
Theoretical Computer Science 34 (1984) 83- 133
North-Holland

83

TESTING EQUIVALENCES FOR PROCESSES

R. DE NICOLA and M.C.B. HENNESSY
Department of Computer Science, Uniwrsitv of Edinburgh, Edinburgh EH8 YYL, United Kingdom

I

Abstract. Given a set of processes and a set of tests on these processes we show how to define
in a natural way three different eyuitalences on processes. ThesP equivalences are applied to a
particular language CCS. We give associated complete proof systems and fully abstract models.
These models have a simple representation in terms of trees.

Introduction

In recent yea-s various programming languages with concurrent features have
been proposed 12, 3, 16, 19, 22, 291. This coincides with the increasing complexity
of hardware that can be manufactured at reasonable cost. Indeed, if advantage is
to be taken of the advances in hardware c&i&n and fabrication, where multiprocessor
machines are now commonplace, then much work needs to be done on the theory

of parallelism to model and analyse such hardware and the related software.
One outstanding and pressing problem is a suitable semantic theory. If one writes

a program in PASCAL or FORTRAN, then, apart from considerations of efficiency,
one is only interested in the input-output behaviour of the program, which can be
considered as a function from the input domain to the output domain. So a semantic
theory, suitable for PASCAL, is simply a theory of functions: those functions computed
by PASCAL programs. The same remark holds true in general for any language for
sequential programming, even though with more complicated languages the nature
of the input and output domains of the functions may be rather difficult to discover.

If the language has concurrent features, then it is well known that one cannot
represent its behaviour as a function. At least if one does represent it as a function,
then much information is lost. However, if we are to build a semantic theory, then
a counterpart to functions is needed: if we model programs written in such languages
what are the objects in the model?

Various suggestions have been made in the literature [23,21, 17,251. For example,
in [23], communicatiorl trees are put forward but unfortunately they need to be
factored by certain equivalences. Moreover, the behaviour which they describe seems
too detailed in certain respects [5,21]. In this paper we put forward another model,
called representation trees, which is very similar to the models discussed in [18, 25,
211. H owever, we show that they can be motivated in a very simple and appealing

manner.

0304-3975/84/%3.00 6 1984, Elsevier Science Publishers B.V. (North-Holland)

84 R. de Nicola, M.C. 6. Hennessy

The behaviour of programs, or processes, can be investigated by a series of tests.
For example with sequential programs we can associate a test with a pair consisting
of a predicate on the input domain and a predicate on the output domain. It is very
easy to see how the input-output function of a program can be characterised by a
set of such tests. For more general programming languages more general kinds of
test!, are needed. Indeed, the nature of the programming language should suggest
the type of test suitable for investigating the behaviour of programs. For example,
if the language contains real time constructs, the tests should be able to take time

into consideration.

In general one can think of a set of processes and a set of relevant tests. Then
two processes are equivalent (with respect to this set of tests) if they pass exactly

the same set of tesr’s. The first section of this paper is an atkmpt at formalising this
natural notion of equivalence. It turns out that a satisfactory formalisation must

take the possibility of divergence into consideration. In view of this, the natural

equivalence can be broken down into two preorders on processes. The first is

formulated in terms of the ability to respond positively to a test, the second in terms
of the inability not to respond positively to a test. In the latter case the process p
will be considered ‘less than’ the process cl if whenever p must respond positively
to a particular test, 9 must also respond positively. Both these preorders have their
counterparts in sequential programs, the first being partial correctness, the second
total ctirrectness. The natural equivalence between processes is obtained by taking

the equivalence associated with the conjunction of these two preorders (which is a

third preorder).

The remainder of the paper is devoted to tipplying these notions to a particular

language CC5 1231. This is a primitive language for describing communicating

processes but has tht: advantage of a simple and well-defined operational semantics.

We take as the set of tests those tests which can be described in CC’S, and examine

the substitutive relation generated by the three preorders. (Two processes are

suhstitutively related if they ;ire related in every contest.) In Sections 3 and 4 we

gia*e three sound and complete proof systems for these relations. These systems

con&t essentially of a set of axioms for manipulating processes and a form of

induction. The completeness theorem leads naturally to fully-tthstract denotational

models for the language (Section 5 1, i.e., models in which processes are distinguished

if old only if thcv rare distinguished by the associated set of tests. These models are

c(m~tructed in it very :fhstri~L‘t w+ from the S\ rlt;ts of the language. Moreo*er, in _
Section 5 we show th;lt they CM be represcntcd as collections of c’ert;rin kinds ot

trcc~. Roughly spe&ing the tree ,tssociatcd \\fith ;I process \t.ilI contitin the foll~~\~~in~

information:

Testing equivalences for processes h5

After performing a sequence of acitions a process can do various internal moves

to end up in a state represented by an element of the acceptance sets. Such an

element, a subset of actions, represents the actions which the process can perform
in that state. We have in fact three different models, the differences arising from
how we handle divergence and consequently how we order those trees. Although
these models are specifically for the language CCS, it is hoped that they can easily
be adapted to handle other languages such as CSP [161, ADA [193, DP [3].

In the %xai section we relate our work with other active research in this area. In
particular, the equivalences generated by the three preorders zi are related to

observational equivalence [23], failures equivalence [181 and weak equivalence [2 11.

A close relationship with the last one is established and is used to introduce a
simpler class of tests which characterise our models. Our tree representations are
most closely related to those in [18,251 and in future work v. e hope to illuminate

the similarities and the ditierences.

1. General setting

This section is devoted to setting up a i;:tAer general framework within which we

may discuss testing of processes and the tabulation of the possible outcomes.

1.1

We :issume a predefined set of states, States, and we let s range over States. A

cc~nlp~rtnrio?l is any nonempty sequence of states. Let Comp denote the set of

computations, ranged over by c. Note that a computation may be finite or infinite.

Let C’, Y (ranged over by o, p respectively) be sets of predefined observers and

~~MXQX Observers may be thought of as agents who perform tests. The effect of

observers performing tests on processes may be formalised by saying that for every

.I and /J there is a nonempty set of computations Comp(o, p). If c E Comp(o, jl),

then the result of o testing p may be the computation c. To indicate that a process

passes a test we choose some subset of States, denoted Success, to be srrccesslirl

st;ltt’s. Then a computation is slrcce.ss/irl if it contains a successful state. On the other

hand, iI computation will be called nns~~~ccess$rl if it contains no successf!): state.

To develop a useful theory we need one further ingredient. The semantic t’netiry of

sequential computat;ons, developed in [26,28], was greatly facilitated by hypothesis-

ing the existence of ‘partial objects’. For example, the symbol 0 is often used to

denote a partia: program whose behaviour is totally undefined. It will also be

convenient for us to consider such partial objects. To this end we assume the

existence of a Lnar;’ post-fixed predicate on states, 1. Informally, ST means that s

ih a partial-state, whose properties are underdefined. We can now define divergence,

86 R. de Nicr)la, M.C.B. Hennessy

a unary postfixed predicate on computations, which we denote by fi:
CQ if (ij c is unsuccessful, or

(ii) I” contains a state S, such that ST and is not preceded by a successful
state.

By convention a state precedes itself. We also use 4 to denote the negation of 9.
The usual notion on input-output can be viewed as a simple instance of the general
setting, as can be seen from the following example.

Example. Let 9 denote a set of nondeterministic programs for computing over the
natural numbers, with the property that they either compute forever or they halt
with some natural number as output. For each pair of natural numbers (n, m) we
have an observer 0((n, m)‘,. This observer, when applied to a program p, will attempt
to discover if p will give output m on input n. Thus Comp(O(n, m), p) will consist
of all computations of the form

(i) a computation generated by p on input n, followed by
(ii) if this computation halts examine the output. If it is IPI, then go to a successful

state ss. If it is not m, go to a deadlocked state sD.

For this simple example we did not need the predicate T (or, more precisely, ST
for no state s j and there was only one successful and one deadlocked state. In more
complicated cases such as CCS, the main example of the paper, the full generality
of the notation will be required.

1.2

We may now tabulate the effect of an observer o testing a process p by noting
the types of computations in Comp(o, p). For every o E 0, p E 9 let R(o. p) c { T, L}

(the result setj be defined as follows:
(i) T E R(o, p) if 3c E Comp(o, p) such that c is success~itl.

(ii) &R(o,p) if 3c&omp(o,p) such that cfi.
Note that we do not differentiate between an experiment which deitdlock ., i.e..

the computation is finite without reaching a successful state and ;fn esprriment
which diverges, i.e., the computation goes on forever without ever reaching ;1
successful state: they both contribute A_ to the result set. The existence ot’ partitilly-
defined states introduces an additional auxiliary notion of divergence, i.e., \+ hen it
computation reaches a partially-defined state before reaching a successful st;lte.
Tllis also introduces 1 into the result set. Thus, in effect we can distinguish between
processes which cannot fail a test (the result set is { T}) and processes which may
pass a test (the result set is (I, T)). This will be elaborated upon shortly,

A natural equivalence between processes immediately suggests itself:

P -J y if, for every 0 E 0: R(0, p) = R(f), q).

HoBevcr, it M ill be more fruitful to consider instead preorders, i.e., relations which

Testing equivalences for processes 87

are transitive and reflexive. A preorder G generates an equivalence = in a natural
way, = = (c_ n 2). In general, preorders (or partial orders j are easier to deal with
mathematically and we can easily recover the equivalence mc’ by studying a preorder
which generates it. This gives us a certain amount of freedom since in general there
may be more than one preorder which generates any given equivalence. Finally,
preorders are more primitive than equivalences and therefore we may use them to

concentrate on more primitive notions which combine to form the equivalence -“.
The set !T,L! may be viewed as the simple two point lattice 0:

T

So every result set can bc viewed as a subset of this lattice. The theory of power-
domains [24,27], provides us with general methods of ordering subsets of (complete)
partial orders. In [121 it was argued that three different powerdomain constructions
arise naturally and that they correspond to three natural views of nondeterministic
computations. Here we use these three constructions to give three different orderings
on result s, ts. Since the partial order CD is so trivial, we can avoid descriptions of
the powerbomain constructions completely and give the resulting orderings on the
suhst?ts of 0.

