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Abstract

Well-structured transition systems (WSTSs) are a general class of in-nite-state systems for
which decidability results rely on the existence of a well-quasi-ordering between states that is
compatible with the transitions. In this article, we provide an extensive treatment of the WSTS
idea and show several new results. Our improved de-nitions allow many examples of classical
systems to be seen as instances of WSTSs. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

1.1. Veri
cation of in
nite-state systems

Formal veri-cation of programs and systems is a very active -eld for both theo-
retical research and practical developments, especially since impressive advances in
formal veri-cation technology proved feasible in several realistic applications from the
industrial world. The highly successful model-checking approach for -nite systems [16]
suggested that a working veri-cation technology could well be developed for systems
with an in-nite state space.
This explains the considerable amount of work that has been devoted in recent years

to this “veri-cation of in-nite-state systems” -eld, with a surprising wealth of positive
results [50, 26].

1.2. Well-structured transition systems

A very interesting development in this -eld is the introduction of well-structured
transition systems (WSTSs). These are transition systems where the existence
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of a well-quasi-ordering over the in-nite set of states ensures the termination of several
algorithmic methods. WSTSs are an abstract generalization of several speci-c struc-
tures and they allow general decidability results that can be applied to Petri nets, lossy
channel systems, and many more. (Of course, WSTSs are not intended as a general
explanation of all the decidability results one can -nd for speci-c models.)
Finkel [29, 30, 32] was the -rst to propose a de-nition of WSTS (actually several

variant de-nitions). His insights came from the study of Petri nets where several decid-
ability results rely on a monotonicity property (transitions -rable from marking M are
-rable from any larger marking) and Dickson’s lemma (inclusion between markings
of a net is a well-ordering). He mainly investigated the decidability of termination,
boundedness and coverability-set problems. He applied the idea to several classes of
-fo nets and of CFSMs (see Section 9).
Independently, Abdulla et al. [1, 2] later proposed another de-nition. Their insights

came from their study of lossy-channel systems and other families of analyzable
in-nite-state systems (e.g. integral relational automata [20]). They mainly investigated
covering, inevitability and simulation problems. They applied the idea to timed net-
works [6] and lossy systems.
Later, Kushnarenko and Schnoebelen [43] introduced WSTSs with downward

compatibility, motivated by some analysis problems raised by Recursive-Parallel
Programs.

1.3. Some criticisms

Though the two earlier lines of work had a great unifying power, they still suHered
from some defects (these defects are also present in [43]).
• Both Finkel and Abdulla et al. proposed de-nitions aiming at a speci-c algorithm or
two, hence their WSTS concept is burdened with unnecessary structure. Finkel was
interested in coverability-sets, so that his de-nition included, e.g. complex continuity
requirements. Abdulla et al. were interested in simulation with a -nite state system,
so that their de-nition included e.g. labels on transitions.

• More generally, both de-nitions are conservative for no good reason we can think
of. As a consequence, both proposals end up surprisingly short of simple examples
of their “general” concept.

• Both de-nitions mix up structural and e9ectiveness issues while in reality the eHec-
tiveness requirements are quite variable, depending on which algorithm one is talking
about. As a result their de-nition becomes more complex and restrictive when more
decision methods for WSTSs are found.

• Several proofs in these earlier papers are quite messy or tedious. In part this is due
to the unnecessarily complex de-nitions and to a lack of classifying work. As a
consequence some potentially enlightening connections are hard to notice.

• These early works do not tackle the fundamental question of “how=when can one
turn a given (family of) transition system into WSTS?”, i.e. how can one -nd a
compatible well-ordering?
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1.4. Our contribution

This article is both a survey of earlier works on the WSTS idea, and a presentation
of our proposal for a new conceptual framework, together with several new results or
new extensions of earlier results.
More precisely,

• We propose and investigate a cleaner, more general de-nition of WSTS, generalizing
the early insights of Finkel, Abdulla et al., Kushnarenko and Schnoebelen.

• We separate structural and eHectiveness issues and only add eHectiveness hypothesis
when and where they are needed for a decision method.

• We classify the decision methods into two main families: set-saturation and
tree-saturation methods.

• We give -ve main decidability results. Except for Theorem 5.5, they never appeared
in such a general framework. Both Theorem 3.6, made possible by our De-nition 3.2,
and Theorem 4.8, made possible by the key notion of stuttering compatibility, have
much more applications than their ancestors.

• We give a quite large collection (summarized in Fig. 9) of system models that can
be -tted into the WSTS framework. These examples come from various -elds of
computer science. Many have not been noticed earlier. Several of them use original
and innovative well-orderings. Roughly half of them are WSTSs only in our new,
generalized, de-nition.

• Finally, we ask how and when a given transition system can be given a well-structure.
We oHer surprisingly general answers (e.g. our Ubiquity Theorem) for the more lib-
eral de-nition.

1.5. Outline of the article

This article is divided into three parts. In Part I we introduce the fundamentals
concepts underlying WSTSs (Section 2) and we describe the two main families of
decision methods for WSTSs: set-saturation methods (Section 3) and tree-saturation
methods (Section 4). We conclude this part with downward-WSTSs (Section 5).
Part II is devoted to examples of WSTSs. We successively visit Petri nets and

their extensions (Section 6), string rewrite systems (Section 7), process algebra
(Section 8), communicating automata (Section 9) and a few less classical operational
models of computation (Section 10). All these (families of) models are found to be
well-structured in natural ways. This is a strong point in favor of our claim that we
propose a more interesting de-nition of WSTSs.
Finally, Part III is concerned with the passage from TSs to WSTSs. We investigate

when and how there exist well-quasi-orderings that can provide a well-structure to a
given transition system.

Part I: Fundamentals of WSTSs

Part I presents the technical core of the WSTS idea. As a rule, examples and illus-
trations have been postponed until Part II.
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2. Basic notions

2.1. Well-quasi-orderings

Recall that a quasi-ordering (a qo) is any reLexive and transitive relation 6. We let
x¡y denote x6y� x. A partial ordering (a po, an “ordering”,: : :) is an antisymmetric
qo. Any qo induces an equivalence relation (x≡y iH x6y6x) and gives rise to a po
between the equivalence classes.
We now need a few results from the theory of well-orderings (see also e.g. [44, 40]).

De�nition 2.1. A well-quasi-ordering (a wqo) is any quasi-ordering 6 (over some set
X ) such that, for any in-nite sequence x0; x1; x2; : : : in X , there exist indexes i¡j with
xi6xj.

Hence a wqo is well-founded, i.e. it admits no in-nite strictly decreasing sequence
x0¿x1¿x2¿ · · ·

Lemma 2.2 (ErdMos and Rado). Assume 6 is a wqo. Then any in
nite sequence con-
tains an in
nite increasing subsequence: xi06xi16xi2 : : : (with i0¡i1¡i2 : : :).

Proof. Consider an in-nite sequence and the set M = {i∈N | ∀j¿i; xi� xj}. M cannot
be in-nite, otherwise it would lead to an in-nite subsequence contradicting the wqo
hypothesis. Thus, M is bounded and any xi with i beyond M can start an in-nite
increasing subsequence.

