood: $\mathcal{L}(\theta)=\prod_{i=1}^{n} h_{\theta}\left(x_{i}\right)^{y_{i}} \cdot\left(1-h_{\theta}\left(x_{i}\right)\right)^{1-y_{i}}$
- Log-likelihood: $\ell(\theta)=\sum_{i=1}^{n} y_{i} \log h_{\theta}\left(x_{i}\right)+\left(1-y_{i}\right) \log \left(1-h_{\theta}\left(x_{i}\right)\right)$
- Minimize cross entropy: $\Theta \sum_{i=1}^{n} y_{i} \log h_{\theta}\left(x_{i}\right)+\left(1-y_{i}\right) \log \left(1-h_{\theta}\left(x_{i}\right)\right)$

MSE for logistic regression and gradient descent

- Suppose we take mean sum-squared error as the loss function.
- Consider two inputs $x=\left(x_{1}, x_{2}\right)$

$$
C=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\sigma\left(z_{i}\right)\right)^{2}, \text { where } z_{i}=\theta_{0}+\theta_{1} x_{i_{1}}+\theta_{2} x_{i_{2}}
$$

MSE for logistic regression and gradient descent

- Suppose we take mean sum-squared error as the loss function.
- Consider two inputs $x=\left(x_{1}, x_{2}\right)$

$$
C=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\sigma\left(z_{i}\right)\right)^{2}, \text { where } z_{i}=\theta_{0}+\theta_{1} x_{i_{1}}+\theta_{2} x_{i_{2}}
$$

- For gradient descent, we compute $\frac{\partial C}{\partial \theta_{1}}, \frac{\partial C}{\partial \theta_{2}}, \frac{\partial C}{\partial \theta_{0}}$

MSE for logistic regression and gradient descent

- Suppose we take mean sum-squared error as the loss function.
- Consider two inputs

$$
C=\frac{n}{n} \sum_{i=1}^{n}\left(y_{i}-\sigma\left(z_{i}\right)\right)^{2}, \text { where } z_{i}=\theta+\theta_{1} x_{i_{1}}+\theta_{2} x_{i_{2}}
$$

- For gradient descent, we compute $\frac{\partial C}{\partial \theta_{1}}, \frac{\partial C}{\partial \theta_{2}}, \frac{\partial C}{\partial \theta_{0}}$
- For $j=1,2$,

$$
\frac{\partial C}{\partial \theta_{j}}=\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\sigma\left(z_{i}\right)\right) \cdot-\frac{\partial \sigma\left(z_{i}\right)}{\partial \theta_{j}}
$$

MSE for logistic regression and gradient descent

- Suppose we take mean sum-squared error as the loss function.
- Consider two inputs $x=\left(x_{1}, x_{2}\right)$

$$
C=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\sigma\left(z_{i}\right)\right)^{2}, \text { where } z_{i}=\theta_{0}+\theta_{1} x_{i_{1}}+\theta_{2} x_{i_{2}}
$$

- For gradient descent, we compute $\frac{\partial C}{\partial \theta_{1}}, \frac{\partial C}{\partial \theta_{2}}, \frac{\partial C}{\partial \theta_{0}}$
- For $j=1,2$,

$$
\frac{\partial C}{\partial \theta_{j}}=\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\sigma\left(z_{i}\right)\right) \cdot \frac{\partial \sigma\left(z_{i}\right)}{\partial \theta_{j}}=\frac{2}{n} \sum_{i=1}^{n}\left(\sigma\left(z_{i}\right)-y_{i}\right) \frac{\partial \sigma\left(z_{i}\right)}{\partial z_{i}} \frac{\partial z_{i}}{\partial \theta_{j}}
$$

MSE for logistic regression and gradient descent

- Suppose we take mean sum-squared error as the loss function.
- Consider two inputs $x=\left(x_{1}, x_{2}\right)$

$$
C=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\sigma\left(z_{i}\right)\right)^{2}, \text { where } z_{i}=\theta_{0}+\theta_{1} x_{i_{1}}+\theta_{2} x_{i_{2}}
$$

- For gradient descent, we compute $\frac{\partial C}{\partial \theta_{1}}, \frac{\partial C}{\partial \theta_{2}}, \frac{\partial C}{\partial \theta_{0}}$
- For $j=1,2$,

$$
\begin{aligned}
\frac{\partial C}{\partial \theta_{j}} & =\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\sigma\left(z_{i}\right)\right) \cdot-\frac{\partial \sigma\left(z_{i}\right)}{\partial \theta_{j}}=\frac{2}{n} \sum_{i=1}^{n}\left(\sigma\left(z_{i}\right)-y_{i}\right) \frac{\partial \sigma\left(z_{i}\right)}{\frac{\partial z_{i}}{\partial}} \frac{\partial z_{i}}{\partial \theta_{j}} \\
& =\frac{2}{n} \sum_{i=1}^{n}\left(\sigma\left(z_{i}\right)-y_{i}\right) \sigma^{\prime}\left(z_{i}\right) x_{i_{j}}
\end{aligned}
$$