This ordering corresponds to the Egli-Milner powerdomain of CD, and we will denote

it by Gl.

(II) 0-l

This ordering corresponds to the Smyth powerdomain of 0. The sets (7’, i} and

(L} art; identified and they are less than {T). This corresponds to the view that

possible divergence is catastrophic. We denote this order by c_?.

88 R. de N&la, M.C.B. HerccA y

This corresponds to the dual of the Smyth construction and was called the Hoare
powerdornain in f; 21. The sets { T}, { T, I} are identified and both are greater than
(I). This ordering corresponds to the view that divergence is unimportant and is
therefore ignored. We denote it by t_+

These three different orderings on result sets generate three different orderings
on processes.

Definition 1.2.1. For given sets of observers and processes 6’, 9 respectively, let
~T~P~P,i=1,2,3,bedefinedby

We denote the related equivalences by -l’. The following results are trivial to

establish.

Proposition 1.2.2. (a) p -’ q [f and only jfp = :’ q.

W ~~fq~~.nrldonly~fpcfqarldp~~q.

Thus we have reformulated the natural equivalence ,’ as the equivalence gener-
ated by a preorder E I. This preorder is further broken down into two more primitive
preorders G ,‘, Go. The rc-levance of these primitive preorders can be motivated by
the followkg definition and proposition.

Definition 1.2.3. (a) p may satisfy o if TE R(o, p).

(b) pmustsatisfyoif(T)- R(o,Q).

Thus p rna~’ sakjj o if there is a resulting successful computation whereas p must

sufi$s 0 if every resulting computation is successful.

Proposition 1.2.4. (a) p C f q [fl Vo E-: 0, p may satisfy 0 implies

q may satisfy 0.

(b) p E 5 y j#; Vo E P’, p must satisfy o hplies
q must satisfy f).

In the remainder of this paper we apply this general theory to the language KS
231. To do so we need to specify:

.fl - a set of processes (KS terms),
Q;’ - a~ set of observers,

States - a set of states, together with a subset of successful states and the under-
defined-predicate j’ on states,

Camp - a method of assigning to every observer and process a nonempty set of
computations (sequences of states).

Tesring equivalences for processes 89

The three resulting preorders have many interesting mathematical properties. We
will give three complete proof systems for these orders and three fully-abstract
denota.tional models.

2. ccs

2. i!

In this section we review the definition of CCS and its operational semantics. We
use ‘pure’ CCS [23] and our version will be closest to that presented in [I3].

Let X be a set of variables, ranged over by x. Let Zk be a set of operators of
arity k. We use C to denote lJ {&I k Z- b}. The set of recursive terms over 2, RE&,
ranged over by t, II, is defined by the following BNF-like notation:

I::=xlop(t,, . . ., tk),opE&Irecx.f

The operation ret x._ binds occurrences of x in the subterm ? of ret x.t. This gives
rise to the usual notions of free and bound variables in a term. Let FV(t) be the
set of free variables in t. If FV(t) = 8, we say that t is closed. Let CRECr denote
the set 07 dosed terms and we use p, q as meta-variables to range over this set. A
term isj%e if it is closed and contains no occurrence of ret x._. Let FRECr denote
the set of finite terms, and we use d, e as meta-variables. Let t[u/x] denote the term
which results from substituting u for every free occurrence of x in t. More generally,
let SUB be the set of shtitutions, i.e., mappings from variables to terms. We use
p as a meta-variable over SUB. Let tp denote the result of substituting p(x) for
every free occurrence of x in t, for every x in X. A substitution is closed if, for
every x in X, p(x) is closed.

Pure CCS may be defined by choosing a particular set of operators, C. Let d
denote a set of unary operators, ranged over by cy, p. Let 8 = {G 1 a E A}. The operator
6 is said to be the complement of cy. It will also be convenient to let 6 denote LY.
Let ,I = 9 u au {T}, where T is a distinguished unary operator not occurring in
;3 u a. .I\ is often referred to as the set of basic actions, and we used I_L to range
over it. We use A to range over A CI d.

Let PER denote the set of partial functions over A, such that SE PER implies
(i) S(7) = 7,

(ii) S(A) defined implies S(i) is defined and S(i) = S(A),
(iii) S(A) = S(A’) implies A = A’.

We are now ready to define the operator set for CCS. Let

&={NIL, n},

90 R. de Nice la, M.C. B. Hennessy

In accordance with [23], p will be used in prefix form, [S] in pcTstfix form and f, 1

in infix form. In the future when we refer to terms, closed terms etc., we mean terms
generated by this set of operators.

The operational semantics is given in terms of labelled rewrite rules over closed
terms. For each p E A we define a relation -% over closed terms with the intuition that

(i) p A 9 if p may evolve to 9 by reacting to a h-stimulus from the environment,
(ii) p -& 9 if p may evolve to 9 by performing an internal action, which is

independent of the environment.
In purri: CCS the only possible actions are synchronisations and therefore a T move
\;;?! correspond to a synchronisation of txao subprocesses.

Definition 2.1.1. Let s be the least relation over closed terms which satisfies

(i) k+p;
(ii) p, Jk 9 implies p, +pz s 9,

Pz+PI s 9,

PIIPG+ YIP23

PZIPI cr_ Pzl9:

(iii) p s 9, S(p) defined, implies p[S]a 9[S]:

(iv) pl -2 yI, pz -1, 9? implies pI Ip2 -L 9l 19?;

(v) t[rec s.l/_++ 9 implies rec.x.t JG 9.

We also need the following unary predicate on closed terms.

Definition 2.1.2. Let J, be the least predicate on closed terms which satisfies

(i) NlLJ, cvpJ,

(ii) pd, 9J+ implies (p+ 9k (p I Ok p[S&
(iii) t[rec x.r/x]J implies ret x.tJ.

Let p? if not pJ. So, for example, 07 and ret s.(ap + -u)t. Informally PJ’ means
that there is an unguarded recursion or an unguarded occurrence of 0.

In this section we show how to view KS as if particuhir example of the general
betting explained in Section I. The set of processes will just be closed CCS-terms,
i.e., VREC\, and the principal point to settle is how to describe observers. It seems

reasonable to use the same language to describe both the processes and the observers.

An observer may test a process by communicating with it and CCS was designed

to describe communication. We do, however, need some additional machinery for

indicating the success of a test. Let w be a distinguished action symbol, not in A.
ivc: 1~ (I) ;is a special action which ‘reports success’. Now let P be CREC, i,, i,
i.e., ;~n observer is any term obtained from the augmented operator set.

Testing equivalences for processes 91

Example. The term 0 = G&NIL is an observer for testing whether a process can
perform an cu action followed by a p action. For example, the process p =

(u(PNIL+ yNIL) passes this test because when o and p are put in communication,
success can be eventually reported:

0 Ip A p~~rLl(flNIL-t- yNIL) A wNIL1 NIL s

CCS is ‘applicative’ in nature and therefore the natural set of states is the set of
all closed terms. So let States = CREC rUjo) (which includes CRECr). Let the set
of successful states, Success, be { p I3f.p s p’} and we have already defined the
predicate f. So we view the existence of exposed unguarded recursions in a term
as saying that the term is underdefined.

A cmnputution is any sequence of terms {p,, 1 n a 0) (finite or infinite) such that
(i) if p,, is the final element in the sequence, then p,, A p’ for no p’, and (ii) otherwise

Fn t_ Pn+l-
Finally, for o E 0, p E 9, let Comp(o, p) be the set of computations whose initial

element is the term (o Ip).

These definitions immediately give three different preorders on 9, the set of closed
KS-term. To elmphasise their import we translate Definition 12.3 into this setting:

(a) p nay satisfy o if (o Ip) L* q for some q such that q z,

(b) p must satisfy o if w henever o 1 p = o. 1 p. L ol (p, A - l l is a computation from
o 1 p, then (i) 3n 3 0 such that o,, z, and (ii) ok I p,J implies ok, 2 for some k’s k.

Notation. We have used q s as a shorthand for (3q’.q s q’) and q $+ is used as a
shorthand for ias negation. We will also use -+ to denote A. Let Dead = {p [pi, p A}

and Fail = {p Ip E Dead, p L}. From now on we will.drop the occurrences of 6 when
this leads to no confusion. Thus &” will be rendered as sti We will also use the
usual notation from [23] for CCS terms and their operational semantics. So the
precedence of the operators is given by

[S]>p>I>i-

The occurrences of NIL will usually be omitted from a term. So aNIL+PNIL will
be rendered asp + 0.

The relation =+ is defined by p & q if there exist pI, q1 such that p -A* pI -% q, f,* q

and & will sometimes be used for A*, for the sake of uniformity. Then S(p) =

(A I&p’} and Der,(p J = {p’lp 5 p’). Note that p E Der,(p). If s is a sequence of

actions, i.e., s E A *, then =% is defined in a natural way from &, with % coinciding
with &. The predicates fi, & apply only to computations but in future we will also
apply them to terms. Fo pfi will mean that there is a computation whose initial
element is p and which is either infinite or contains a term q such that q?. We will
also often revert to graphical representations of terms [23] which use only the
operators p, +, NIL, 0.

92 R. de Nicola, M.C. 8. Hennessy

The preorders 5i defined
arbitrary term5 by

t Gi u if, for every

on closed terms may be extended in the usual way to

closed substitution p, tp G i up.

Finally, let GT be the relations obtained by closing under contexts:

t &T u if, for every context C[1, C[t] G i C[U].

These three relations s: are the topics of the remainder of this paper and we close
this section with some remarks on them.

Many observers are useless from the point of view of distinguishing processes.
For example, if o contains no occurrence of o, then for every p, R(o, p) = {I). SO
these observers may be ignored. One can ask, in general, what is the smallest set
of observers which generates the preorders thfi This question is discussed in Section
6.4. By and large, the preorders G i are well behaved. For example, they are preserved
by all the CCS operators except +.

As an example we prove the result for the composition operator I.

