
6 Transductive Support Vector Machines

Thorsten Joachims tj@cs.cornell.edu

In contrast to learning a general prediction rule, V. Vapnik proposed the transduc-
tive learning setting where predictions are made only at a fixed number of known
test points. This allows the learning algorithm to exploit the location of the test
points, making it a particular type of semi-supervised learning problem. Transduc-
tive support vector machines (TSVMs) implement the idea of transductive learning
by including test points in the computation of the margin. This chapter will pro-
vide some examples for why the margin on the test examples can provide useful
prior information for learning, in particular for the problem of text classification.
The resulting optimization problems, however, are difficult to solve. The chapter re-
views exact and approximate optimization methods and discusses their properties.
Finally, the chapter discusses connections to other related semi-supervised learning
approaches like co-training and methods based on graph cuts, which can be seen
as solving variants of the TSVM optimization problem.

6.1 Introduction

The setting of transductive inference was introduced by Vapnik (e.g. (Vapnik,
1998)). As an example of a transductive learning task, consider the problem of
learning from relevance feedback in information retrieval (see (Baeza-Yates and
Ribeiro-Neto, 1999)). The user marks some documents returned by a search engine
in response to an initial query as relevant or irrelevant. These documents then serve
as a training set for a binary text classification problem. The goal is to learn a rule
that accurately classifies all remaining documents in the database according to their
relevance. Clearly, this problem can be thought of as a supervised learning problem.
But it is different from many other (inductive) learning problems in at least two
respects.

First, the learning algorithm does not necessarily have to learn a general rule,
but it only needs to predict accurately for a finite number of test examples (i.e.,



106 Transductive Support Vector Machines

the documents in the database). Second, the test examples are known a priori and
can be observed by the learning algorithm during training. This allows the learning
algorithm to exploit any information that might be contained in the location of
the test examples. Transductive learning is therefore a particular case of semi-
supervised learning, since it allows the learning algorithm to exploit the unlabeled
examples in the test set. The following focuses on this second point, while chapter 24
elaborates on the first point.

More formally, the transductive learning setting can be formalized as follows.1transductive
learning setting Given is a set

S = {1, 2, ..., n} (6.1)

that enumerates all n possible examples. In our relevance feedback example from
above, there would be one index i for each document in the collection. We assume
that each example i is represented by a feature vector xi ∈ Rd. For text documents,
this could be a TFIDF vector representation (see e.g. (Joachims, 2002)), where
each document is represented by a scaled and normalized histogram of the words
it contains. The collection of feature vectors for all examples in S is denoted as

X = (x1,x2, ...,xn). (6.2)

For the examples in S, labels

Y = (y1,y2, ...,yn) (6.3)

are generated independently according to a distribution P (y1, ...,yn) =
∏n

i=1 P (yi).
For simplicity, we assume binary labels yi ∈ {−1, +1}.

As the training set, the learning algorithm can observe the labels of l randomly
selected examples Strain ⊂ S. The remaining u = n − l examples form the test set
Stest = S \ Strain.

Strain = {l1, ..., ll} Stest = {u1, ..., uu} (6.4)

When training a transductive learning algorithm L, it not only has access to the
training vectors Xtrain and the training labels Ytrain,

Xtrain = (xl1 ,xl2 , ...,xll) Ytrain = (yl1 ,yl2 , ...,yll), (6.5)

but also to the unlabeled test vectors

Xtest = (xu1 ,xu2 , ...,xul
). (6.6)

The transductive learner uses Xtrain, Ytrain, and Xtest (but not the labels Ytest of

1. While several other, more general, definitions of transductive learning exist (Vapnik,
1998; Joachims, 2002; Derbeko et al., 2003), this one was chosen for the sake of simplicity.