Given 6 a quasi-ordering, an upward-closed set is any set I ⊆X such that y¿x

and x∈ I entail y∈ I . To any x∈X we associate ↑ x def= {y |y¿x}. It is upward-closed.
A basis of an upward-closed I is a set I b such that I =

⋃
x∈I b ↑x. Higman investigated

ordered sets with the 
nite basis property.

Lemma 2.3 (Higman [40]). If 6 is a wqo; then any upward-closed I has a 
nite
basis.

Proof. The set of minimal elements of I is a basis because 6 is well-founded. It
only contains a -nite number of non-equivalent elements otherwise they would make
an in-nite sequence contradicting the wqo assumption.

Lemma 2.4. If 6 is a wqo; any in
nite increasing sequence I0⊆ I1⊆ I2⊆ · · · of
upward-closed sets eventually stabilizes; i.e. there is a k ∈N such that Ik = Ik+1 =
Ik+2 = · · · :

Proof. Assume we have a counter-example. We extract an in-nite subsequence where
inclusion is strict: In0 In1 In2 · · ·. Now, for any i¿0, we can pick some xi ∈
Ini\Ini−1 . The well-quasi-ordering hypothesis means that the in-nite sequence of xi’s
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Fig. 1. (Upward) compatibility.

contains an increasing pair xi6xj for some i¡j. Because xi belongs to an upward-
closed set Ini we have xj ∈ Ini , contradicting xj �∈ Inj−1 .

2.2. Transition systems

A transition system (TS) is a structure S = 〈S;→; : : :〉 where S = {s; t; : : :} is a set
of states, and →⊆ S × S is any set of transitions. TSs may have additional structure
like initial states, labels for transitions, durations, causal independence relations, etc.,
but in this paper we are only interested in the state-part of the behaviors.
We write Succ(s) (resp. Pred(s)) for the set {s′ ∈ S | s → s′} of immediate succes-

sors of s (resp. {s′ ∈ S | s′ → s} the immediate predecessors). A state with no successor
is a terminal state. A computation is a maximal sequence s0→ s1→ s2 · · · of transi-
tions.
We write n→ (resp. +→; =→; ∗→) for the n-step iteration of the transition relation

→ (resp. for its transitive closure, for its reLexive closure, for its reLexive and transitive
closure). Hence 1→ is →. We use similar notation for Succ and Pred, so that for
� ∈ {+;=; ∗; 0; 1; 2; : : :}; Succ�(s) is {s′ | s �→ s′}.

S is 
nitely branching if all Succ(s) are -nite. We restrict our attention to -nitely
branching TSs.

2.3. Well-structured transition systems

De�nition 2.5. A well-structured transition system (WSTS) is a TS S= 〈S;→;6〉
equipped with a qo6⊆ S × S between states such that the following two conditions
hold:
(1) well-quasi-ordering: 6 is a wqo, and
(2) compatibility: 6 is (upward) compatible with →, i.e. for all s16t1 and transition

s1→ s2, there exists a sequence t1
∗→ t2 such that s26t2.

Thus, compatibility states that 6 is a weak simulation relation Ra la R. Milner.
See Fig. 1 for a diagrammatic presentation of compatibility where we quantify uni-

versally over solid lines and existentially over dashed lines. Several families of formal
models of processes give rise to WSTSs in a natural way, e.g. Petri nets when in-
clusion between markings is used as the well-ordering. In Part II, we shall see many
more examples.
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3. Set-saturation methods

We speak of set-saturation methods when we have methods whose termination relies
on Lemma 2.4. In this section, we illustrate the idea with the backward reachability
method for the covering problem, generalizing a result from [1].
Other examples of the set-saturation family are the algorithm for simulation by a --

nite state system (from [1]), and the algorithm for the sub-covering problem
(from [43]).
The algorithm studied in [5] is essentially the algorithm from [1] for the covering

problem, described as a symbolic method for reachability. Revesz’s procedure [53] is
another set-saturation method based on wqo’s, but we do not see how to state it with
a WSTS point of view.
Assume S= 〈S;→;6〉 is a WSTS and I ⊆ S is a set of states. Backward reachability

analysis involves computing Pred∗(I) as the limit of the sequence I0⊆ I1⊆ · · · where
I0
def= I and In+1

def= In ∪Pred(In). The problem with such a general approach is that
termination is not guaranteed. For WSTSs, this can be solved when I is upward-closed:

Proposition 3.1. If I ⊆ S is an upward-closed set of states, then Pred∗(I) is upward-
closed.

Proof. Assume s∈Pred∗(I). Then s ∗→ t for some t ∈ I . If now s′¿s then upward-
compatibility entails that s′ ∗→ t′ for some t′¿t. Then t′ ∈ I and s′ ∈Pred∗(I).

Pred∗(I) can be computed if we make a few decidability assumptions:

De�nition 3.2. A WSTS has e9ective pred-basis if there exists an algorithm accepting
any state s∈ S and returning pb(s), a -nite basis of ↑Pred(↑ s).

Note that De-nition 3.2 is distinct from the requirement for a basis of Pred(↑s)
used in [1]. Our de-nition is necessary for the generalized Theorem 3.6 we aim at.
Now assume that S is a WSTS with eHective pred-basis. Pick I b a -nite basis of

I and de-ne a sequence K0; K1; : : : of sets with K0
def= I b, and Kn+1

def= Kn ∪pb(Kn). Let
m be the -rst index such that ↑Km= ↑Km+1. Such an m must exist by Lemma 2.4.

Lemma 3.3. ↑Km=
⋃

i∈N Ki.

Proof. This is not a consequence of Lemma 2.4 but rather of

↑Y = ↑Y ′ implies ↑pb(Y ) = ↑pb(Y ′):

which relies on the de-nition of pb and the distributivity property of Pred and ↑ w.r.t.
union.

Lemma 3.4. ↑⋃Ki=Pred
∗(I).
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Proof. Use induction over n and show that

Kn⊆ ↑Kn⊆Pred∗(I) (= ↑Pred∗(I)):
On the other hand, the de-nition of pb entails ↑Predn(I)⊆↑Kn, so that

Pred∗(I)⊆
⋃
i∈N

↑ Ki ⊆ ↑
⋃
i∈N

Ki ⊆ ↑ Pred∗(I):

Proposition 3.5. If S is a WSTS with (1) e9ective pred-basis and (2) decidable 6;
then it is possible to compute a 
nite basis of Pred∗(I) for any upward-closed I
given via a 
nite basis.

Proof. The sequence K0; K1; : : : can be constructed eHectively (each Kn is -nite and
pb is eHective). The index m can be computed because the computability of 6 entails
the decidability of “↑K = ↑K ′?” for -nite sets K and K ′. Finally, Km is a computable
-nite basis of Pred∗(I).

The covering problem is to decide, given two states s and t, whether starting from
s it is possible to cover t, i.e. to reach a state t′¿t.
The covering problem is often called the “control-state reachability problem” when

S has the form Q×D (for Q a -nite set of so-called “control states” and D an in-nite
set of data values) and (q; d)6(q′; d′) entails q= q′ and d6d′.

Theorem 3.6. The covering problem is decidable for WSTSs with (1) e9ective pred-
basis and (2) decidable 6.