Proposition 2.2.1. p 5 i 9 implies p) r C_ i 9 1 K

Proof. The result follows from the following remarks:
i = 3: For any o E 0, (p 1 r) may satisfy o if and only if p may satisfy (r IO).

i=2: For any OE~‘, (pi) r must satisfy o if and only if p must satisfy (I lo).

i = 1: Follows from the two previous cases. Cl

In general, c, ;, i = 1, 2, are not preserved by the operator +. For example, a! G? T(Y
but A + ay gz A + W: if o denotes io, then A + cy must satisfy o whereas h + TCY IO -

a jhw E Dead. However, G_ ? and G$ coincide but for uniformity we will treat the
three cases together.

Definition 2.2.2. Let p C, l 9 if, for every closed term r, r + p c,, r + 9.

We extend !G: to arbitrary terms as usual and let = ,’ denote the related
equivalences.

The only dificulty with this theorem is to prove that E i is preserved by contexts
involving the recursion operator. This requires some technical concepts which we
have not yet developed. So we will postpone the proof until Section 4.1.

In this section we give some examples anti counter-examples. These will mainly
concern only the equivalence 2=,, which in the sequel we will abbreviate by =.

Testing equivalences for processes 93

Example 2.3.1. For any X, Y,

AX+-AY =+ AX+hY+A(X+ Y).

Using the representation of terms by trees of [23] these may be described as

P 9

The reader may like to convince him- (or her-)self that for any observer o, p may

satisfy o 8’ and only if 9 may satisfy o and p must satisfy o if and only if 9 must
satisfy 0. In the next section we will give a set of axioms for transforming terms
whiyh preserve ==+ and we will show how to transform p into 9.

Example 2.3.2. FOG any X, Y, 2,

AX+A(X+Y+Z)-+ AX+A(.\f t- Y)+h(X+ Y+Z).

However, we can distinguish very similar pairs of trees.

Example 2.3.3. (a) p = Aa, + A(cu +/3 + y) G= ha! + A((L +p + y) + hp = 9. This follows
since p must satisfy hi whereas 9 1 h%o - p) iiw E Dead.

(b) p = Acu + A(/3 + y) F Aar + Ap + A(P + y) = 9. since p must satisfy h(Gw f to)
whereas 91~((YO+~~)jPI(IYO+~~)EDead.

We now consider some examples with internal moves.

Example 2.3.4. Consider the two trees

4

94 R. de Nicola, M.C. B. Hennessy

it turns out that p 3= 9 although it is quite difficult to see. Now consider the two trees

4’

These trees have a much simpler ‘~-structure’ and it is relatively easy to see that
they are not equivalent. For example, no matter what internal move 4’ makes it can
always perform either a /3 or an cy. However, p’ can make an internal move to
become yNIL which can perform neither. So q’ must satisfy (60 +/%I) whereas p’
f&t satisfy (60 + &J).

The axioms given in the next section enable us to transform any term into a term
with a %structure similar to that of p’, q’. We will see that p may be transformed
into p’ and 9 transformed into q’.

Example 2.3.5, (a) CY (/3X + P Y) =+ c@X + CY/~ Y In terms of trees:

(b) cup(rX+rY) =+ a/3X + apY. In terms of trees:

These two examples show that =+ tends to abstract away from ‘when choices are
made’.

Testing equivalences for processes

Example 2.3.6. aX + 7p Y =+ T(arX + p Y) + 7p Y.

95

This will in fact be one of our more useful axioms. With it ly!e may trairsform terms

so that they represent processes in which all choices are either purely external or
purely internal.

Example 2.3.7. (a) TX + TY G t TX. In graphical terms this lnay be rendered as

The presence of 7 on the left-hand side is important. For example, a! + p g l T(Y.
This follows since cy + p must satisfy &J whereas ?cy 1 &.o ---) a 1 &I E Dead.

(b) hX+AY -; A (X + Y). In graphical terms we have

Thus the relation =i ignores all the tree structure of terms. We will also see that
TX ==; X, so that

3. Proof systems

3.1

==l is a very weak relation.

In this section we examine axiom systems for the three relations CT defined in
the previous section for CCS. The basic axioms are given in Table 1 (see p. 98).
Most of them are given in terms of “=“, and they are designed to be used in
conjunction with the following rules:

X= Y implies Xc Y, Yr=X

X C Y, YG X implies X = Y.

96 R. de Nicola, M.C. B. Hennessy

The axioms (Al)-(A4), (Sl)-(S3), (Cl), (Ol), (02) are essentially taken from
[23,13]. The summation notation used in (C 1) is justified by the axioms (Al)-(A4).
As in [23], CiFm ti denotes NIL. The notation t(+fil is meant to denote that the
term l2 is optic:nal as a summand. The axioms of particular interest are (N 1)-(N4),
which replace the T-laws of [23]. Indeed, these new axioms imply these r-laws.

Let A, denote the set of axioms in Table 1 other than (El), (Fl). Let A2 be the
set A, together with (El) and A3 be,the set A, together with (Fl). We write t Ci u

(t =1 u)iftcu (t= u) can be derived from the axioms Ai. These axioms are rather
low-level but we can derive many more complicated derived axioms. A list of some
important ones are given in Table 2 (see p. 99). The remainder of this section is
devoted to deriving these axioms aild re-examining the examples of the previous
section.

(Dl)-TX+RGX+R
Conversely
X+~c=X+rX+~

&7(X+X)+R
= 7X-U!

(D2)-We use induction on the size of I:
(i) III= 1.

Then
/Lx=~x+~x

=&X+-7X)
= p7x

(ii) I = Jv(o).
Then

from (N4).

from (02)
from (N2)
from (Al).

from (Al)
from (NI)
from (Al).

using induction with p = t

=
it J

using induction.

(D~~-~~X+R)+RE~(X+X)+R

=pX+R

Conversely,

from (NO

from (02)

from (Al).

from (02)

from (NH

Testing equiualences for processes

=&X+X+R)+C!

cjL(2(X+X)+R)+R

=&X-m)+0

=&4(X+0)+0

(D4)-X+TY=X+TY+TY

!a(X+ Y)-t7.Y

Conversely,

7(X+ Y)+7YcX+ Y+rY

c,x+7y

(D5)-This is Example 2.3.1 of the previous section:

pX+/kY=&X+7Y)

=/.+x*t*(x+7Y))

=&X+7(7(X+ Y)+7Y))

=&X+7(X+ Yj+7Yj

=/.&X-+(X+ Y)+/LY

(D6)-Example 2.3.2:
(i) p = 7:

7X+7(X+ Y+2)

=7(X+ Y+Z+tX)+r(X+ Y+z)

=7(X+ Y+z+rx+T(x+ Yj)+7(X+ Y+z)

=7(7(X+ Y+Z)+7X+7(X+ Y))+r(X+ Y+z)

=7(X+ Y+Z)+rX+7(X+ Y)
-. *

(ii) p = A:

hX+A(X+ Y+Z)=A(Tx+T(jt+ Y+z))
=A(rX+r(X+ Y)

+7(x+ Y+z))

=AX+A(X-k Yj+A(X+ Y+Z)

97

from (Dl)

from (N2)

from (Al)

from (01).

from (Al)

from (N2).

from (N4)

from (S2), (Al).

from (Nl)

from (D4)

from (D4)

from (Nl)

from (D2).

from (D4)

from (D4), (Al)

from (D4), (Al)

from (D2), (Al).

from (Nl)

from (i)

from (N2).

Note that in (D5) to prove equality between terms which contain no occurrence of
T, we first introduce T'S, then use some T-laws, and then eliminate T. The same
method is used in (D6), where it is seen that (D2j can be used to translate 7
properties into A properties.

98 R de Nicola, M.C. B. Hennessy

Table 1. Basic axioms.

x+x=x

x+y=y+x

X+(Y+Z)=(X+Y)+Z

X+NIL=X

@X.+pY=p(Tx+TY)

X+rYW(X+ Y)

pX+r(pY+Z)=7(pX+pY+Z)

TXGX

NIL[S] = NIL

!X + Y)[S] = X[S]+ Y[S]

px[‘] =
S(p)X[S] if S(F) defined
NIL otherwise

Let t denote 1 ~,li{+fl}, u denote C yjUj{+O).
i ,c_ I jt J

r[u= C P,(filU)+ I: yj(t(li,.)+ C Tffi(t4.~)

i4 I 1’. .I CL, -- ,‘,

+ {fI 10 is a summand of t or 14)

O[S] = R

OCX

t[rec x.t/x]c ret x.T

7x+7yc_.x

Xc7X+7)’

(Al)

VW

uw
(A4

(NO

(W

(N3)

(W

61)

(S2)

63)

(Cl)

(011

(02)

(RECI)

(El)

PI?
- -

UW---An instance of (D2).

W+----x+T(X+ Y)=7(X+

= 7(X-+

x+ Y)+r(x+ Y) from (IN

Y) from (Al).

(f>v)--/l.(x+~Y)+~Y=~(7(x+7Y)+7Y)

=&(7(X-t Y)-c7Y)STY)

=&(X+ Y)+rY-++q

from (Nl)

from (D4)

from (Nl)

Testing equivalences for processes 99

Table 2. Derivable axioms.

/LX+R=p(X+f2)+fi (W

x+?Y=?(x+ Y)+TY ow
pX+gY=pX+pY+p(x+ Y) NW

px+k(x+ Y+Z)=pX+p(x+ Y)+p(X+ Y+z) UN

p7x = px (D7)

X+r(X+Y)=r(X+Y) (W

~(x+TY’)+~Y=p(x+rY) (D9)

=0+x JLXi,I#@ (DW

x+n=f2 (W

rX+rYcrX 053)

x+0=x W)

=&(X+ Y)+rY)

=j&(X+7Y)

from (Al)

from (D4).

These last three derived rules are the r-laws from [15, 231.
(DIO)-We use induction on the size of 1. If iI]= 1, then (DlO) coincides with

(D3). Otherwise we may write Ci~, Xi as X0+ Y where Y = Ci~, Xi. Then

In+ C jLXi+pXo=fl+p(Y+n>+/JIXo by induction
it .I

=R+p(r(Y+R)+rX(-J) from (Nl)

=R+p(Y+&)+n) from (Dl).