6.1 Introduction 107

the test examples) to produce predictions,

Y ∗
test = (y∗

u1
,y∗

u2
, ...,y∗

uu
), (6.7)

for the labels of the test examples. The learner’s goal is to minimize the fraction of
erroneous predictions,

Errtest(Y
∗
test) =

1

u

∑

i∈Stest

δ0/1(y
∗
i ,yi), (6.8)

on the test set. δ0/1(a, b) is zero if a = b, otherwise it is one.
At first glance, the problem of transductive learning may not seem profoundly

different from the usual inductive setting. One could learn a classification rule based
on the training data and then apply it to the test data afterward. However, a crucial
difference is that the inductive strategy would ignore any information potentially
conveyed in Xtest.

What information do we get from studying the test sample Xtest and how could
we use it? The fact that we deal with only a finite set of points means that the
hypothesis space H of a transductive learner is necessarily finite — namely, all
vectors {−1, +1}n. Following the principle of structural risk minimization (Vapnik,structural risk

minimization 1998), we can structure H into a nested structure

H1 ⊂ H2 ⊂ · · · ⊂ H = {−1, +1}n. (6.9)

The structure should reflect prior knowledge about the learning task. In particular,
the structure should be constructed so that, with high probability, the correct
labeling of S (or labelings that make few errors) is contained in an element Hi

of small cardinality. This structuring of the hypothesis space H can be motivated
using generalization error bounds from statistical learning theory. In particular, for
a learner L that searches for a hypothesis (Y ∗

train, Y ∗
test) ∈ Hi with small training

error,

Errtest(Y
∗
train) =

1

l

∑

i∈Strain

δ0/1(y
∗
i ,yi), (6.10)

it is possible to upper-bound the fraction of test errors Errtest(Y ∗
test) (Vapnik, 1998;

Derbeko et al., 2003). With probability 1− ηtransductive
generalization
error bound Errtest(Y

∗
test) ≤ Errtrain(Y ∗

train) + Ω(l, u, |Hi|, η) (6.11)

where the confidence interval Ω(l, u, |Hi|, η) depends on the number of training
examples l, the number of test examples u, and the cardinality |Hi| of Hi (see
(Vapnik, 1998) for details). The smaller the cardinality |Hi|, the smaller is the
confidence interval Ω(l, u, |Hi|, η) on the deviation between training and test error.

The bound indicates that a good structure ensures accurate prediction of the
test labels. And here lies a crucial difference between transductive and inductive
learners. Unlike in the inductive setting, we can study the location Xtest of the test



108 Transductive Support Vector Machines

Figure 6.1 The two graphs illustrate the labelings that margin hyperplanes can realize
dependent on the margin size. Example points are indicated as dots: the margin of each
hyperplane is illustrated by the gray area. The left graph shows the separators Hρ for a
small margin threshold ρ. The number of possible labelings Nρ decreases as the margin
threshold is increased, as in the graph on the right.

examples when defining the structure. In particular, in the transductive setting it
is possible to encode prior knowledge we might have about the relationship between
the geometry of X = (x1, ...,xn) and P (y1, ...,yn). If such a relationship exists, we
can build a more appropriate structure and reduce the number of training examples
necessary for achieving a desired level of prediction accuracy. This line of reasoning
is detailed in chapter 24.

6.2 Transductive Support Vector Machines

Transductive support vector machines (TSVMs) assume a particular geometrictrain and test set
margin relationship between X = (x1, ...,xn) and P (y1, ...,yn). They build a structure

on H based on the margin of hyperplanes {x : w · x + b = 0} on the complete
sample X = (x1,x2, ...,xn), including both the training and the test vectors. The
margin of a hyperplane on X is the minimum distance to the closest example vectors
in X .

min
i∈[1..n]

[
yi

‖w‖
(w · xi + b)

]
(6.12)

The structure element Hρ contains all labelings of X which can be achieved with
hyperplane classifiers h(x) = sign{x · w + b} that have a margin of at least ρ
on X . The dependence of Hρ on ρ is illustrated in figure 6.1. Intuitively, building
the structure based on the margin gives preference to labelings that follow cluster
boundaries over labelings that cut through clusters. Vapnik shows that the size of
the margin ρ can be used to control the cardinality of the corresponding set of