MSE for logistic regression and gradient descent

- Suppose we take mean sum-squared error as the loss function.
- Consider two inputs $x=\left(x_{1}, x_{2}\right)$

$$
C=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\sigma\left(z_{i}\right)\right)^{2}, \text { where } z_{i}=\theta_{0}+\theta_{1} x_{i_{1}}+\theta_{2} x_{i_{2}}
$$

- For gradient descent, we compute $\frac{\partial C}{\partial \theta_{1}}, \frac{\partial C}{\partial \theta_{2}}, \frac{\partial C}{\partial \theta_{0}}$
- For $j=1,2$,

$$
\begin{aligned}
\frac{\partial C}{\partial \theta_{j}} & =\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\sigma\left(z_{i}\right)\right) \cdot-\frac{\partial \sigma\left(z_{i}\right)}{\partial \theta_{j}}=\frac{2}{n} \sum_{i=1}^{n}\left(\sigma\left(z_{i}\right)-y_{i}\right) \frac{\partial \sigma\left(z_{i}\right)}{\partial z_{i}} \frac{\partial z_{i}}{\partial \theta_{j}} \\
& =\frac{2}{n} \sum_{i=1}^{n}\left(\sigma\left(z_{i}\right)-y_{i}\right) \sigma^{\prime}\left(z_{i}\right) x_{i_{j}} \\
\square \frac{\partial C}{\partial \theta_{0}} & =\frac{2}{n} \sum_{i=1}^{n}\left(\sigma\left(z_{i}\right)-y_{i}\right) \frac{\partial \sigma\left(z_{i}\right)}{\partial z_{i}} \frac{\partial z_{i}}{\partial \theta_{0}}=\frac{2}{n} \sum_{i=1}^{n}\left(\sigma\left(z_{i}\right)-y_{i}\right) \sigma^{\prime}\left(z_{i}\right)
\end{aligned}
$$

MSE for logistic regression and gradient descent . . .

■ For $j=1,2, \frac{\partial C}{\partial \theta_{j}}=\frac{2}{n} \sum_{i=1}^{n}\left(\sigma\left(z_{i}\right)-y_{i}\right) \sigma^{\prime}\left(z_{i}\right) x_{j}^{i}$, and $\frac{\partial C}{\partial \theta_{0}}=\frac{2}{n} \sum_{i=1}^{n}\left(\sigma\left(z_{i}\right)-y_{i}\right) \sigma^{\prime}\left(z_{i}\right)$

- Each term in $\frac{\partial C}{\partial \theta_{1}}, \frac{\partial C}{\partial \theta_{2}}, \frac{\partial C}{\partial \theta_{0}}$ is proportional to $\sigma^{\prime}\left(z_{i}\right)$

MSE for logistic regression and gradient descent ...

■ For $j=1,2, \frac{\partial C}{\partial \theta_{j}}=\frac{2}{n} \sum_{i=1}^{n}\left(\sigma\left(z_{i}\right)-y_{i}\right) \sigma^{\prime}\left(z_{i}\right) x_{j}^{i}$, and $\frac{\partial C}{\partial \theta_{0}}=\frac{2}{n} \sum_{i=1}^{n}\left(\sigma\left(z_{i}\right)-y_{i}\right) \sigma^{\prime}\left(z_{i}\right)$

- Each term in $\frac{\partial C}{\partial \theta_{1}}, \frac{\partial C}{\partial \theta_{2}}, \frac{\partial C}{\partial \theta_{0}}$ is proportional to $\sigma^{\prime}\left(z_{i}\right)$

■ Ideally, gradient descent should take large steps when $\sigma(z)-y$ is large

MSE for logistic regression and gradient descent ...