(E2kThis is derived from the set of aCorns AZ.

f. C X + 0 is an instance of (02).

Conversely,

X+LkX+rX+T0

= 7x + r.0

cl2

from (R2)

from (D8), (Al)

from (El).

100 R. de Nicola, WC. B. Hennessy

(E3)-Thk is again derived from AZ.

rx i- rY = 77X+ rY

CTX

(F2)-A derived rule from

x+IRr-x follows

Conversely,

XrrX+rO

Es_x+0

fron, (D7)

from (El).

&

from (R2), (Al).

from (Fl)

from (N4).

Most of the examples of the previous section have already been covered by these
derivations. We examine two exceptions.

Example 3.1.1. Derivable in A,:

c$X+a$?Y=a(riClX+r~Y) from (Nl)

fro.n (D8)

= a(r(&~+/3Y)+r(pX +pY)) from (N3) twice

- w(px +py,

= tu(px+pY)

from (Al)

from (D7)

ZZ a$(7X + rY) from (N I).

Finally, we examine the set of axioms A3 in detail:

XErX+rX from (Fl)

z= 7X from (Al).

Together with (F&I) this shows that X L-. TX is a derived axiom. Using this in (N 1)
weobtain px+~l_Y=p(X+ Y).

Indeed the axioms (N I)-(N4), (Fl 1 may be replaced by

.x --1: T,X

However, our presentation has the advantage that it shows the duality between the
two systems A2 and ,4 t and how they are obtained from (Al).

In this section we examine complete proof systems.

Testing equitdences for processes 101

In [2?] it was pointed out that Turing machines can be simulated in pure CCS.
More08 er, this simulation may be carried out in such a way that a Turing machine
TM will diverge on a blank input tape if and only if its translation [TMjj is such
that [TM1 = l 0, i = 1,2 or 3. Consequently, there cannot be any recursively enumer-
able complete axiomatisation of any of the relations c, T, i = 1, 2, 3. We will give
complete systems which are not recursively enumerable. These are of considerable
interest in themselves. For example, they show that the axioms Ai are complete for
finite terms and if we add a sufficiently powerful form of induction, we get complete-
ness for arbitrary (closed) terms. It is the required form ofinduction which introduces
the nonrecursive enumerability.

An arbitrary term t may be considered as a finite notation for an infinite tree.
This tree is obtained by ‘unwinding’ the recursive terms via

ret x.u - u[rec U/X]

We are interested in the set of finite trees which approximate this unwinding of t.
These may be defined in the following way: Let < be the least relation between
terms which satisfies (02), (P-EC 1) and

(1) f,~ui,O~i~kimpli~esop(t,,...,f,)~op(u,,...,u,)foreveryop~~~,

(2) t< p.
(3) f < ~1 u X r implies t K r.

The relation < will be referred to as the least pre-congruence (w.r.t. C) generated
by the axioms (122), (REC 1). Let FIN(r) = {d 1 d E FREC\- 1 d -C t}.

These sets of finite approximations have been studied at length in [11, 10,4]. For
example, FIN(t) is directed with respect to the relation i [I 11. The unwindings of
terms may be defined in the following way:

(i) P=fl,
(ii) (ret xl)“+’ = t[(ret U)n/~],

(iii) op(t,, . . . , tk)“’ ’ = op(?;+I, . . . , t;“).

Lemma 3.2.1. [fd E FIN(t), then there exists m n 2 0 such that d -C t”.

Proof. For the proof, see [I 11.. El

We are now ready to give the proof system. This is given in terms of a set of rules

of the form
S

s’

where S, S’ are sets of statements. Such a rule is to be interpreted as: if every
statement in S, the set of premises, can be derived, then any statement in S’, the

set of conclusions, may be derived.

(RI) (Equalir?,)

t=u tcw,uct
-_-

tm.4, uct t .= u

102 R. de Nicola, M.C. B. Hennessy

(R2) (Partial Order)

ecu, ucr

tc_r tct

(R3) (Substitutioity)

0 i
tcu

(ii)
tr=u

tpcup ret x.Krec x.u

. . .
(1

ti C Ui, 1 G i G k
111

OPU,, l l - , t&op(u,. . l 9, Uk)
for every op E Zk

(R4) (General Induction)

dc_u,Vd c FIN(t)

tcu

We write A F- t E: u if t c u can be derived from the set of axioms A using the
rules (RI)-(R4). Note that (R4) is an infinitary rule since it has an infinite number
of premises. Recursively enumerable proof systems can be obtained by replacing it
by a finitary form of induction, such as Fixpoint Induction or Scott Induction [2S].
Indeed, these may be derived from (R4). As a simple example we derive Fixpoint
Induction:

uw
t[u/x]c_ 14
-

ret x.tr=_ u

Lemma 32.2. If A (rontains the axioms (R2), (REC 1), then (FP) is a derived rule in
the swtem with rules (RI)-(R4) and axioms A.

Proof. Let r denote ret xt. We first show that A t- r” c u for every II 2 0.
(i) n = 0: A I-- rot u follows from (02).

(ii) n=k+ 1: We assume At- r.“cu.

Then

A t-- rh +’ == t[r”/x]

c t[u/x] by repeated application of (R3) and induction on k

c 14 from the premises.

Also note that if t -C 11 then ,4 t- t c: ~4 since A contains the axioms which generate <.

Now let d c FlN(.r;. Then, from Lemma 3 2.1, A t- ii z I-” for some u and therefore
A t-- d c u. Since this is true for every n E FIN(r), we may apply (R4) to obtain
.4+rcrr. c!

Testing equivalences for procmses

Proof. We assume that A I-- tc u. Let p be the substitution

p(x) = ret x.u

p(y)=)4 Y#X*

103

defined by

Then applying the first part of (R3) we get A + fp L up, i.e.,

A + t[rec x.u/x]c u[rec x.uf x]

c ret .x. u, using (REC 1).

Now applying (FP) we get A t- ret x.t c: ret X.U. Cl

We have, however, d.ecided to include this rule as part of (R3) for the sake of clarity.
We now state the main results of this paper.

Theorem3.2.4. Fori=l.,2,3,A,1-KU (t=u) impr’iestzru (t==Tu).

Theorem 3.2.5. For i = 1, 2. 3, and closed terms p, q, pi y q implies A, I-- p fr_ q-

The next section is entirely devoted to the proofs of these results.

4. Proof of completeness theorems

4.1

In this section we derive the soundness results, i.e., Theorem 3.2.4. The main
difficulty iies in justifying (R4) and to do so we need some lemmas relating the
behaviour of terms to the behaviour of their finite approximants. Before tackling
this problem we concentrate on proving the axioms and the remainder of the rules
sound. We write t si u if t G u can be derived from the set of axioms Ai using rules
(RI), (R2) and (R3)(i), (iii).

Lemma 4.1.1. (a) p !lG 3’ q implies S(p) c S(q).

(b) p&, p c i q implies (i) S(q) z S(p),
(ii) q -2 implies p 4

Proof. (a) Obvious.
(b) (i) Suppose A E S(q), h ~8 S(p). Then p must satisfy (h + 70) whereas q

T&J)-+ q’ 1 NIL for some q’, which can never lead to a successful state.

(h+

(ii) Suppose q A, p -& Then, for any A not appearing in p or q, h +p must

satisfy hw whereas A + q 1 h lo - q’l hw, which again can never lead to a successful

state. Cl

Lemma 41.2. [f OPE Ck, tj S: tlj, t 6 jc k, then op(t,:, . . . , t,) E,+ OP(U,, . . . , u,).

104 R. de Nicola, M.C. B. Hennessy

Proof. It is sufficient to prove it for closed terms. We examine each of the operators

in turn, the cases NIL, &? being trivial.

(a) pE+qjplrc+q)r,i=l,2,3.

(i = !) It is sufficient to show r’+ (p 1 r) may satisfy o implies r’+ (4 1 r)

may satisfy 0.

From the hypothesis (r’+ (p 1 r)) / o +* pI, pI E Success. If this computation does

not involve the subterm p 1 r, then we have immediately r’+ (q I r) 1 o +* pi for some

p; E Success. Otherwise, (p I r) I o +* pl. Therefore, p I (r 1 o) +* pi for some pi E

Swcess. Since p G 3 q, q 1 (r I o --+* qi E Success since (r j o) is an observer. There-)

fore, (qlr)l 0 -* q1 for some ql E Success.

(i = 2) It is sufficient to show r’+ (p I r) must satisfy o implies u’+ q I r must

satiisfy 0.

We distinguish two cases.
Gs4 1. p I r must satisfy 0.

This implies p must satisfy Y I o and, since p &2 q, q must satisfy r 1 a This implies
q 1 r must satisfy o. It follows that r’+ q 1 r must satisfy o since every computation
irom (r’+ q I r) 1 o which starts vcrith an action or communication from r’ is also a
computation from (r’+ p I r) IO.

Case 2. i p I r must satisfy 0.

If p 1 r L, then r + p 1 r must satisfy o implies p I r must satisfy o. So we may assume
p 1 r A. Therefore, h + p must satisfy ho + r where h does not appear in p, c Since
p G i y., A + J must satisfy Aw + r. i.e., q 1 r -& Now by a simple cass: G;lalysis on r’
we can establish that r’+ q) r must satisfy o.

(i r I 1 Follows from the previous two cases. ..’

tw psi,+ q implies j.4~ 5 ,+ ~9, i = 1, 2, 3.
We show the case i = 2 only. The case i = 3 is similar and the case i = 1 follows as
usual.

It is sufficient to prove pp must satisfy 0 implies pq must satisfy 0.

(i) p = 7. In this case p must satisfy o and, since p G 2 q, q must satisfy o. Therefore,
j_q must satisfy 0.

(ii) p = A. In this case, p must satisfy o’ for o’ such that o & 0’. Since p 5: q, q

must sntisfy 0’. By analysing whether or not o =% o’ A. it is suffic:cnt to show that
A y must satisfy 0.