6.2 Transductive Support Vector Machines 109

Figure 6.2 For the same data as in figure 6.1, some examples are now labeled. Posi-
tive/negative examples are marked as +/−. The dashed line is the solution of an inductive
SVM, which finds the hyperplane that separates the training data with largest margin, but
ignores the test vectors. The solid line shows the hard-margin transductive classification,
which is the labeling that has zero training error and the largest margin with respect to
both the training and the test vectors. The TSVM solution aligns the labeling with the
cluster structure in the training and test vectors.

labelings Hρ. More formally, the following theorem provides an upper bound on
the number of labelings |Hρ| that can be achieved with hyperplanes that have a
margin of at least ρ.

Theorem 6.1 ((Vapnik, 1998))
For any n vectors x1, ...,xn ∈ Rd that are contained in a ball of diameter R, the

number |Hρ| of possible binary labelings y1, ...,yn ∈ {−1, +1} that can be realized
with hyperplane classifiers h(x) = sign{x · w + b} of margin at least ρ,

∀n
i=1 :

yi

‖w‖
[w · xi + b] ≥ ρ (6.13)

is bounded by

|Hρ| ≤ ed(ln n+k
d +1), d =

R2

ρ2
+ 1. (6.14)

Note that the number of labelings |Hρ| does not necessarily depend on the
number of features d. As suggested by the theorem, TSVMs sort all labelings by
their margin ρ on X to build the structure on H. Structural risk minimization
argues that a learning algorithm should select the labeling Y ∗ ∈ Hρ for which
training error Errtrain(Y ∗

train) and cardinality of Hρ minimize the generalization
error bound (6.11). For the special case of requiring zero training error (i. e.
Errtrain(Y ∗

train) = 0), optimizing the bound means finding the labeling with
the largest margin on the complete set of vectors. This leads to the following
optimization problem (OP) (Vapnik, 1998).



110 Transductive Support Vector Machines

OP1 (Transductive SVM (hard-margin))hard-margin
TSVM

minimize: V (y∗
u1

, ...,y∗
uu

,w, b) =
1

2
w ·w (6.15)

subject to: ∀l
i=1 : yli [$w · xli + b] ≥ 1 (6.16)

∀u
j=1 : y∗

uj
[$w · x∗

uj
+ b] ≥ 1 (6.17)

∀u
j=1 : y∗

uj
∈ {−1, +1} (6.18)

Solving this problem means finding the labeling y∗
u1

, ...,y∗
uk

of the test data for
which the hyperplane that separates both training and test data has maximum
margin. Figure 6.2 illustrates this. The figure also shows the solution that an
inductive SVM (Cortes and Vapnik, 1995; Vapnik, 1998) computes. An inductiveinductive SVM
SVM also finds a large-margin hyperplane, but it considers only the training
vectors while ignoring all test vectors. In particular, a hard-margin inductive SVM
computes the separating hyperplane that has zero training error and the largest
margin with respect to the training examples.

To be able to handle nonseparable data, one can introduce slack variables ξi

(Joachims, 1999) similar to inductive SVMs (Cortes and Vapnik, 1995).

OP2 (Transductive SVM (soft-margin))
soft-margin
TSVM

min: W (y∗
u1

, ...,y∗
uu

,w, b, ξ1, ..., ξl, ξ
∗
1 , ..., ξ∗u)=

1

2
w·w + C

l∑

i=1

ξi + C∗
u∑

j=1

ξ∗j (6.19)

s.t.: ∀l
i=1 : yli [w · xli + b] ≥ 1 − ξi (6.20)

∀u
j=1 : y∗

uj
[w · x∗

uj
+ b] ≥ 1 − ξ∗j (6.21)

∀u
j=1 : y∗

uj
∈ {−1, +1} (6.22)

∀l
i=1 : ξi ≥ 0 (6.23)

∀u
j=1 : ξ∗j ≥ 0 (6.24)

C and C∗ are parameters set by the user. They allow trading off margin size
against misclassifying training examples or excluding test examples. C∗ can be
used reduce sensitivity toward outliers (i.e., single examples falsely reducing the
margin on the test data).