Proof. Owing to Proposition 3.5, one can compute K , a -nite basis of Pred∗(↑t). It
is possible to cover t starting from s iH s∈↑K . By decidability of 6, it is possible
to check whether s∈↑K .

Variants of this problem can be decided in the same way. E.g. deciding whether
t can be covered from all states in a given upward-closed I . Or from all states in
a downward-closed D= S\I (this requires WSTSs with intersection-eHectiveness, i.e.
there is an algorithm computing inter(s; s′), a -nite basis of ↑ s∩↑ s′).

4. Tree-saturation methods

We speak of tree-saturation methods when we have methods representing (in some
way) all possible computations inside a -nite tree-like structure. In this section, we
illustrate the idea with the -nite reachability tree and its several applications to termi-
nation, inevitability, and boundedness problems.
Other examples of the tree-saturation idea is the algorithm for simulation of a -nite

state systems (from [1]), and the algorithm for coverability-sets (from [29]).
We assume S= 〈S;→;6〉 is a WSTS.
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4.1. Finite reachability tree

De�nition 4.1 (Finkel [32]). For any s∈ S; FRT (s); the -nite reachability tree from s;
is a directed unordered tree where nodes are labeled by states of S. Nodes are either
dead or live. The root node is a live node n0, labeled by s (written n0 : s). A dead
node has no child node. A live node n : t has one children n′ : t′ for each successor
t′ ∈Succ(t). If along the path from the root n0 : s to some node n′ : t′ there exists a
node n : t (n �= n′) such that t6t′, we say that n subsumes n′, and then n′ is a dead
node. Otherwise, n′ is live.

Thus, leaf nodes in FRT (s) are exactly (1) the nodes labeled with terminal states,
and (2) the subsumed nodes. See Part II for examples.

Lemma 4.2. FRT (s) is 
nite (hence the name).

Proof. The wqo property ensures that all paths in FRT (s) are -nite because an in-nite
path would have to contain a subsumed node. Finite branching and KMonig’s lemma
conclude the proof.

With -niteness, we observe that FRT (s) is eHectively computable if S has (1) a
decidable 6, and (2) eHective Succ (i.e. the Succ mapping is computable).
The construction of FRT (s) does not require compatibility between 6 and →.

However, when we have compatibility, FRT (s) contains, in a -nite form, suScient
information to answer several questions about computations paths starting from s. For
a start, we have

Lemma 4.3. Any computation starting from s has a 
nite pre
x labeling a maximal
path in FRT (s).

Proof. Obvious.

Further results need slightly restricted notions of compatibility: transitive compati-
bility and stuttering compatibility.

4.2. Transitive and stuttering compatibility

De�nition 4.4. A WSTS S has strong compatibility if for all s16t1 and transition
s1→ s2, there exists a transition t1→ t2 with s26t2.
S has transitive compatibility if for all s16t1 and transition s1→ s2, there exists a

non-empty sequence t1→ t2→· · ·→ tn with s26tn.
S has stuttering compatibility if for all s16t1 and transition s1→ s2, there exists a

non-empty sequence t1→ t2→· · ·→ tn with s26tn and s16ti for all i¡n.
S has re?exive compatibility if for all s16t1 and transition s1→ s2, either s26t1

or there exists a transition t1→ t2 with s26t2.
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Fig. 2. Transitive and stuttering compatibility.

See Fig. 2 for a diagrammatic presentation of these re-nements of compatibility.
Strong compatibility (also called “1–1 compatibility”) is inspired from classical

strong simulation and the other forms of compatibility we use are more general than
this.
ReLexive compatibility is strong compatibility for =→.
Transitive compatibility is slightly less general than the “reLexive-and-transitive”

compatibility we used in De-nition 2.5. Finkel’s notion of “3-structured systems” [32]
uses transitive compatibility in a framework where labels of transitions are taken into
account.
Stuttering compatibility, introduced in [43], is less general than transitive compat-

ibility. The name comes from “stuttering” [15] (also “branching” [36]) bisimulation.
Both are more general than strong compatibility.
In practice, the strong, “1–1”, notion used by Abdulla et al. is much more limited

than appears at -rst sight. Clearly, their motivation was the decidability of simulation
with a -nite-state system. Unfortunately, most examples do not have strong compatibil-
ity, e.g. Lossy Channel Systems, and hence they have to modify the semantics of the
model.
More generally, when S= 〈S;→;6〉 is a WSTS, then S∗ def= 〈S; ∗→;6〉 has strong,

“1–1”, compatibility, but it is not necessarily a WSTS. S∗ is in general not -nitely
branching. Worse, when eHectiveness issues are taken into account, S∗ need not have
eHective Succ or pred-basis even when S has. Finally, the inevitability properties
investigated in [1] do not translate from ∗→ (or +→) to →.

4.3. Termination

Assume S is a WSTS with transitive compatibility.

Proposition 4.5. S has a non-terminating computation starting from s i9 FRT(s)
contains a subsumed node.

Proof. (⇒) Consider a non-terminating computation. A -nite pre-x labels a path in
FRT(s) (Lemma 4.3). The last node of this path is a leaf node, not labeled with a
terminal state, hence a subsumed node.
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(⇐) If n2 : t2 is the leaf node subsumed by n1 : t1, we have s ∗→ t1
+→ t2 with t16t2.

Transitive compatibility allows to infer the existence of some t2
+→ t3 with t26t3. Re-

peating this reasoning, we build an in-nite computation starting from s.

Hence we have

Theorem 4.6. Termination is decidable for WSTSs with (1) transitive compatibility;
(2) decidable 6; and (3) e9ective Succ.

4.4. Eventuality properties

Assume S is a WSTS with stuttering compatibility.

Proposition 4.7 (Kouchnarenko and Schnoebelen [43]). Assume I is upward-closed.
There exists a computation starting from s where all states are in I i9 FRT(s)
has a maximal path where all nodes are labeled with states in I.

Proof. (⇒) Use Lemma 4.3.
(⇐) Assume that n0 : t0; : : : ; nk : tk is a maximal path in FRT(s) with all labels in

I . If nk is a live node, then t0→ t1 → · · · tk is a computation and we are done. If nk
is a dead node, then we display an in-nite computation (s =) s0→ s1→ · · · where all
states are greater (w.r.t. 6) than one of the ti’s, and thus belong to I .
We de-ne the si’s inductively, starting from s0

def= s (= t0). Assume we have already
built s0; : : : ; sn. We have sn¿ti for some i6k. There are two cases:
• i¡k: then ti → ti+1. Because of stuttering compatibility, there exists a sequence
sn→ · · · → sm (m¿n) with sn; : : : ; sm−1¿ti and sm¿ti+1. We use them to lengthen
our sequence up to sm.

• i= k: then, because nk is dead, tj6tk for some j¡k. Thus tj6sn, so that we are
back to the previous case and can lengthen our sequence.

Now we can generalize a theorem from [1].
The control-state maintainability problem is to decide, given an initial state s and

a -nite set Q= {t1; : : : ; tm} of states, whether there exists a computation starting from
s where all states cover one of the ti’s. The dual problem, called the inevitability
problem, is to decide whether all computations starting from s eventually visit a state
not covering one of the ti’s. Concrete examples abound. See Part II. E.g. for Petri nets,
we can ask whether a given place will inevitably be emptied.