(c) p C,’ q implies p[S] C,’ q[S], i z I , 2, 3. We show the case i = 3 ody.

It is !4?icient to show $5) may satisfy [I implies q[S] may satisfy o. The partial.
permutation is defined on . t only but we may extend it by S((4 = UJ. Define S’ by
SQL I= p’ if S(p’) = p. Then S’ is well defined and p[S] may satisfy o if and only
iT p may satisfy o[S’]. The result now follows by applying the fact that p G I q.

bd) PC,+ q implies ~+ri=,+ y+r, i= 1, 2, 2.

(i - 31 It is necessary to show 1” - p - I’ may satisfy 0 implies t’ t q f I’ may

satisfy 0.

This is left to the reader. ,

Tesring equivalences for processes 105

(i = 2) We show r’ + p + r must satisfy o implies r’ + q + r must satisfy o. If

p 1 o A, then, from Lemma 4.1. I(b), q 1 o 2 and it immediately follows that
r’+ q + r must satisfy o. Otherwise we have r’+ p must satisfy o. Since p 5 : q,
r’+ q must satisfy o and therefore r’+ q + r must satisfy o.

(i = 1) Follows from the previous two cases. c]

Note thsrt, t!x proof of this lemma was facilitated by the generality of the observers.

Lemma U-3. If DerJ p) = Der,(q) for pueg’ p E A, and pi if and only if qJ, then

P ==+ q, i= 1, 2, 3.

The proof is left to the reader. 1

Lemma 4.1.4. [f t r u (t = u) is an inslance qf an axiom from A;, i = 1. 2 or 3, then
t !$ II (t 1; Id).

Fkoof. it is sufficient to consider closed terms. If it is an instance of (A I)-(A4),

@U-63), CC!), :Ol) or (RECl), then we can apply the previous lemma. Consider

an instance of the axiom (E2), 7~ + Tq _ c p. and suppose q~ + Tq must satisfy o. It

folloi+s that up must satisfy o and therefore p must satisfy o. The soundness of (Fl)
is similar. So the only remaining axioms are (Nl)-(N4).

(I\‘1) Let p, q denote P+ p.pI + pp?, r + p(q~, + 7p2) respectively. Then it is easy

to see that 3c E Comp(o, p) s.t. cfi if and only if ~C’E Compio, q) s.t. c’* and

o 1 p % if and only if o 1 q $. This is sufficient to establish that p = l q.

(N2) Let p, q denote r+p,+q, r+ T(P, + p,). Let c E Compio, q). Then either

c’ E Comp(0, p) where c’ differs from c in at most the first two terms or else c is of

the form (o 1 q, o 1 p, + p). Then (o 1 p, o Ip2) E Comp(o, p) and these remarks are
sufficient to establish that p C_ I q.

(N3) Let p, q denote r’+ ppl + T(ppl + r), r -t- ~(pp, + ppz + r) respectively. It is
trivial to show that o 1 p % if and only if o 1 q % and Comp(o, p) contains an infinite
computation if and only if Comp(o, p) does. NOW suppose alp & s where ST or
s t: Fail. Then either o (q 3 s or else s is of the form O' 1 (pp2+ Y). In the latter case,

o 1 q & 0’1 (pp, -t ppz+ r), i.e., _LE R(o, p). A similar analysis will show that o 1 q & s,
ST o! s E Fail implies 1~ J?(o, p). It follows that p z1 q.

(N4) Similar to (N2). Cl

Proposition 4.15 (a) t Si u implies t E ,’ 14.
(b) t =i U implies f = i U.

Proof. The proof follows from the previous lemma and Lemma 4.1.2. The soundness

of rules (Rl), (R2) is immediate. Cl

We now concentrate on justifying (R4).

106 R. de Nicola, MC. l3. Hmnessy

Lemma 4.1.6. p x q implies p G T q.

Proof. From the previous proposition, G ,T satisfies (02) and (REC I) and the three

implications in the definition of <. Since -C is the least such relation, it follows that
piq implies p5$ q. Cl

Lemma 4.1.7
(a) p S q, d < q implies 3e r: p such that e 2 d.
(b) p % q,. p -K p’ implies p’ 2 q’ for some q’ such that q i qt.

Proof. In each case the proof is by induction on the proof of p 3 q. El

Lemma 4.1.8. i: Zip implies that, for some e E FIN(p), d t--i e.

Proof. By induction on the number of times (RECl) is used in the proof of
dE,p. f?

Proposition 4.1.9. (a) p msry satisfy o implies d may satisfy o *for some d E FI N(p).
(b) p must satisfy o implies d must satisfy o for some d E FIN(p).

Proof. (a) From the hypothesis, p 1 o -+* r s r’. Since f2 -< r’, we may apply Lemma
4.1.7(a) to find some e -K r such that e 2. By repeated application :>f this lemma we
have some d’ -K pi o such that (i’+* e. Now d’ must be of the for],1 d, 1 d,, where
d, -K p, d, <<II. By applying part (b) of this lemma sufficiently often we tibtain

4 I 0 -3 r”-+, i.e., d, may satisfy o.
(b) The proof is easy using the notion of head normal form. S’lnce this has yet

to be done, we relegate the proof to Appendix A. Cl

Proposition 4.1.10. !/‘d G, qjbr euey d ti FIN(p), then p ~~ q.

Proof. Apply the previous proposition. U

Corollary 4.1.11. For i = I , 2, 3, A, C- t r u (t = 14) implies t G ,+ II (t = ,’ 14 1.

Proof. It is a simpk matter to show that the previous propositicn justifies (R4) for

G ,- for closed terms and therefore open terms. The remaining rules were treated in
Proposition 4.1.5 apart from (R3)(ii) which can be derived from (RS) as was pointed
out in Lemma 3.2.3. g

Corollary 4.1.12 (Theorem 2.2.3). t G ,i II ifarzd ml* if t G :’ II. 1 .

Proor. If f G : u, then obviously t G It II. Conversely, suppose f G I+ II. Then for any
context <‘[] we can apply (R3) to proire that c‘[t] c_ ,T C[u]. This can be proi’en
b> structural induction on r[1. It follows that C[t] E, C[zc]. Therefore, t E’; II. 5

Tesfing equivalences for processes 107

Corollary 4.1.13 (Theorem 3.2.4). For i = 1,2,3,Aitt~u(t=u)impliest~~u.

4.2

The proof of completeness depends very heavily on the existence off normal forms.
We consider four kinds and this section is devoted entirely to them.

If 2 is a set of sets let A(9’) = {x 1 x E X, for some s E 2’). 9 implies a set S if
there exists a set S’ E 2’ such that S’ c S c A(9). 9 is said to be saturated if S E .Z
whenever 2’ implies S. For example, {{a}, {a, 6)) is saturated whereas {{a}, (b}} is
not. We only use saturated 2 which are finite and contain finite sets. For such .T
being saturated is equivalent to the following two conditions:

(i) X, YCY implies Xu YESe,
(ii) X, YE.v, XsL.c Y implies ZEX

Definition 4.2.1 (normal form (nf)). (i) If 2 is a nonempty finite satura&d set of
finite subsets of A u 3, then 1 Lr y’ T CA, L hp,, is in mf provided each term pA is

(4 in 7nf, or

(b) in hnf and p,&
(ii) LACL QA(G2) is in hqf if each term ph satisfies (a) or (b) above, and

(c, wheriuver 0 is a summand it is also a summand of each pA.

(iii) p is in normal form (nf) if it is in 7nf or hnf.

Note that from the defitlition if p is a nf and p$‘, then p is a Anf. Also every
normal form is a finite term and if p is a normal form and p +* 2 p’, then p’ is
also a normal form.

Examples. (i) A(cy + p) + 0 is not in nf because (c) is not satisfied and the subterm
(a+/3) is not in mf.

(ii) TA : m + 7h27p is not in nf because {{A ,}{ AZ}} is not saturated. There is no
subterm corresponding to the set of labels K = {A ,, A*}. The normal form correspond-
ing to this term will be rA, T(Y + Th27p + T(A, TLY + A2~/3).

(iii) TCY@ + T(CYTY+ ATE) is not in normal form. If r’, is a hlormal form and for
anyh,p+*~p,,p-+*~ p3, then p, and p2 must be identical. This example violates

this requirement. Because of this property we can use a suggestive notation: for a
normal form p we may let ph denote the unique subterm (if it exists) such that

P” *-+.
[iv) NIL is a Anf. In the definition we merely let L= fl. Similar!y, 7NIL is a mf

and 0 is 3 Anf. Note that here we have again used the bracket:% {) to denote that
fi is an optional summand in a Anf.

Definition 4.2.2 (strong normal form (snf)). (i) L? is a snJ

(ii) if p is a nf other than 0, then p is a srli whenever
(a) each ph is a snf, r

(b) p does not contain G as a summind.

108 R. de Nicola, MC. B. Hennessy

If we look upon terms as trees, then a snf is a normal form which only contains
0 as a leaf. We will use the notation Tsnf, Asnf in the obvious way.

Definition 4.2.3 (weak normal form (wnf)). (i) 0 is a wnf:

(ii) if p/; is a wnf for each A E L, then cAE L Ap,+ + i2 is a wnf:

Later we will see that a wnf correbponds to a prefix-closed set of strings from A u A.

Definition 4.2.4 (head normal form (hnf)). (i) C hr L hp, is a AhnJ:

(ii) LrcY ‘P xAry L Ap, is a rhnf if the set 2’ is saturated and nonempty.

Note that if p is a hnf, then p& So, for example, 0 is not a hnf. Our first task
is to show that every finite closed term can be transformed to a normal form using
the axioms from A,.

Lemma 4.2.5. If p in nj; then there exists u Acf n such that p + 0 =, n and nr.

Proof. (a) Suppose p =I CLF yf r Chc L hph.
Then

p+f2 =I c 7 1 A(pA+f2)+f2 using(D3).
1-C / A* I.