- For $j=1,2, \frac{\partial C}{\partial \theta_{j}}=\frac{2}{n} \sum_{i=1}^{n}\left(\sigma\left(z_{i}\right)-y_{i}\right) \sigma^{\prime}\left(z_{i}\right) x_{j}^{i}$, and $\frac{\partial C}{\partial \theta_{0}}=\frac{2}{n} \sum_{i=1}^{n}\left(\sigma\left(z_{i}\right)-y_{i}\right) \sigma^{\prime}\left(z_{i}\right)$
- Each term in $\frac{\partial C}{\partial \theta_{1}}, \frac{\partial C}{\partial \theta_{2}}, \frac{\partial C}{\partial \theta_{0}}$ is proportional to $\sigma^{\prime}\left(z_{i}\right)$
- Ideally, gradient descent should take large steps when $\sigma(z)$ - y is large
- $\sigma(z)$ is flat at both extremes
- If $\sigma(z)$ is completely wrong, $\sigma(z) \approx(1-y)$, we still have $\sigma^{\prime}(z) \approx 0$
- Learning is slow even when current model is far from optimal

Cross entropy and gradient descent

- $C=-[y \ln (\sigma(z))+(1-y) \ln (1-\sigma(z))]$

Cross entropy and gradient descent

- $C=-[y \ln (\sigma(z))+(1-y) \ln (1-\sigma(z))]$
- $\frac{\partial C}{\partial \theta_{j}}=\frac{\partial C}{\partial \sigma} \frac{\partial \sigma}{\partial \theta_{j}}$

Cross entropy and gradient descent

- $C=-[y \ln (\sigma(z))+(1-y) \ln (1-\sigma(z))]$
- $\frac{\partial C}{\partial \theta_{j}}=\frac{\partial C}{\partial \sigma} \frac{\partial \sigma}{\partial \theta_{j}}=-\left[\frac{y}{\sigma(z)}-\frac{1-y}{1-\sigma(z)}\right] \frac{\partial \sigma}{\frac{\partial \theta_{j}}{z}}$

Cross entropy and gradient descent

■ $C=-[y \ln (\sigma(z))+(1-y) \ln (1-\sigma(z))]$

$$
\begin{aligned}
\frac{\partial C}{\partial \theta_{j}}=\frac{\partial C}{\partial \sigma} \frac{\partial \sigma}{\partial \theta_{j}} & =-\left[\frac{y}{\sigma(z)}-\frac{1-y}{1-\sigma(z)}\right] \frac{\partial \sigma}{\partial \theta_{j}} \\
& =-\left[\frac{y}{\sigma(z)}-\frac{1-y}{1-\sigma(z)}\right] \frac{\partial \sigma}{\partial z} \frac{\partial z}{\partial \theta_{j}}
\end{aligned}
$$

Cross entropy and gradient descent

■ $C=-[y \ln (\sigma(z))+(1-y) \ln (1-\sigma(z))]$

$$
\text { ■ } \begin{aligned}
\frac{\partial C}{\partial \theta_{j}}=\frac{\partial C}{\partial \sigma} \frac{\partial \sigma}{\partial \theta_{j}} & =-\left[\frac{y}{\sigma(z)}-\frac{1-y}{1-\sigma(z)}\right] \frac{\partial \sigma}{\partial \theta_{j}} \\
& =-\left[\frac{y}{\sigma(z)}-\frac{1-y}{1-\sigma(z)}\right] \frac{\partial \sigma}{\partial z} \frac{\partial z}{\partial \theta_{j}} \\
& =-\left[\frac{y}{\sigma(z)}-\frac{1-y}{1-\sigma(z)}\right] \sigma^{\prime}(z) x_{j}
\end{aligned}
$$

Cross entropy and gradient descent

- $C=-[y \ln (\sigma(z))+(1-y) \ln (1-\sigma(z))]$
- $\frac{\partial C}{\partial \theta_{j}}=\frac{\partial C}{\partial \sigma} \frac{\partial \sigma}{\partial \theta_{j}}=-\left[\frac{y}{\sigma(z)}-\frac{1-y}{1-\sigma(z)}\right] \frac{\partial \sigma}{\partial \theta_{j}}$

$$
=-\left[\frac{y}{\sigma(z)}-\frac{1-y}{1-\sigma(z)}\right] \frac{\partial \sigma}{\partial z} \frac{\partial z}{\partial \theta_{j}}
$$

$$
=-\left[\frac{y \widetilde{\mathbf{I}}-y}{\sigma(z)}\right] \sigma^{\prime}(z) x_{j}
$$

$$
=-\left[\frac{y(1-\sigma(z))-(1-y) \sigma(z)}{\sigma(z)(1-\sigma(z))}\right] \sigma^{\prime}(z) x_{j}
$$

Cross entropy and gradient descent . . .

- $\frac{\partial C}{\partial \theta_{j}}=-\left[\frac{y(1-\sigma(z))-(1-y) \sigma(z)}{\sigma(z)(1-\sigma(z))}\right] \sigma^{\prime}(z) x_{j}$
- Recall that $\sigma^{\prime}(z)=\sigma(z)(1-\sigma(z))$

Cross entropy and gradient descent . . .