Both inductive and transductive SVMs can be extended to include kernels (Boserkernels
et al., 1992; Vapnik, 1998). Making use of duality techniques from optimization
theory, kernels allow learning nonlinear rules as well as classification rules over
nonvectorial data (see e.g. (Schölkopf and Smola, 2002)) without substantially
changing the optimization problems.

Note that in both the hard-margin formulation (OP1) and the soft-margin formu-
lation (OP2) of the TSVM, the labels of the test examples enter as integer variables.
Due to the constraints in Eqs. 6.18 and 6.22 respectively, both OP1 and OP2 are
no longer convex quadratic programs like the analogous optimization problems for
inductive SVMs. Before discussing methods for (approximately) solving the TSVM



6.3 Why Use Margin on the Test Set? 111

salt andbasilparsleyatomphysicsnuclear

D1

D2

D3

D4

D5

D6

1 1

1

1

1

1 1

1 1

1

1

1

1

1

1

1

1

Figure 6.3 Example of a text-classification problem with co-occurrence pattern. Rows
correspond to documents, columns to words. A table entry of 1 denotes the occurrence of
a word in a document.

optimization problems, let’s first discuss some intuition about why structuring the
hypothesis space based on the margin on the test examples might be reasonable.

6.3 Why Use Margin on the Test Set?

Why should it be reasonable to prefer a labeling with a large margin over a labeling
with a smaller margin, even if both have the same training error? Clearly, this
question can only be addressed in the context of a particular learning problem. In
the following, we will consider text classification as an example. In particular, for
topic-based text classification it is known that good classification rules typically
have a large margin (Joachims, 2002). The following example gives some intuition
for why this is the case.

In the field of information retrieval it is well known that words in natural language
occur in co-occurrence patterns (see e.g. (van Rijsbergen, 1977)). Some words are
likely to occur together in one document; others are not. For examples, when
asking Google about all documents containing the words pepper and salt, it
returns 3,500,000 webpages. When asking for the documents with the words pepper
and physics, we get only 248,000 hits, although physics (162,000,000 hits) is a
more popular word on the web than salt (63,200,000 hits). Many approaches in
information retrieval try to exploit this cluster structure of text (see e.g. (Baeza-
Yates and Ribeiro-Neto, 1999, chapter 5)). It is this co-occurrence information that
TSVMs exploit as prior knowledge about the learning task.

Consider the example in figure 6.3. Imagine document D1 was given as a training
example for class A and document D6 was given as a training example for class
B. How should we classify documents D2 to D5 (the test set)? Even if we did
not understand the meaning of the words, we would classify D2 and D3 into class
A, and D4 and D5 into class B. We would do so even though D1 and D3 do
not share any informative words. The reason we choose this classification of the
test data over the others stems from our prior knowledge about the properties of
text and common text-classification tasks. Often we want to classify documents by



112 Transductive Support Vector Machines

0

20

40

60

80

100

960348012400120064032617088462617

A
ve

ra
g

e
 P

/R
-b

re
a

ke
ve

n
 p

o
in

t

Number of Examples in training set

Transductive SVM
SVM

Naive Bayes

Figure 6.4 Macro-averaged PRBEP on the Reuters data set for different training set
sizes and a test set size of 3299.

topic, source, or style. For these types of classification tasks we find stronger co-
occurrence patterns within classes than between different classes. In our example
we analyzed the co-occurrence information in the test data and found two clusters.
These clusters indicate different topics of {D1, D2, D3} versus {D4, D5, D6}, and
we choose the cluster separator as our classification. Note again that we got to this
classification by studying the location of the test examples, which is not possible
for an inductive learner.