By induction there exists a Anf 11, such that ph + f2 = I n,. Therefore,

p+J2 =I c 7 c hn,+R
1, ,‘ As I_

==I z An,+f2 using(D1).
A E L

(b j The proof for hnf is similar. 0

Lemma 4.2.6. [f’p, q are irt nf; then there exists a normaljbrr~r n such that up + ~(1 -I 1 11.

Moruocer, n is a rnj’ or else II ?T_.

Proof. We use induction on the size of p and q. There are four cases depending on

l ,shat kind of nf p and q are.
Cuse (i) p is 1 rpi, y is C ~4~ Then rp + ~4 = I C up, +s Tqj using W).
Let r denote the right-hand side. Now r may not be in normal form for various

reasons. For example, it may be that r --+* A rlr r -4 A r, such that rlr r, are not
s>,nlacticzlly identical. Let N(r) be the number of such pairs. We show, by inductian

on .V r) that r can be transformed into an r’ such that N(r’) = ~4. r

Testing equivalences for processes 109

If rl, rZ is such a pair, then the axioms (Al)-(A4) may be used to rewrite r as
follows:

r =I 7(AT,+;I)+Z(hTZ+IS)+T(

=I hrl+ 7(hrl + r’,)+hr,+ s(hr,+ r$)+ r’ using (D8)

using (N3) twice

=: dA(w, +71;)+rl()+T(A(w,+m2)+ri)+r’ using(Nl)tw

Now, by induction, rrt L w2 has a normal form n of the required form. Therefore
r =I T(An+r{)+7(An+ri)+r’.

If s denotes the right-hand side, then Iv(s) < N(r). So by induction we may now
assume that r is such that N(r) = 0. Therefore, r may now be written as

CL< J Ccl. , Ar,. Moreover, each r, is in mf or is in hnf and diverges. So if this
term is not in nf, it must be that Y is not saturated. Let K be such that Lj c K c A(2).
We show by induction on the size of K that r = I r+ 7 xAE K An,.

If K = Lj, then the claim is immediate. Otherwise, K may be written as K, u {A,},
A,, belonging to some Li E Y. We may assume r = l r + T Chc K, An, and let rl denote
Y LAt K, AN*. Then

r --, r+ ml + T(r’+Annh,,) using (Alk(A4)

= , r + vl + r(r’ + Aon,,,) + T(r, + r’ + Aon,,,) using (D5)

= , r + vl + T(r’-t- AonA,,) + 7(r, + r ‘+ AgJ -I- T(r, + Aon,,,) using (D6)

= I r + T(r, + A,n,,) as required.

Therefore, by induction we may assume that

r = I rf T x An, for every such K.
At h’

NOW by systematically applying this result, r may be transformed into a term of
the form c Lt_ Y 7 zA+_ t_ An, where 2 is saturated, and this term is in mf.

Case (ii) p is 1 hip,, 9 is c ~9~ Then up + 79 = I up + 9 using (D2) and we proceed
as in part (i).

Cctse (iii) p is c A,p,, 9 is 1 A,9,. Then up + 79 is an instance of ii).

Case (iv) p is I,,, la Ap+fl. Then 7p+79=p+q by (Dl), (D3).

From Lemma 4.2.5 there exists a Anf n such that 9 + 0 = , n. Let 11 be 0 -t- Chr K An,,.

Then

p+n =, 12+ 1 hph + 1 An,+ x A(T~* +qh) using(N1).
AC Ilh’ ArK/L AC Lr\ K

By induction there exists a normal form r such that r, = , 7ph + 79,+. Therefore,

p+n =I O+ 1 h(pA+fl)+ 1 A(n,+n)
A* 1.K AC K/l_

+ c A(m +I?) using (D3).
Ar L.3 \k:

110 R. de Nicola, MC. B. Hennessy

We now apply Lemma 4.2.5 to obtain the required normal form. 0

Lemma 4.23. If p, q are in nf; then there exists a nf n such that p + q = 1 n.

Proof. We use induction on the size of p, q. There are four cases depending on the

form of p, q.

Case (a) p is CAfL hpA+fl.Thenp+q = l up + rq, using (Dl), and we may apply

Lemma 4.2.6.
Case (b) p and q are in mf. Then p + q = I up + Tq, using (D2) and we may again

apply Lemma 4.2.6.

Case (c) p is CAELApA, q is Ci,, Tqi. Then p+q =I T(p+q,)+rq using (D4).
By induction, p+ ql may be transformed into a normal form n and, by Lemma

4.2.6, Tn + 7q may be transformed into a normal form.
Case (d) The only remaining case is when p is ChC L Ap,, q is xhr K hq,. Then

p+q =I c ApA+ c MA+ 1 A(rpA+7qh) usingN)=
AEL\K ACK\L hc h’s,--1.

From the previous lemma each 7pA + rqA can be transformed into a nf of the required
form. Cl

Corollary 4.2.8. [f p, are in nf, 1 c i s k, theta there exists a r! f n suck that
.

z I- 1T.k 7PJ = i n, and n is either in mj‘ or else n n and is in Aqj:

Proof. The proof follows by induction on k.
Basis. k = 1. If p, is in Anf and p,&, then up, is already in mf. Otherwise, q~, = I p,,

using (Dl) c’rr (D2).
Induction Step. k = nt + I.

=I ll,+tpk by induction.

If n, is in mf, we can apply Lemma 4.2.6. Otherwise, rtl + ?ph = I 11~ +p~\, using
(D 1) and we may apply Lemma 4.2.7. Cl

Proof. The proof fc’riows by induction on k. Ki

Proof. By applying rules $1)-(SJ), CC I) and (R I 1 we may eliminate all occurrences

of j rend [S]. So without loss of generality we may assume that d does not contain

those operators and m:iy be written as x,, , h,tl, -i-x,+ _, re,.

Testing equivalences for processes 111

Now by induction we may assume all di, ej are in nf. Using (D7) if necessary
each Aidi may be considered to be in nf. So by Corollary 4.2.9 there exists a normal
form n, such that n, = l C,, , h,d,. Similarly by Corollary 4.2.8 there exists a normal
form n_ such that nz = I zjC, rej Therefore apply Corollary 4.2.9 again and we get
a norrrc*G form n such that

d =1 nl+nz =, n. Cl

This pronosition
forms. -

enables us to derive similar results on strong and weak normal

Propositiw 4.2.11. For every finite closed term d there exists a strong normal form
snf(d) suck that d =? snf(d).

Proof. By the previous proposition we may assume that d is in normal form.
(a) d is 1 hd,{+R}. l’f J2 is a summand, then d =2 f2 from (E2). Otherwise, by

induction we may assume that each dA is in snf. Then, using (D7), .d z2 C {Ad, 1 d,,
in rsnf or d*fl}+C {kdA Id, is in Anf and d,&).

(b) If d is in mf, the proof is similar. Cl

Propositiw 4.2.12. For every finite dosed terw d there exists a weak rtormaI jbrrn w

such that d + f2 = 1 w.

Proof. We may assume ,d is in nf.
(a) d is C hd,(+R). Then

d+L! = ,xhd,+R

=Jh(d,+R)+(1 using(D3).

By induction each (d, + 0) has a weak normal form and the result thus follows.
(b) d is \Lr, y TEE, L Ad,. Then

d+L?= c d,+fl using(D1).
A! -I(.YJ

We l?lijy nOW apply part (a). cl

Corollary 4.2.13. For eveg$nite closed term d here exists a weak normaljbrm wnf(d)

~1~11 that d = T wnf(d).

Proof. Apply the previous proposition and (F2). U

Weak normal forms may also be considered as prefix-closed sets of strings from

A u s. If s E (A u A)*, then w ?t also use s to denote its representation as a term: the

representation of E the empty string is fl and that of hs is At where t is the term

representing S.

112 R. de Mcc la, M.C. B. Hennessy

Lemma 4.t2.14. If d is a weak normal form, then there exists a pre#x-closed set qf
strings si, 1 s i s n, sltch that d = I L! + C si.

Proof. We use induction on d.
(i) d is 0. Immediate.

(ii) d is Chcl_ MA -+ In. By induction dA = I f2 +Ci, ,* s,, where {s, 1 i E In) is prefix-
closed. Therefore,

d I
= c “(I Si+L? +I0

At L if I,)
=I c A(1 Si+Iz + C A+fl+lf2

hr 1. ir IA AtL

since h(X-M) =1 A(X+i?)+AR

It remains to consider head normal forms which unfortunately must be treated
in much the same way as normal forms. Rather than giving the entire proofs of the

lemma3 we merely state the required results.

Lemma 4.2.15. !f p, are in head normal ji)rm, 1 5 i G k, then there exist head normal
jbrms Ii,, 11, suck that

Proof. Similar to the proofs of Lemmas 4.2.6-4.2.7 and Corollaries 4.2.X-4.2.9. C.j

In the next proposition ue use JJ = y to denote that “p = q” can be derived from
the axioms A,, using all the rules (RI)-(R4). Unfortunately, = I is not sufficient
since we need to be able to rewrite ret s.t as t[rec xt/s]. We have
f[rec x.t/s] r, ret s.t but not the converse. However, rtx s.t = t[rec s.t/x].

Proof. We use induction on the size of Derr(II~ So we m;ty ;\ssume the result for
every pf such that II- p’. If p& thtw pJ ;~nii we now use induction to prove this.

(i) Ap’. Ry definition this is in hnf.
(ii 1 7-p’. Then p’i. By induction p’ has a hnf, hnf(p’). If hnf(p’) is in A hnf, then

Ihnf(~‘1 is in rhnf. Otherwise

p -= ;chnf(p’)

- hnf(p’) using (12 L

Testing equivalences for processes 113

(iii) PI +p2= Then p,l, p21 and so by induction both hnf(p,) and hnf(p2) exist.
Therefore

= h for some hnf h, using the previous lemma.

(iv) p’[S]. Then p’& and so by induction hnf(p’) exists. We may now use (S 1)-(53)

to transform hnf(p’)[S] into hnf.