Theorem 4.8. The control-state maintainability problem and the inevitability problem
are decidable for WSTSs with (1) stuttering compatibility; (2) decidable 6; and (3)
e9ective Succ.

Proof. Owing to Proposition 4.7, the control-state maintainability problem reduces to
checking whether FRT(s) has a maximal path with all labels in ↑Q.
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Fig. 3. Strict compatibility.

4.5. Strict compatibility

Finkel [32] also considered WSTS’s with strict compatibility. Strict compatibility is
a stronger form of compatibility.

De�nition 4.9. A WSTS S has strict compatibility if for all s1¡t1 and transition
s1→ s2, there exists a sequence t1

∗→ t2 with s2¡t2.

Note that strict compatibility already requires normal non-strict compatibility by as-
suming that S is a WSTS. When 6 is a partial ordering, strict compatibility alone
entails non-strict compatibility. We adopted the more general de-nition for situations
where 6 is a quasi-ordering.
Strict compatibility means that from strictly larger states it is possible to reach strictly

larger states. See Fig. 3 for a diagrammatic presentation. Of course, the concept can
be combined with transitive, stuttering,: : : compatibility.
When we have strict compatibility, the -nite reachability tree contains informa-

tion pertaining to the -niteness of the number of reachable states. Assume that S=
〈S;→;6〉 is a WSTS with strict transitive compatibility. Further, assume that 6 is a
partial ordering (not a quasi-ordering).

Proposition 4.10. For any s∈ S; Succ∗(s) is in
nite i9 FRT(s) contains a leaf node
n : t subsumed by an ancestor n′ : t with t′¡t.

Proof. (⇐:) If n : t is subsumed by n′ : t′ then S admits an in-nite computation
s ∗→ t0

+→ t1
+→ t2 · · · with ti¡ti+1 for all i=0; 1; 2; : : : . This computation is easily built

inductively by picking t0 = t and t1 = t′. Then, strict transitive compatibility allows us
to deduce, from ti−1

+→ ti and ti−1¡ti the existence of a ti
+→ ti+1 with ti¡ti+1.

Then the ti’s are all distinct and Succ∗(s) is in-nite.
(⇒:) Assume Succ∗(s) is in-nite. We -rst show that there exists a computation

starting from s without any loop, i.e. where all states are distinct. For this, we can-
not simply remove loops from an in-nite computation as this may well result into a
-nite pre-x only. So we rather consider the (-nitely branching) tree of all pre-xes
of computations. Now prune this tree by removing all pre-xes with a loop. Because
any reachable state can be reached without a loop, the pruned tree still contains an
in-nite number of pre-xes. Now KMonig’s lemma gives us an in-nite computation with
no loop.
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Fig. 4. Downward compatibility.

We now apply Lemma 4.3 to this computation: this provides a node n : t subsumed
by n′ : t′ with t �= t′. Hence t′¡t because 6 is a partial ordering.

Now we can restate a Theorem from [32].
The boundedness problem is to decide, given a TS S and some state s ∈ S, whether

Succ∗(s), the “set of reachable states”, is -nite.

Theorem 4.11. The boundedness problem is decidable for WSTSs with (1) strict tran-
sitive compatibility; (2) a decidable 6 which is a partial ordering; and (3) computable
Succ.

Proof. We can apply Proposition 4:10 so that it is enough to build FRT(s) and inspect
it for a subsumed node with strict subsumption. This can be done when Succ and 6
are eHective.

5. Downward-WSTSs

There also exists a notion of downward-WSTS, -rst introduced in [43] for the RPPS
model. We generalize it to

De�nition 5.1. A downward-WSTS is a TSS= 〈S;→;6〉 equipped with a qo6⊆ S ×
S between states such that the two following conditions hold:
(1) well-quasi-ordering: 6 is a wqo, and
(2) downward-compatibility: 6 is downward-compatible with →, i.e. for all s1¿t1
and transition s1→ s2, there exists a sequence t1

∗→ t2 such that s2¿t2.

See Fig. 4 for a diagrammatic presentation of downward-compatibility. Downward-
WSTSs have been less investigated, partly because only a few recent models give
rise naturally to WSTSs with downward-compatibility. In Part II, we shall see several
examples.
Assume S= 〈S; →;6〉 is a downward-WSTS with reLexive compatibility and K; K ′

are two sets of states.

Lemma 5.2. ↑K ⊆ ↑K ′ implies ↑ Succ=(K)⊆ ↑ Succ=(K ′).
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Proof. (Recall that Succ=(K) is K ∪ Succ(K):) Assume s∈↑ Succ=(K). Then there
exist s1 ∈K and t1 with s1 =→ t16s. Because ↑K ⊆ ↑K ′, there is a s2 ∈K ′ with s26s1.
Because S is a downward-WSTS with reLexive compatibility there exists a s2

=→ t2
with t26t1. Hence t26s. Now t2 ∈ Succ=(K ′) entails s∈↑ Succ=(K ′).

Now assume s∈ S and de-ne a sequence K0; K1; : : : of sets with K0
def= {s}, and

Kn+1
def= Kn ∪ Succ(Kn). Let m be the -rst index such that ↑Km= ↑Km+1. Such an m

must exist by Lemma 2.4.

Lemma 5.3. ↑Km= ↑ ⋃
i∈N Ki= ↑ Succ∗(s).

Proof. The -rst equality is a direct consequence of Lemma 5.2, the second follows
from the de-nition of the Ki’s.

Proposition 5.4. If S is a downward-WSTS with (1) re?exive compatibility; (2)
e9ective Succ; and (3) decidable 6; then it is possible to compute a 
nite basis of
↑ Succ∗(s) for any s∈ S.

Proof. We proceed as with Proposition 3.5, the sequence K0; K1; : : : can be constructed
eHectively (each Ki is -nite and Succ is eHective). The index m can be computed by
computability of 6. Finally, Km is a computable -nite basis of ↑ Succ∗(s).

The sub-covering problem is to decide, given two states s and t, whether starting
from s it is possible to be covered by t, i.e. to reach a state t′6t.

Theorem 5.5. The sub-covering problem is decidable for downward-WSTSs with (1)
re?exive compatibility; (2) e9ective Succ and (3) decidable 6.

Proof. Owing to Proposition 5:4, one can compute K , a -nite basis of ↑ Succ∗(s). It
is possible to be covered by t starting from s iH t ∈↑K . By decidability of 6, it is
possible to check whether t ∈↑K .

Part II: The ubiquity of WSTSs

In this second part we review several fundamental computational models and discover
instances of WSTSs in these frameworks.
In general, all the well-structured systems we mention enjoy the eHectiveness require-

ments assumed e.g. by Theorems 3:6, 4:6, 4:8 and 5:5. We will not state this explicitly
every time. In fact, we mainly state the few exceptions, all of them occurring when
we use a non-trivial 6 for which decidability is lost.
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Fig. 5. A Petri net.