The TSVM outputs the same classification as we suggested above, although all
16 labelings of D2 to D5 can be achieved with linear separators. Assigning D2
and D3 to class A and D4 and D5 to class B is the maximum-margin solution
(i.e., the solution of OP1). The maximum-margin bias appears to reflect our prior
knowledge about text classification well. By measuring margin on the test set, the
TSVM exploits co-occurrence patterns that indicate boundaries between topics.

6.4 Experiments and Applications of TSVMs

Structuring the hypothesis space using margin was obviously beneficial in the toy
example above. Experiments have confirmed that this also holds in practice.

Figures 6.4 and 6.5 (from Joachims (1999)) give empirical evidence thatTSVMs in text
classification TSVMs improve prediction performance on real text-classification tasks, namely

the Reuters-21578 text-classification benchmark. The standard “ModApte” train-
ing/test split is used, leading to a corpus of 9603 training documents and 3299
test documents. The results are averaged over the ten most frequent topics, while
keeping all documents. Each topic leads to a binary classification problem, where
documents about the topic are positive examples, and all other documents are neg-



6.4 Experiments and Applications of TSVMs 113

0

10

20

30

40

50

60

70

80

90

100

32991650825412206

A
ve

ra
g

e
 P

/R
-b

re
a

ke
ve

n
 p

o
in

t

Number of Examples in test set

Transductive SVM
SVM

Naive Bayes

Figure 6.5 Macro-averaged PRBEP on the Reuters data set for 17 training documents
and varying test set size for the TSVM.

ative examples. The performance of each binary classifier is measured in terms of
the precision/recall breakeven point (PRBEP). The PRBEP is the percentage of
positive test examples that are classified correctly, if the classifier is allowed to pre-
dict as many test examples as positive as there are true positives in the test set
(see e.g. (Joachims, 2002)). The precise setup is described in (Joachims, 1999).

Figures 6.4 and 6.5 show the effect of using TSVM instead of inductive methods.
To provide a baseline for comparison, the results of the inductive SVM and a
multinomial naive Bayesnaive Bayes classifier are added. The SVM and the TSVM
are trained using SVMlight, available at svmlight.joachims.org. Figure 6.4 shows
the effect of varying the size of the training set. The advantage of using the
transductive approach is largest for small training sets. For increasing training
set size, the performance of the SVM approaches that of the TSVM. This is to be
expected, since labeled examples eventually convey the same information about the
distribution of the example vectors as the unlabeled data.

The influence of the test set size on the performance of the TSVM is displayed
in figure 6.5. The bigger the test set, the larger the performance gap between
SVM and TSVM. Adding more test examples beyond 3299 is not likely to increase
performance by much, since the graph appears to flatten out. The curves are fairly
typical and similar behavior was also observed on other problems. The results for
other text classification data sets can be found in (Joachims, 2002).

Similar gains in performance of the TSVM over an inductive SVM were reported
by Chapelle et al. (2003). For classifying net news articles they report that the
TSVM almost halves the prediction error for small training sets of 16 examples.
For an email classification problem, the results of Kockelkorn et al. (2003) also
indicate that TSVMs substantially outperform inductive SVMs for small training
sets. Small improvements on text classification problems are also reported by
Tong and Koller (2001). However, they conclude that the effect of active learning,



114 Transductive Support Vector Machines

where the algorithm can ask for the labels of particular examples, dominates the
improvement seen from the TSVM. This is in contrast to the findings of Wang et al.TSVMs for image

retrieval (2003). They find that incorporating TSVMs into their active learning procedure
for image retrieval based on relevance feedback substantially improves performance.
For more text-classification experiments see chapter 3.