(4 ret x.;. Then t[rec x.t/x]$?nd by induction there exists a hnf h such that

It = t[rec XJ/X]. The result now f . DWS since ret x.t = t[rec x.t/x].
(vi) pI 1 pz. Then f,J, p2J and by induction hnf(p,), hnf(pz) exist. There are three

cases depending on their form.
(a) hnf(p,) is 1 Ap,,, hnf(pJ = 1 yq,. Then applying (C 1) we get

PIIPZ=E A(PA bf(p,))+E y(hnf(p,)lq,)+ C dpA 14v).
A-T

Since pI 1~~ ---) PA 1 q,- whenever A = 7 we may assume by induction that each of
these terms have hnfs. The result now follows from Lemma 4.2.14.

GO hnf(p,) is in hhnf, hnf(pz) is in rhnf.

(c) Bot? hnt’c P,) and hnf(p,) are in ;chnf.

These casts are similar to (a).- 0

In this section we apply the normal form results to prove completeness of the

proof systems. We first need some lemmas.

Lemma 4.3.1. (a) If’ p G i q and p A, then p G + q.

(b) .‘fp G, q and pfi, then p G l q.

0

Proof. NOW p TZ~ q implies p 5 i 9 so the only nontrivial case is i = 2.
(a) r + p must satisfy 0 -=rS p must satisfv 0

=> y must satisfi 0.

since p -L

It follows by a case analysis on whether r -L or not that r + q must satisfy 0.
(b) Trivial. E..I

Lemma 43.2. !/‘d is in qf’and p in hnJ then d C_ , p implies d, G, ph whenever both dA
ci;ld p,, exist.

Proof. (a) i=3.
dA may satisfy 0

=+ d may satisfy Ao,,

* p may satisfy ho

=+ ph may satisfy 0.

I14 R. de JVicolrl, M.C. B. Hennessy

(b) i = 2.

d, must satisfy 0
=> d must satisfy A0

* p must satisfy A0
* pA must satisfy 0.

(c) i= 1. Follows from (a) and (b). Cl

Lemma 4.3.3. (a) d 9 implies d = 1 d + 0.

(b) psp’ impliesp =l p+kp’.

(c) j Gp’ impliesp+O =I p+s+Lt.

Proof. (a) We may assume d is in nf. If dfi, then d must have a Anf and the result
is immediate.

*i

(b) By induction on the proof that p L p’. The proof may be found in [23], using
the axioms (D7), (D8), (09).

(c) By induction on the length of the derivation p Apt-

(i) s = F. Immediate
(ii) s = As’. There are two cases: ,

Cm-4 I. p A p’ for some p’ such that p’ =%. Then

p-+-n =, p+hp’+O using(b)

==, p+A(p’+f~)+f~ using(D3)

==, p-t-A(p’+R+.~‘)+f2 by induction

=! p+hp’+As’+f2 using(DlO)

Case 2. p L p’ for some p’ such that p’=k. By induction, p’+ I2 =I p’+ f>+ S.

Therefore

p+R =I p+71)‘+42 using(b)

z1 P+7(p’+12))+f2 using(W)

-=I P -t T(p’+ I2 + s) -I- 0 by induction

-= , p i- .v + .4). II-I

Definition 4.3.4. (a) If p, y arc in hnf, let p e<J q if ({I, y) satisfies tiny one of the
conditions below:

Cij p is x,,,i. ApA, y is x,,, I AC],+
(ii) p is Lr+ , T ci I Aph, q is yI; a, T 1, K Ay,, where .KG 31

tiii f p is as in (ii),’ h is LA* K Ali, i’;lere ‘k G Y.
(b) If p, q are in hnf, let p -; , y if, in addition to satisfying part (a), S(p) C_ S(y).

Testing equivalences for processes 115

Note that if p sI q and (p, q) satisfy condition (a)(C), then A(X) = A(Z). If they

satisfy condition (a)(iii 1, we have that K = A(9).

Lemma 4.3.5. If p, q are in hnf and p G r q, then p <i q for i = 1 or 2.

Proof. (a) i=2. From Lemma 4.1.1, S(p)zS(q).

6) Suppose both p, q are in Ahnf and p -% Then p must satisfy AU SO q must

satisfy Am, i.e., q A. Therefore S(p) = S(q) and (p, q) satisfies condition (i)*
(ii j Suppose both p, q are in rhnf as in condition (ii). We show Tic, 9. Because

9 is saturated, it is sufficient to show that K E X implies L E K for some L E Z’.
Suppose on the contrary that there exists a KO E Tt such that L c KO for no L E 9.

Let o be the observer C (iw IA E S(p), A E K,}. Then p must satisfy o whereas
q 1 o -* r E Fail which contradicts p C_~ q. Since 56’ is saturated, it follows that TC c_ Y.

(iii) Suppose p, q are as in condition (iii) and suppose K f A(2’) for any 9’ c 2.
Then (Vbz .2?)(3A E L)\‘A E K).

Let o be the observer C {XW 1 A E S(p), A E K}. Then p must satisfy o whereas
q 1 o E Fail. This is a contradiction.

Now from Lemma 4.1.1 (b) ii p G 2’ q and p is in Anf, then q is also in Anf. It
therefore follo;j?s that cases (i), (ii) and (iii) are exhaustive and p --c2 q.

(b) i=- !. Since p 5 I q implies p G 2 q, (p, q) satisfies the conditions from part (a).
Since p G, q implies p ~~ q, it follows t‘rom Lemma 4.1.1 that S(p) c S(q). q

Lemma 4.3.6. If p, q arc, in hnJ p <i q, and ph C-i qh for every h E S(q), then p Ci q,
i= 1,2.

Prcsof. (a) i = I. Then since S(p) = S(q), p C, r, where r denotes p[qJpA, A E S(p)].
Now since p < I q, (p, q) must satisfy either (i), (ii) or (iii) of Definition 4.3.4(a).

(i) Then r is q.
(ii) Then

G, q + z hq,, K = A(.Y/X), using (N4).
At K

Now each A in K must appear in a summend of q and therefore we may apply
(DK) to prove

(iii) Let X= Y/Z, where Y = {K}. Then

r =I c rSAq*+C dA4h
Lt Y“ ACL LE.K AEL

5 c 7 c Aq, + c Aq,, K’=A(X) using(N4)
LE Y AEL AEK’

116 R. de Nicola, MC. B. Henncssy

= I C r x hq, using (D8) since K’E A@“)
LC 2’ h t L

~-1 c Aq, = q using (N4).
4 t A(I/“)

(b) i= 2. Similar to part (a). When (p, q) satisfy case (ii) of Definition 4.3.4(b)

we apply (E3). If they satisfy case (iii), we apply (E3) and then (N4). Cl

We are now ready to prove the main part of the completeness theorem.

Proposition 4.3.7. d G i’ p implies Ai I-- d E p, i = 1, 2, 3.

Proof. The proof is divided into three parts, according to the value of i. We use
induction on the size of d.

(a) i = 3. From Corollary 4.2.13 we may assume n is in wnf. We will then show

that d c I p. In fact, d can be rewritten as &? +\’ L, s, by repeated use of (DIO) and so

it will be suficient to prove + + 0 + p = l p + fl for every j. However, it is relatively

easy to see that p 3 and therefore we need only to apply Lemma 4.3.3(c).
(b) i= 2. From Proposition 4.&. 9 I I we may assume d is in snf. If &@, then from

Lemma 4.3.3(a) and (E2), d =? 0 and the result is immediate. So we may assume

d& This in turn implies p& (Consider the observer 70.) So we may assume from

Proposition 4 2. IS that p is in hnf. Then from Lemmas 4.3.2, 4.3.1 we may assume
that d,, CT pA for every A E S(p). By induction, [I,, ~~ ph. Applying the previous two
lemmas we get d cZ p.

(cl i = I. If dfl, then d -, d + 0 and so by Proposition 4.2.12, J has a weak
normal form. The result now follows from part (a). If t/G.. the proof is similar to
part (b). El

Theorem 4.3.8 (Theorem 3 _ 2.5). Fbr i z= I, 2, 3 am! closed ttwm p, q, p s :’ q irnplics
A, ‘r- pr- q.

Proof. We know that p G ,’ q. In order to apply (it4 to derive 13 G q it is suflicient
to show that A, t-- d G q for every tl in FJN(p). Now i1 -< p and therefore, by Lemma
4. I .6, d c ,’ p. So d c ,* y. By the preGus proposition,

In this section we redo the completeness theorems for tinite terms. This will give
more insight into the nature of normal forms and we will use the additional
information when proving the representation theorems of Section 5.

Let N F,, N F:, NF? denote the set of normal forms, strong normal forms :tnd

lxxtk normal forms respectively. These sets rn;iv be ordered in ;I K;Q’ similar to

JMinition C3.4.

Testing equivalences for processes 117

Definition 4.4.1. For d, dk NF,, let d -C i d’ be defined by

(a) i=3:

d -$ d’ if S(d)c S(d’),

(b) i=2:

d <2 d’ if d is 0 3r if (d, d’) satisfies Definition 4.3.4(a).

(c) i= I:

d <,d’ if d <d’and d +d’.

We have similar results for <, on normal forms of finite terms as on head normal
forms of finite and inlinite terms.

Proposition 4.4.2. For cl, d’ E N F, :
(a) d of d’ implies d +d’,
(b) if dA G, d i whenever both d, and d 1 are defined and d -C ; d ‘, then d E; d ‘.

Proof. %nilar to Lemmas 4.3.5 and 4.3.6. q

Definition 4.4.3. For Cr, (#E NF;, let d ci d’ if
(i) d <,d’,

(ii) cl, <, d: whenever both dA and d: are defined.

Theorem 4.4.4. For d, d' E N F,, d & ,+ d ’ ilnplies d < , d ‘.

Proof. By induction on the size of 50th d and d’. From Lemmas 4.3.2 and 4.5.1 we
may assume that dA G ; dk whenever both dA and dj, exist. By induction, 6, <i d’,.
The result now follows from Proposition 4.4.2(a). 0

Note that we can also use Proposition 4.4.2(b) to show that d <; d’ implies d C, d’.
We also have the converse.

Corollary 4.4.5. For d, d’ E NF,, d c, d’ implies d C, d’.