6. The well-structure of Petri nets

Petri nets are a well-known model of concurrent systems. See [51, 52] for a general
presentation.
Formally a net N = 〈PN ; TN ; FN 〉 has a -nite set PN of places, a -nite set TN of

transitions (with PN ∩TN = ∅) and a Low matrix FN : (PN ×TN ∪TN ×PN )→N. Fig. 5
contains an example net. The con-gurations of a net N are markings, which can be
seen as PN -indexed vectors of non-negative integers, or as multisets of places. The
marking M0 depicted in Fig. 5 is denoted {p1; p1; p2; p3} or p21p2p3.
The simplest ordering between markings is inclusion: M ⊆M ′ when M (p)6M ′(p)

for every place. That it is a wqo is known as Dickson’s lemma [24].
Petri nets with inhibitory arcs extend the basic model with special “inhibitory” arcs

(also called “zero-test” arcs) that forbid (inhibit) the -ring of a given transition when
a given place in not empty.
Petri nets with transfer arcs [38, 22, 25] extend the basic model with special “trans-

fer” arcs. Here transitions -re as usual but their eHect is richer: the transfer arcs say
whether the full content of some place must be transfered (added) to some other place.
Petri nets with reset arcs [38, 22, 25] extend the basic model with special “reset

arcs” telling how the -ring of some transitions resets (empties) some places.
Self-modifying nets [54] are Petri nets where the weight on arcs is not a con-

stant anymore. Rather it is an expression evaluating into a linear combination (with
non-negative coeScients) of the current contents of the places. Post self-modifying
nets are self-modifying nets where the self-modifying extension is only allowed on
“post” arcs (arcs from transitions to places).
In all these extensions, reachability becomes undecidable [8, 54]. However

Theorem 6.1. Using the inclusion ordering;
1: Petri nets are WSTSs with strong strict compatibility;
2: Petri nets with transfer arcs are WSTSs with strong strict compatibility;
3: Petri nets with reset arcs are WSTSs with strong compatibility;
4: post self-modifying nets are WSTSs with strong strict compatibility.
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Proof. Obvious.

So that e.g. covering is decidable for them! Covering is a classical problem in the
Petri net -eld. It was known to be decidable since [42]. As noted in [1], a by-product
of Theorem 3.6 is a backward-based algorithm for the covering problem in Petri nets.
This also applies to the three extensions (transfer arcs, reset arcs, post self-modifying
nets) we mentioned. Essentially, the same algorithm is used in [9] for the covering
problem in Petri nets with reset arcs. It also applies to all generalized nets where
transitions invoke “good increasing recursive functions” [35].
As far as we know, all implemented algorithms for this problem use Karp and

Miller’s coverability tree, or the coverability graph, or some such quite complex
forward-based method. These methods cannot be generalized to all extensions
(e.g. it fails for reset arcs [25]).
Other orderings can turn Petri nets into WSTSs. Assume N = 〈P; T; F;M0〉 is a

marked net (a net with a given initial marking M0). Say a place p∈P is unbounded
if there are reachable (from M0) markings with an arbitrarily large number of tokens
in p. Separate bounded and unbounded places and write P=Pb ∪Pnb. Usually, one sees
places in Pb as “control places” and places in Pnb as “data places” or “counter places”.
Now de-ne the ordering

M � M ′ def⇔
{
M (p) = M ′(p) for all p ∈ Pb;

M (p)6M ′(p) for all p ∈ Pnb:

This is a well-ordering over the set of reachable markings. So that, if we associate to
a marked net 〈N;M0〉 a transition system SN;M0 containing only the reachable markings
we get

Proposition 6.2. 〈SN;M0 ;�〉 is a WSTS.

This works for all the extensions like post self-modifying nets, etc., we mentioned
earlier. However, the well-ordering is only decidable when we can tell eHectively
which places of the net are bounded. This can be done for Petri nets and for post
self-modifying nets. (For nets with reset arcs and nets with transfer arcs, telling whether
a given place p is bounded is not decidable [25].)
The partial bounded reachability problem is, given a marked net N;M0 and a mark-

ing M , to tell whether from M0 it is possible to reach an M ′ with M ′(p)=M (p) for
all p∈Pb.

Theorem 6.3. The partial bounded reachability problem is decidable for Petri nets
and post self-modifying nets.

Proof. The partial bounded reachability problem is an instance of the covering problem
for 〈SN;M0 ;�〉.
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The most surprising aspect of this result is the relative simplicity of the algorithmic
notions that are involved.
Inhibitory arcs can be handled if we have no synchronization. BPP nets, short for

Basic Parallel Processes, are nets where the pre-set of transitions is reduced to a single
place [21, 50].

Theorem 6.4. With the inclusion ordering; BPPs with inhibitory arcs are downward-
WSTSs with re?exive compatibility.

Proof. Assume M1⊇M ′
1 and M1

t→M2. If t is -rable in M ′
1 then M

′
1

t→M ′
2 and M2⊇

M ′
2. If t is not -rable in M

′
1 then this cannot be caused by an inhibitory arc because

M1⊇M ′
1. Hence M ′

1 does not contain pre(t). But pre(t) is some place p, so that
M1 − {p}⊇M ′

1. Now M2 is M1 − {p}+ post(t) and M2⊇M ′
1.

7. The well-structure of string rewrite systems

Context-free-grammars (CFG) are a special kind of string rewrite systems. For-
mally, a CFG is a tuple G= 〈NG; TG; RG〉 where NG (the non-terminal symbols) and
TG (the terminal symbols) are disjoint alphabets and where, writing (G for NG ∪TG,
RG ⊆NG ×(∗G is a -nite set of production rules of the form Z→w. See [10] for details.
As an example, we consider G= 〈{S; X; Y}; {a; b}; RG〉 where RG, the set of rules,

is given as

S → YX | b;
X → S;

Y → a:

The rules in RG induce a notion of rewrite step: if Z→w is in RG then uZv→G uwv
for any u; v. Usually, we are interested in derivation sequences that start from a given,
so-called axiom, non-terminal, and end up with a word in T∗G .
In our previous example, a possible derivation for the terminal word ab is

S →G YX →G aX →G aS →G ab: (1)

If instead of focusing on the language generated by G, we emphasize the rewrite steps,
then G gives rise to a transition system SG where states are words in (∗G and (1) now
is a computation of SG, starting from S.
Several natural orderings can be de-ned between words:

embedding: a word u embeds into a word v (also u is a subword of v), written u4v,
iH u can be obtained by erasing letters from v.
left-factor: a word u is a left-factor (also, a pre-x) of a word v, written u6lf v, iH v
is some uw.
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Fig. 6. FRT (XY ) in 〈SG; 4〉. Subsumed nodes are boxed.

Parikh: u6P v iH a permutation of u is a subword of v.
subset: u⊆ v iH any symbol in u is in v.

4;6lf are po’s while 6P, and ⊆ are qo’s. Assuming a -nite alphabet, 4 is a wqo
(Higman’s Lemma) while 6lf is not. Being larger than 4, both 6P and ⊆ are wqo’s.

Theorem 7.1. For any context-free grammar G;
1: 〈SG;4〉 is a WSTS with strong strict compatibility;
2: 〈SG;6P〉 is a WSTS with strong strict compatibility;
3: 〈SG;⊆〉 is a downward-WSTS with re?exive-transitive compatibility.