Beyond text classification, Bennett and Demiriz (1999) have applied their L1-TSVMs for UCI
benchmarks norm variant of transductive SVMs to several UCI benchmark problems. They find

small but fairly consistent improvements over these tasks. A key difference from
most other experiments with transductive learning are the small test sets that
were used. Due to efficiency limitations of the mixed-integer programming code
they used for training, all test sets contained no more than 70 examples. Their
evaluation of regular TSVMs on a subset of these UCI benchmarks shows mixed
results (Demiriz and Bennett, 2000). Similar findings on UCI benchmarks are also
reported by Joachims (2003), where the differences between inductive SVMs and
TSVMs were found to be small.

Several applications of TSVMs in bioinformatics have been explored. For exam-TSVMs in
bioinformatics ple, they have been used to recognize promoter sequences in genes. Kasabov and

Pang (2004) report that TSVMs substantially outperform inductive SVMs in their
experiments. However, for the problem of predicting the functional properties of
proteins, Krogel and Scheffer (2004) find that TSVMs significantly decrease perfor-
mance compared to inductive SVMs.

Goutte et al. (2002) apply TSVMs to a problem of recognizing entities (e.g., geneTSVMs for
named entity
recognition

names, protein names) in medical text. They find that TSVMs substantially im-
prove performance for medium-sized training sets, and perform at least comparably
to an alternative transductive learning method based on Fisher kernels.

Summarizing the results, it appears that TSVMs are particularly well suited for
text classification and several other (typically high-dimensional) learning problems.
However, on some problems the TSVM performs roughly equivalently to an induc-
tive SVM, or sometimes even worse. This is to be expected, since it is likely that
structuring the hypothesis space according to margin size is inappropriate for some
applications. Furthermore, it is likely that the difficulty of finding the optimum of
the TSVM optimization problem has led to suboptimal results in some cases. We
discuss algorithms for solving the TSVM optimization problem next.

6.5 Solving the TSVM Optimization Problem

Both the hard soft-margin TSVM optimization problems can be written as mixed-
integer problems with a quadratic objective and linear constraints. Unfortunately,
currently no algorithm is known to efficiently find a globally optimal solution.

Vapnik and colleagues (Vapnik and Sterin, 1977; Wapnik and Tscherwonenkis,mixed-integer
programming 1979) proposed the use of branch-and-bound search to find the global optimium of

the TSVM optimization problem. Similarly, Bennett and Demiriz (1999) consider
standard mixed-integer programming software like CPLEX to solve a variant of



6.5 Solving the TSVM Optimization Problem 115

the TSVM optimization problem. To be able to use such software, they replace
the term w · w = ‖w‖2

2 in the objective with ‖w‖1 so that the objective becomes
linear. However, while both approaches produce globally optimal solutions, they
can solve only small problems with less than 100 test examples in reasonable time.
Unfortunately, figure 6.5 suggests that the biggest benefits of transductive learning
occur only for larger test sets.

The algorithm implemented in SVMlight does not necessarily produce a globallySVMlight

optimal solution, but can handle test sets with up to 100,000 examples in reasonable
time (Joachims, 1999, 2002). Most of the empirical results in the previous section
were produced using this algorithm. The algorithm performs a kind of coordinate-
descent local search starting from an initial labeling of the test examples derived
from an inductive SVM. The ratio of test examples that are classified as positive
(by adjusting the hyperplane threshold b) in this initial labeling is specified by the
user or estimated from the ratio of positive to negative examples in the training set.
This ratio is maintained throughout the optimization process to avoid degenerate
solutions that assign all test examples to the same class.2 In every step of the
local search, the algorithm selects two examples (one positive and one negative)
and swaps their labels. The way the examples are selected guarantees a strict
improvement of the objective function (i.e., the soft margin) in every such step.
In addition, the algorithm starts with a small value of C∗ and raises it throughout
the optimization process. This means that most ξ∗ are non-zero in the initial phase
of the search, resulting in a smoother objective function. Toward the end of the
search, incrementally increasing the value of C∗ toward the desired target value
makes the problem closer to the desired objective. A more detailed explanation of
the algorithm is given in (Joachims, 2002).