- $\frac{\partial C}{\partial \theta_{j}}=-\left[\frac{y(1-\sigma(z))-(1-y) \sigma(z)}{\sigma(z)(1-\sigma(z))}\right] \sigma^{\prime}(z) x_{j}$
- Recall that $\sigma^{\prime}(z)=\sigma(z)(1-\sigma(z))$
- Therefore, $\frac{\partial C}{\partial \theta_{j}}=-[y(1-\sigma(z))-(1-y) \sigma(z)] x_{j}$

Cross entropy and gradient descent . . .

- $\frac{\partial C}{\partial \theta_{j}}=-\left[\frac{y(1-\sigma(z))-(1-y) \sigma(z)}{\sigma(z)(1-\sigma(z))}\right] \sigma^{\prime}(z) x_{j}$
- Recall that $\sigma^{\prime}(z)=\sigma(z)(1-\sigma(z))$
- Therefore, $\frac{\partial C}{\partial \theta_{j}}=-[y(1-\sigma(z))-(1-y) \sigma(z)] x_{j}$

$$
=-[y-y \sigma(L)-\sigma(z)+y \not(z)] x_{j}
$$

Cross entropy and gradient descent . . .

- $\frac{\partial C}{\partial \theta_{j}}=-\left[\frac{y(1-\sigma(z))-(1-y) \sigma(z)}{\sigma(z)(1-\sigma(z))}\right] \sigma^{\prime}(z) x_{j}$
- Recall that $\sigma^{\prime}(z)=\sigma(z)(1-\sigma(z))$
- Therefore, $\frac{\partial C}{\partial \theta_{j}}=-[y(1-\sigma(z))-(1-y) \sigma(z)] x_{j}$

$$
\begin{aligned}
& =\Theta[y-y \sigma(z)-\sigma(z)+y \sigma(z)] x_{j} \\
& =(\underbrace{\sigma(z)-y) x_{j}}_{\sim}
\end{aligned}
$$

Cross entropy and gradient descent . . .

■ $\frac{\partial C}{\partial \theta_{j}}=-\left[\frac{y(1-\sigma(z))-(1-y) \sigma(z)}{\sigma(z)(1-\sigma(z))}\right] \sigma^{\prime}(z) x_{j}$

- Recall that $\sigma^{\prime}(z)=\sigma(z)(1-\sigma(z))$
- Therefore, $\frac{\partial C}{\partial \theta_{j}}=-[y(1-\sigma(z))-(1-y) \sigma(z)] x_{j}$

$$
\begin{aligned}
& =-[y-y \sigma(z)-\sigma(z)+y \sigma(z)] x_{j} \\
& =(\sigma(z)-y) x_{j}
\end{aligned}
$$

- Similarly, $\frac{\partial C}{\partial \theta_{0}}=(\sigma(z)-y)$

Cross entropy and gradient descent . . .

- $\frac{\partial C}{\partial \theta_{j}}=-\left[\frac{y(1-\sigma(z))-(1-y) \sigma(z)}{\sigma(z)(1-\sigma(z))}\right] \sigma^{\prime}(z) x_{j}$

Logistic

- Recall that $\sigma^{\prime}(z)=\sigma(z)(1-\sigma(z))$

regression

- Therefore, $\frac{\partial C}{\partial \theta_{j}}=-[y(1-\sigma(z))-(1-y) \sigma(z)] x_{j}$

$$
\begin{aligned}
& =-[y-y \sigma(z)-\sigma(z)+y \sigma(z)] x_{j} \\
& =(\sigma(z)-y) x_{j}
\end{aligned}
$$

- Similarly, $\frac{\partial C}{\partial \theta_{0}}=(\sigma(z)-y)$

■ Thus, as we wanted, the gradient is proportional to $\sigma(z)-y$

Cross entropy and gradient descent . . .

- $\frac{\partial C}{\partial \theta_{j}}=-\left[\frac{y(1-\sigma(z))-(1-y) \sigma(z)}{\sigma(z)(1-\sigma(z))}\right] \sigma^{\prime}(z) x_{j}$
- Recall that $\sigma^{\prime}(z)=\sigma(z)(1-\sigma(z))$
- Therefore, $\frac{\partial C}{\partial \theta_{j}}=-[y(1-\sigma(z))-(1-y) \sigma(z)] x_{j}$

$$
\begin{aligned}
& =-[y-y \sigma(z)-\sigma(z)+y \sigma(z)] x_{j} \\
& =(\sigma(z)-y) x_{j}
\end{aligned}
$$

- Similarly, $\frac{\partial C}{\partial \theta_{0}}=(\sigma(z)-y)$
- Thus, as we wanted, the gradient is proportional to $\sigma(z)-y$
- The greater the error, the faster the learning rate