Proof. Left as an easy exercise.

When it comes to applications, the precise choice of which ordering we consider
is quite relevant because many decidable properties for WSTSs (e.g. coverability) are
expressed in terms of the ordering itself. When a choice is possible, using a larger
ordering will often yield less information but more eScient algorithms.
We illustrate this compromise on two diHerent well-structured views of context-

free grammars. Fig. 6 displays FRT (XY ) for 〈SG;4〉. With the subword viewpoint,
FRT (XY ) has 15 nodes. When we switch to the 〈SG;6P〉 view (see Fig. 7) FRT (XY )
is a subtree of the previous tree and only has 12 nodes.
There exist many extensions of CFGs which remain partly analyzable. One example

are the permutative grammars [46], i.e. grammars where context-sensitive permutative
rules like “xS → Sx” are allowed (between any pair of symbols).
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Fig. 7. FRT (XY ) in 〈SG;6P〉. Subsumed nodes are boxed.

Theorem 7.2. For any permutative grammar G; 〈SG;4〉 is a downward-WSTS with
re?exive compatibility.

Proof. Left as an easy exercise.

A machine model related to CFGs are stack automata (also pushdown processes).
Con-gurations have the form 〈q; w〉 where q is a control-state and w∈(∗ is a stack-
content. Quasi-orderings between words lead to quasi-orderings between con-gurations
of a stack automaton. E.g. with

〈q; w〉6lf 〈q′; w′〉 def⇔ q = q′ and w6lfw′:

For stack-automata, the 6lf ordering is compatible with transitions but it is not a wqo
(unless we restrict the set of con-gurations). 4 is a wqo but it is not compatible with
transitions (unless we consider subclasses of stack automata).

8. The well-structure of basic process algebra

Milner’s CCS [49] is the paradigmatic process algebra. Recently, several fragments
of CCS with good decidability properties have been investigated [21, 50]. Here we
focus on BPA.
Basic process algebra (BPA) is a subset of CCS -rst studied in [11] where only

pre-xing, non-deterministic choice, sequential composition and guarded recursion are
allowed. Here is an example BPA declaration:

,:
X := aYX + bX + c

Y := bXX + a

and a possible derivation is

X a→,YX
b→,XXX

c→,XX
c→,· · · (2)
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BPA systems can be seen as CFGs with head-rewriting (we lose head-rewriting when
we replace sequential composition by parallel composition, yielding BPPs). Here the
states of S, are words in N∗

, because the symbols in T, are not stored in the state.
Because of the head-rewriting strategy, BPA systems do not have transitions com-

patible with word-embedding. E.g. if in the previous example, we consider Y 4X Y X

and step Y b→, X X , we cannot -nd some v′ with X Y X →, v′ and X X 4 v′. (Here as
with stack automata, the left-factor ordering is compatible with head-rewriting but it is
not a wqo.)
However, if we restrict ourselves to Normed BPA (a class -rst introduced in [11]) we

can -nd a well-structure. Formally, a BPA process is normed if it admits a terminating
behavior. A BPA declaration is normed if all its processes are normed. From a CFG
viewpoint, this corresponds to grammars in Greibach normal form and without useless
productions. E.g. our example , above is a normed BPA declaration.
With Normed BPA, the diSculty with head-rewriting can be circumvented.

Theorem 8.1. For a normed BPA declaration ,; 〈S,;4〉 is a WSTS with stuttering
compatibility.

Proof. Assume u4 v and u→, u′. Thus u �= -. u has the form Xu1 and u′ is some wu1
where X →, w.
Because u4 v, v has the form Y1 : : : YmXv1 with u1 4 v1. With normedness, there must

exist sequences .1; : : : ; .m of transitions such that Yi
.i→, - for i=1; : : : ; m. Then there

exists a sequence

Y1 : : : YmXv1
.1→,Y2 : : : YmXv1

.2→, · · · .m→,Xv1→,wv1

so that stuttering compatibility is established.

Without any normedness hypothesis, a well-structured view of BPA processes is still
possible:

Theorem 8.2. For any BPA declaration ,; 〈S,;4〉 is a downward-WSTS with re-
?exive compatibility.

Proof. Left as an easy exercise.

9. The well-structure of communicating �nite-state machines

A communicating -nite-state machine (CFSM) [12, 14] can be seen as a -nite-state
automaton (FSA) 〈Q;(; : : :〉 equipped with a collection c1; : : : ; cn of n -fo channels.

A transition of the FSA is labeled with a send action (e.g. q ci!a→ q′) or a receive action
(e.g. q

ci?a→ q′).
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Fig. 8. A communicating -nite-state machine

A CFSM C naturally gives rise to a transition system SC : a con-guration of SC is
some s= 〈q; w1; : : : ; wn〉 where q∈Q is a control state of the FSA, and each wi ∈(∗ is
a word describing the current content of channel ci. In con-guration s= 〈q; w1; : : : ; wn〉,
transition q

ci!a→ q′ is possible, reaching s′ = 〈q′; w1; : : : ; wi−1; wi:a; wi+1; : : : ; wn〉, a new
con-guration where the control state is now q′ and where the sent symbol a has been
appended after wi. In s, transition q

ci?a→ q′ is only possible if channel ci contains an a in
-rst position, i.e. if wi is some a:w′. Then we reach 〈q′; w1; : : : ; wi−1; w′; wi+1; : : : ; wn〉.
Fig. 8 shows an example where P1 and P2 are two diHerent automata communicating

via two -fo channels. This gives a CFSM CP1 ; P2 if we see P1 and P2 as one single
global FSA.
A possible behavior for this example is

〈p0q0; -; -〉 c1!a→〈p1q0; a; -〉 c1!b→〈p0q0; a:b; -〉 c1?a→〈p0q1; b; -〉 c2!c→〈p0q0; b; c〉 → · · · : (3)

Because the channels are unbounded, SC is in general an in-nite TS.
Fifo nets [48] are an extension of Petri nets where every place contains a -fo queue

of messages (instead of the usual tokens). Basically, -fo nets are CFSMs with an
explicit parallel structure and more general synchronization primitives.
Several orderings between con-guration are derived from orderings between words.

E.g.

〈q; w1; : : : ; wn〉 4 〈q′; w′
1; : : : ; w

′
n〉 def⇔

{
q = q′ and

wi 4 w′
i for i = 1; : : : ; n

and similarly for 6lf . 6lf is quite natural but it is still not compatible with the
transitions of a CFSM (unlike the pushdown automata case) and it is not a wqo. 4
and 6P are wqo’s but they are not compatible with the transitions.
It turns out that both CFSMs and -fo nets are Turing-powerful [14, 48]. Hence there

cannot exist a general eHective well-structure for CFSMs.
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However, for many classes of CFSMs there exist interesting decidable problems. The
rest of this section considers diHerent subclasses and their well-structure.