A related block coordinate descent method was proposed by Demiriz and Bennettgradient descent
(2000). The algorithm also alternates between changing the labels of the test exam-
ples and recomputing the margin. Differences compared to the SVMlightalgorithm
lie in the selection of the labels to change, the number of labels that are changed
in each iteration, and in the heuristics that are aimed to avoid local optima. A
similar algorithm for the L1-norm variant of the TSVM is described by Fung and
Mangasarian (2001).

De Bie and Cristianini (2004a) explore a convex approximation of the TSVMsemi-definite
relaxation optimization problem (also see chapter 7). They present a relaxation that takes the

form of a semi-definite program. While this program can be solved in polynomial
time, it becomes too inefficient for test sets with more than 100 examples. However,
assuming a low-rank structure of the test labels derived from a spectral decomposi-
tion technique, De Bie and Cristianini push the efficieny limit to several thousands
of test examples.

2. In text classification, assigning all test examples to the same class typically gives larger
margins than any other labeling. Clearly, this is an undesirable solution and indicates
a problem with the TSVM approach. A method that does not exhibit this problem is
presented in Joachims (2003).



116 Transductive Support Vector Machines

6.6 Connection to Related Approaches

The difficulty in solving the TSVM optimization problem has led to much interestgraph cuts
in other formulations of transductive learning algorithms. The goal is to exploit the
same type of relationship between the geometry of the test examples — or unlabeled
examples more generally — and their labels, but that have computationally more
convenient properties. Graph partitioning approaches based on st-min-cuts (Blum
and Chawla, 2001) and spectral graph partitioning explicitly or implicitly pursued
this goal (Belkin and Niyogi, 2002; Chapelle et al., 2003; Joachims, 2003; Zhu
et al., 2003b) (see also chapters 11, 12, 13, 14, and 15). For example, the method
in (Joachims, 2003) is explicitly derived analogous to a TSVM as a transductive
version of the k-nearest neighbor classifier.

Ridge regression is a method closely related to regression SVMs. Chapelle et al.ridge regression
(1999) derive a tranductive variant of ridge regression. Since the class labels do
not need to be discrete for regression problems, they show that the solution of the
associated optimization problem can be computed efficiently.

Co-training (Blum and Mitchell, 1998) exploits two redundant representations ofco-training
a learning problem for semi-supervised learning. A connection to general trans-
ductive learning comes from the insight that co-training produces transductive
learning problems that have large margin (Joachims, 2003, 2002). In fact, TSVMs
and spectral partitioning methods appear to perform well on co-training problems
(Joachims, 2003).

Connecting to concepts of algorithmic randomness, Gammerman et al. (1998),confidence
estimation Vovk et al. (1999), and Saunders et al. (1999) presented approaches to estimating

the confidence of a prediction based on a transductive setting. A similar goal using
a Bayesian approach is pursued by Graepel et al. (2000). Since their primary aim
is not a reduced error rate in general, but a measure of confidence for a particular
prediction, they consider only test sets with exactly one example.

6.7 Summary and Conclusions

Transductive support vector machines exploit the geometric (cluster) structure in
the feature vectors of the test examples, which makes them a particular kind of
semi-supervised learning method. In particular, TSVMs find the labeling of the
test examples that maximizes margin jointly on the training and the test data.
Intuitively, this produces labeling of the test examples so that class boundaries
follow cluster boundaries. Empirical findings suggest that TSVMs are particularly
well suited for text classification and several other (typically high-dimensional)
learning problems, often showing large accuracy gains for small training sets and
large test sets. However, on some problems the TSVM performs roughly equivalently
to an inductive SVM, or sometimes even worse. Partially, failure on some tasks may
be due to the difficulty of finding the optimum of the TSVM optimization problem.



6.7 Summary and Conclusions 117

Finding the globally optimal solution is intractable for interestingly sized test sets.
Existing algorithms resort to local search or to relaxing the optimization problem.
More work is needed on tractable formulations and algorithms for transductive
learning, as well as a deeper theoretical and empirical understanding of its potential.