9.1. Free choice 
fo nets, completely speci
ed protocols and lossy channel systems

These three models have many similarities. They are very useful when modeling
systems assuming unsafe communication links, e.g. the alternating bit protocol.
Free choice 
fo nets [34] are a subclass of -fo nets that are free from any deadlock

caused by the order of messages in the queues. Formally, in a free choice -fo net,
whenever a place p has more than one possible output transition (this corresponds to
a receive action in CFSM speak) then all these transitions only depend on p. This
ensures that any message in a -fo queue may eventually be output without deadlock
[34].
Completely speci
ed protocols [33] are CFSMs in which every control state q admits

the receive actions q
ci?a→ q for every action a. This action eHectively “looses” a without

changing the current con-guration.
Lossy channel systems [3, 4] are CFSMs with a modi-ed semantics allowing the

loss of messages: in any con-guration the system may loose any symbol from any
channel. I.e. any transition 〈q; w1; : : : ; wn〉→ 〈q; w1; : : : ; w′

i ; : : : ; wn〉 is possible when w′
i

is obtained by removing one symbol from wi.

Theorem 9.1. With the 4 (subword) ordering; free choice 
fo nets; comp-
letely speci
ed protocols; and lossy channel systems are WSTS with stuttering com-
patibility.

Proof. Left as an easy exercise.

9.2. CFSMs with insertion errors

CVecVe et al. introduced CFSMs with insertion errors [19]. These are CFSMs with a
modi-ed behavior: at any time, arbitrary symbols (noise) can be inserted anywhere in
the channels. These too can be seen as well-structured systems, but not as easily as
lossy channel systems.
First, when we consider →−1, the transition relation backward, CFSMs with inser-

tion errors are exactly lossy channel systems. This view can be useful for reach-
ability analysis, and it helps understand why [19] considered forward analysis on
CFSMs with insertion errors, rather than the usual backward analysis based on iterated
pred-basis.
Another possibility uses forward transitions and the natural subword ordering:

Theorem 9.2. For C; a CFSM with insertion errors; 〈SC;4〉 is a downward-WSTS
with stuttering compatibility.
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Proof. Left as an easy exercise.

9.3. Monogeneous CFSMs

More involved orderings may be used. For example, consider CP1 ; P2 from Fig. 8. It
has transitions compatible with �, de-ned by

〈piqj; w1; w2〉 � 〈pi′qj′ ; w′
1; w

′
2〉 def⇔




pi = pi′ and qj = qj′ ; and

w′
1 ∈ w1:(ab)∗ if i = i′ = 0; and

w′
1 ∈ w1:(ba)∗ if i = i′ = 1; and

w′
2 ∈ w2:c∗:

This variation around the left-factor ordering is not a well-ordering in general, but it is
a well-ordering on Q1×Q2× [(ab)∗ + (ab)∗a]× c∗, a set containing all the reachable
states of CP1 ; P2 . The same approach can be generalized to all Monogeneous CFSMs
[27, 28].
Given a sequence . of transitions -rable from a con-guration s = 〈q; w1; : : : ; wn〉,

we write out(.) for the vector (u1; : : : ; un) of sequences of messages output (sent) by
.. Then s:out(.) denotes 〈q; w1u1 : : : ; wnun〉.
We de-ne an ordering � between con-gurations with

s � s′ def⇔ s:out(.)6lf s′:out(.) for all sequences . -rable from s:

Monogeneous 
fo nets are -fo nets where the send actions follow a certain regu-
larity. See [27, 31] for details. � is a (decidable) wqo over the reachable states of
monogeneous -fo nets. It has strong compatibility.

Theorem 9.3 (Finkel [28]). With �; monogeneous 
fo nets (and CFSMs) are
WSTSs with strong compatibility.

Proof. Omitted.

9.4. Other families

CVecVe [17] used a complicated ordering to show that Synchronizable CFSM [37] are
WSTSs with strict compatibility. It is also possible to show that half-duplex CFSMs
[18] are well-structured.

10. Miscellaneous models

There exist several other examples of WSTSs that we do not present at any length.
Some families are trivial, and we only mention them to show that WSTSs generalize

many things:
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• Finite-state systems are WSTSs with strong strict compatibility just by taking equality
as a wqo.

• More interestingly, all systems where an in-nite set of states can be partitioned into
a -nite number of equivalence classes can be turned into WSTSs if the notion of
equivalence one assumes enjoys the compatibility requirements.

• For instance, several variants of bisimulation have the compatibility requirements
we mentioned. By de-nition, this applies to the data-independent systems of [41].
Similarly, timed-automata [7] and some hybrid automata [39] can be seen as WSTSs.
Some families are issued from models less well-known than Petri nets or context-free

grammars:
• The integral relational automata of [20] are some kind of counter machine where
the contents of counters can be compared and moved around but no addition or
subtraction is allowed. This can be seen as some kind of WSTSs though they are
in-nitely branching because of input actions.

• The recursive parallel program schemes of [43, 45] are some kind of nets with a
restricted form of synchronization and where markings have a hierarchical, treelike,
structure. Two diHerent wqo’s turn them into WSTSs or downwardWSTSs.

• Using the fact that (several diHerent notions of) embedding between graphs are
wqo’s, it is possible to -nd WSTSs in the -eld of graph-grammars and graph-
rewriting systems [23].
Other families of WSTSs are obtained by applying simple general restrictions or

structuring modi-cations to well-known models:
• The lossy system idea. It can be applied to many models: Lossy Turing Machines,
Lossy Counter Machines [47, 13], etc. Admittedly, a CFSM with lossy buHers is
more realistic than a Turing Machine with lossy memory.

• The home-state idea. A home-state is a state that can be reached from any reachable
state. If the initial state s0 of some S is a home state, then the trivial ordering S × S
is a wqo with stuttering compatibility because any step s1→ s2 can be mimicked from
any other state s′1 simply with s

′
1

∗→ s0
∗→ s1→ s2. If we take a less trivial wqo, e.g.

control-state equality, we have a WSTS with transitive compatibility.
• Clearly, by adding a simple general “s→ s0” transition, it is possible to modify most
models so that their initial state is a home state, turning the model into a resetable
variant that is a WSTS. The behavior of the resetable variant has obvious relations
with the behavior of the previous untouched system (agreed, the resetable variant
does not terminate).
We shall let the reader ponder on an interesting exercise: what can be inferred by
trying to apply our -ve decidability results on Resetable Turing Machines?

PART III: From transition systems to well-structured transition systems

11. WSTSs everywhere

Clearly, the several examples we presented in Part II followed a common scenario:
we investigated well-known operational models of computation, and exhibited wqo’s
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that enjoyed one form or compatibility or another. Often the wqo was suggested by
the precise nature of the states (words, tuples of integers, etc.) and then compatibility
sometimes relied on restrictions on the possible transitions. Sometimes the wqo was
quite surprising.
In this section, we would like to discuss in more general terms the problem of

turning a given TS into a WSTS.
This is a quite natural and interesting question. No mention of this question is made

in [1]. Finkel only discussed it in his habilitation thesis [28] where he showed that there
is a largest compatible well-ordering and that this ordering is not decidable between
marking of Petri nets. However, his analysis suHers from the problems we raised in
the introduction of this article so that no clear and general answer is oHered.
Our main result in this section is

Theorem 11.1 (Ubiquity). For any TS S; there is a wqo6T such that 〈S;6T 〉 is a
WSTS with strict strong compatibility.

Proof. Consider S= 〈S;→〉 and, for s∈ S, de-ne T (s) as the length of a longest
computation starting from s (such a longest computation exists because our TSs are

-nitely branching). T (s) belongs to WN def= N∪{!}. De-ne s6T s′ as T (s)6T (s′). 6T

is a wqo (induced by the natural wqo over WN).
There remains to check strict strong compatibility. So consider T (s1)6T (s′1) and

s1→ s2. If T (s′1)=! then s′1 admits a non-terminating computation and there is a
transition s′1→ s′2 with T (s′2)=!. Otherwise T (s′1)= n¿T (s1) and T (s2)¡T (s1) so
that n¿0 and there exists a s′1→ s′2 with T (s

′
2)= n − 1. In both cases T (s2)6T (s′2).

Additionally, if T (s1)¡T (s′1) then T (s2)¡T (s′2).

Furthermore 6T is canonical in the following sense:

Proposition 11.2. If 〈S;6〉 is a WSTS with transitive compatibility; then 6⊆6T .

Proof. Assume 〈S;6〉 is a WSTS with transitive compatibility and s16t1. Given
any sequence s1→ s2 · · ·→ sn, transitive compatibility implies the existence of some
t1
+→ t2 · · · +→ tn. Then clearly T (s1)6T (t1).

Theorem 11.1 tells us that all TSs can be well-structured. Even TSs issued from for-
malisms with Turing power. Because the TS associated to a Turing Machine has -nite
branching and eHective Succ, the 6T wqo cannot be decidable in general, otherwise
the decidability results for eHective WSTSs would apply. Indeed we have

Theorem 11.3. Assume S has e9ective Succ. Then 6T is decidable among the states
of S i9 termination is decidable for states of S.

Proof. (⇒) Use Theorem 4:6.
(⇐) Assume termination is decidable and consider a state s. If s does not terminate,

then T (s)=!. If s terminates, it is easy to compute T (s)∈N using the eHectiveness
of Succ (and -nite branching). Hence T is computable, so that 6T is decidable.
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Finally, the 6T wqo suHers from two main drawbacks:
• it is only computable when termination is decidable,
• it lacks expressive power.
Of course, the -rst inconvenient is shared with all compatible wqo’s with transitive

compatibility.
The second inconvenient calls for more comments. Assume 6T is decidable for

some TS S. Pick two states s and t. Then, using Theorem 4.8 we can decide whether
starting from s, the system inevitably reaches a state not covered by t. This means,
“inevitably reach a state farther to termination than t” (in which case s itself was
already not covered by t). Using Theorem 3.6, we can tell whether, starting from s,
it is possible to cover t. Again “covering t” is not very meaningful. It is much more
meaningful to cover a marking of a Petri net (or a con-guration of a CFSM) with the
⊆ (or 4) ordering than with the 6T ordering.
Except for Theorem 4:6 (termination), all the general decidability theorems we gave

in this article involve properties de-ned in terms of the 6 ordering. They are mainly
interesting when 6 itself is a rich quasi-ordering, reLecting some structure of the
con-gurations of the system under scrutiny. Note that the well-structuring wqo’s we
gave in Part II were all inspired by the structure of the con-gurations.

12. Labeled transition systems

Theorem 11.1 is possible because we considered TSs without labels. Here we brieLy
consider labeled TSs.

De�nition 12.1. A labeled transition system (LTS) is a structure S= 〈S; L;→; : : :〉
where L= {a; b; : : :} is a set of labels and →⊆ S ×L× S is a set of transitions.

For LTSs it is possible to restrict the WSTS idea so that compatibility preserves
labels. This is what [1] and some proposals in [32] assume. As explained in our
introduction, we think this viewpoint should be seen as a restriction of the general
framework we set up in this article.

De�nition 12.2. A well-structured LTS (WSLTS) with strong compatibility is a LTS
S= 〈S; L;→;6〉 equipped with a qo6⊆ S × S between states such that the following
two conditions hold:
(1) well-quasi-ordering: 6 is a wqo, and
(2) strong compatibility: 6 is compatible with →, i.e. for all s16t1 and transition

s1
a→ s2, there exists a transition t1

a→ t2 such that s26t2.

Here again our de-nition does not mix eHectiveness and structural issues. It is pos-
sible to have less restrictive compatibility that still preserves labels but we will not
pursue this here.
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Here, compatibility in De-nition 12.2 really states that 6 is a simulation in the
classical LTS understanding [49]. Indeed, if we use � to denote the simulation quasi-
ordering, and assume 〈S;6〉 is a WSLTS with strong compatibility, then 6⊆ �.
Furthermore assuming that S is a LTS, we have

Theorem 12.3. There exists a 6 such that 〈S;6〉 is a WSLTS with strong com-
patibility i9 � is a wqo over the states of S.

Proof. If 〈S;6〉 is a WSLTS then 6⊆� but any qo containing a wqo is itself a
wqo. Reciprocally, if � is a wqo over the states of S, it is possible to pick 6def= �
and get a WSLTS.

Observe that 6T and � agree in the unlabeled case. In the labeled case, � is not
always a wqo so that Theorem 12.3 can be used to prove that a given LTS admits no
well-structured view, independently of eHectiveness issues.
For example, consider the BPA declaration

,:
X := a+ aXa
Y := bXb

Here the set of states reachable from Y contains all con-gurations anb for n¿0 and,
over such states, � coincide with 4. Clearly it is not a wqo and, consequently, S,

cannot be turned into a WSLTS with strong compatibility.

13. Conclusion

In this article we proposed a de-nition of well-structured transition systems that is
both simpler and more general than the earlier proposals of Finkel and Abdulla et al.
Simplicity and generality come essentially from a clear separation of structural and
eHectiveness issues.
The bene-ts of this new approach are multiple: simpler proofs, more general the-

orems, more instances of WSTSs. Regarding this last point, we would like to stress
again that both Finkel’s and Abdulla et al.’s earlier de-nitions did not lead to that
many examples of WSTSs. On the other hand, we easily exhibited instances of the
generalized WSTS notion in several operational models of computation. Fig. 9 classi-
-es the examples we gave. Of course, many more families of models exist and our list
is (probably) far from exhaustive. We welcome any additional example that readers
could provide.
Directions for future work are numerous, some of them linked to methodological and

practical issues, some more theoretical. Clearly, the issue of -nding well-structuring
wqo’s for given systems is very important. We just started investigating it in Part III.
Another general direction is to look for new decidability results. In this article we did

not describe all existing results. We omitted the decision method for simulation with
a -nite system (see [1]) or the algorithm for the coverability set (see [29]). Still we
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Fig. 9. Some families of well-structured transition systems.
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believe there is much room for new decidability results. In all likelihood such results
will have to make some additional hypothesis or another, which may diHer from the
hypothesis we used in this article.

Afterword

Since this article was submitted, we became aware of some more works related
to WSTS: well-quasi-orderings for powersets [61], model-checking for WSTSs [59],
better-quasi-orderings [55] and application to Timed Petri Nets [56], WSTSs as sym-
bolic transition systems [60], data structures for upward-closed sets [58], WSTS algo-
rithm for the logic LO [57], coverability for WSTSs [62].
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