Proof. By the soundness theorem (Corollary 4.1.14), d C-~ d’ implies d G !r d’. NOW

apply the previous theorem. Cl

It is this corollary which justifies thz use of the same normal form for the terms
in NF,. This result will be used in the next section.

118 R. de Nicda, M.C. B. Hennessy

5. Denotational semantics

We have presented pure CCS as the set of recursive terms over a set of operators.
This enables us to give a denotational semantics in a very straightforward way,
using the techniques of [28, 11, II), 91. To save space we assume familiarity with
notions such as Z-partial order or ~-PO, Jkpo, finite element, algebraic cpo, ideal
completion, etc. Details may be found in the above references.

5.1

Let D be a Z-cpo. The set of D-environments, ENVrr ranged over by e is the
set of mappings from variables in X to D. As usual we let e(d/x) be the environment
identical with e except at x where its value is d. The terms in REC- can be interpreted
in D by defining

If,, : RECs ---, ENVI, + D

as follows:

where Y denotes the least fixpoint operator.
We now turn our attention to pure CCS, a particular example of the above.

Definition 51.1. (a) A x- cpo D is sound with respect to E T if I,;,[t] < ‘&[[141 implies
ts;u.

(b) A Z-cpo D is complete with respect to G F if t c :‘ u implies %$,[tj < If&&

(c) A Zcpo D is Jirll_v abstract with respect to S, ’ if it satisfies both (a) and (b).

Let 1; be the initial Zcpo in the category of Zcpos which satisfies the set of
axioms A,, i = I, 2,3. For the construction of I,, see [1,4, 1 I]. I, is the ideal completion
of the Zpo generated by the axioms A,.

Theorem 5.12. For i = 1, 2, 3, I, is .fully abstract with respect to kZ y.

Proof. For convenience in this proof we write t c i u if I ‘,,[l] < .I ‘,,[~n.
(a) Sourrnlress. We first prove it for closed terms. So suppose p c, 9. Let d (: pm

Then d <, p and therefore ~1’ <, y. Since I, i s algebraic there exists a finite term e
such that d ~1, e, e < q. By the construction of I, it follows that d C, e. From the
soundness theorem for the proof system d z:‘ e and so d G’; q. Since this is true for
every d E Fl N(p) it follows that p G f (I.

Now suppose t <I u. Then we must show up E’; up for every closed substitution
p. However, 1 ci 11 implies TV ei up and therefore we may apply the first part.

t b) ci’ompleteness. 1 f Ai t- t or II, then t <, M. This follows because by construction
(, satisfies the axioms, since I, is algebraic it is preserved by (R4) and it is trivial
to see that it is .preserved by the other rules. Therefore, if p &T 4 it follows that
p a-*, q Gnce we can apply the completeness theorem for the proof system.

Testing equivalences for processes I IO

More generally, supptise t G T u. We must show te ci ue for every environment e.
An environment e is Jinite if each e(x) is finite. Since V;, is continuous in its second
argument, it is sufficient to show te ci ue for every finite e. However, by construction
every finite element a of Ii is denoted by a finite term t(a) in FRE&, i.e.,
r/;J t(a)1 = Q. Then the result follows since Y;,[t]e = V;,[tpJ, where pe is the closed
substitution defined by pr (x) = t(e(x)). U

This thelrrem is simply a restatement of the soundness and completeness theorems
for the proof systems. It is, however, of considerable interest since the models 1;
have simple representations as trees.

5.3

In this section we consider the representations of Ii as particular kinds of trees.
If L i$ a set of labels, let PCTL denote the set of (finite or infinitely branching)

trees whose branches are labelled by labels from Z in such a way that for every
A E L every node has at most one outgoing branch fabelled by A.

Every node in such a tree, tr, can be uniquely identified by a string from L. We
denote tr?e no& in tr identified by s as tr(s). We let N(tr) denote the set of strings
which i&,ltify every node in tr. N(tr) is prefixed closed, i.e., s E N(tr) and s = sIs2
implies s, E N(tr). There is in fact an lsomorphism between PCTL and the set of
prefixed closed strings from L. We prefer, however, the more graphical notation ok’
trees. We also let S(tr(r)) denote the set of labels on the branches from the node
tr(s), and tr(s), denote the successor tree of tr(s) along the unique branch A from
tr(s), if it exists. Our model will consist of trees from PCTL whose nodes are labelled
in a special way.

Definition 52.1. Let RT denote the set of trees in PCT,,,j such that
(a) every node is either open (represented by 0) or closed (represented by 0).
(b) every closed node tr(s) is labelled by a saturated set of subsets of S(tr(s)),

denoted by .crC(tr(s)), and the following conditions hold:
(i) if a node has an infinite number of successors, it is open,
(ii) if a node is open, ever) successor is open,

(iii) if .4(tr(s)) is empty, then tr(s) is the root,
(iv) if .:4(tr(s)) is not empty, then h c S(tr(s)) implies 3Ac sJ(tr(s)) such that

h t: A.

The sets .d(tr(s)) are called acceptance sets. By definition they are finite collections
of finite subsets of actions. Note that we distinguish between the empty acceptance
set 0 and the acceptance set containing the empty subset, (c?}. Thus the two trees

are different. In fact one will represent NIL, the other 7NIL.

120 R. de Nicola. M.C. B. Hennessy

Definition 5.2.2. Let SRT denote the set of trees tr in RT such that every open node
in tr is a leaf.

Definition 5.2.3. Let WRT denote the set of trees in RT all of whose nodes are open.

Note that WRT is in fact isomorphic to PCT A& since both are isomorphic to

the set of prefix closed sets of strings over A u d. Examples of trees are given in
Figs. 1 and 2. For convenience we omit .4(tr(s)) if it is 0.

It will be convenient in the remainder of this section to rename RT, SRT, WRT
by the less suggestive RT,, RTz, RT, respectively. All of the examples are finite
trees, i.e., have a finite number of nodes. These will play an important role and we
let FRTi denote the set of finite trees from RTi.

Definition 5.2.4. (a) For tr, tr’ E RT, let !t + tr’ if N(tr) c N(tr’).
(b) For tr, tr’ E RT, let tr cz tr’ if, for every s E N(tr’), tr(s) closed implies:

(i) tr’(s) is closed,
(iij =d(tr(s)) 2 &(tr’(s)),

(iii) *d(tr’(s)) =4) implies S@‘(s)) E sP(tr(s)) or &(tr(S)) =Q) and S(tr(s)) =
S&‘(s)).

(c) For tr, trk RT, let tr cl tr’ if tr -=z? tr’ and tr + tr’.

Referring to Figs. 1 and 2 we have pI C, 91, pz cr 92 and pJ <, qJ. Note that if
l qWr(S)) # (3, then &Or(s)) 2 &(tr’(s)) implies S(tr(s)) r, S(tr’(s)). This follows from
condition (iv) in the definition of RT. Therefore, if tr <? tr’, we have that S(tr’(s)) CJ
Sk(s)) whenever tr(s) is closed and tr’(s) exists. If tr C, tr’,’ then tr <3 tr’ and so
SI: t1-4 s)) C_ SW(s)) for every s E N(tr) and S(trY s)) whenever tr(s) is closed.

Proposition 5.2.5. (RTi, <i) is an algebraic cpo with jinite elements FRTi, i = 1, 2, 3.

Proof. (a) i = 2. The least element is the trivial tree with an open leaf. It should be
obvious that -+ is a partial order. Let (ti 1 i E I} be a directed set in RT,. Define I

as follows:
(i) N(t) = {SlS E ZV(ti) for almost All i E I).

Note that N(t) is prefix closed.
(ii) For s E N(r) let t(s) be open if t,(s) is open for almost all in I.

(iii) Otherwise l(s) is closed. In this case 3k E I s.t. tk(s) is closed. Since { t, 1 i E I}

is directed, this means that ti(s) is closed for almost all i E I.
(iv) If t(s) is closed let

d(t(S)) =n{d(t,(s))l t,(s) is closed).

It is easy to check that t E RT?. Moreover, KS E N(t) there exist k, such that
SI t(s)) - S(I~,(s)) and &(t(s)) = .E3(T&)). This is sufficient to show that t is the
lub of (1, 1 i E I). We leave it to the reader to check that FRT2 generates RT?.

Testing equivalences for processes 121

(i 1 representation of p, = a(7yR+7(y~+S))+P(LYO+R).

(ii) representation of p2 = 7~7(pll+y)+7PT(1+f(aT(PR+ y)+pm).

Fig. I.

(i) representation of ~,~~(Y(~(~+S)+~(TCY+~((Y+P~))).

(ii) representation of qz f w(fl + y L

(iii) representation of q3 = m7y + T((YTY - /3(~(C& + yf2))).

Fig. 2.

I22 R. de Nicola, MC. B. Htmnessv

(b) i= 1. It is trivial to check that <?. is a partial order and therefore cl is also
a partial order, with the least element defined in (a). The least upper bound of a
directed sequence is defined as in (a). Simple calculations will show that FRT, are
finite elements and generate RT,.

The case i = 3 is similar. q

The representation theorem depends on a strong correspondence between normal
forms and finite trees in RT, which we now describe.

Let 4 : NF - FRT be defined by structural induction as follows:
(a) If n is Chr_L An, + 0, then b(n) is the tree whose root is open and if8 joined

to the subtree +(nA) by a branch iabeiied A, for every A E L.
(b) If n is C,, L, An, then 4(n) is as in (a) except that the root is closed and is

labelled by H, the empty set at subsets.
(c) If n is2:,, 2 7CA6 I An,, then b(n) is as in (b) except that the root is ‘abeiled

by Y.

Lemma 5.2.6. (a) VIE NF,,&H)E RT,, i= 1,2,3.
(b) 11 <, n’ implies &(II) <, &(n’), i = 1, 2, 3.

Proof. (a) is proven by structural induction on n.

(b) if I? <,11’, then: from Definition 4.4.3, 11, C; 11, whenever both are defined.
By induction we may assume that &(lib 1 c i d(d,). The proof is now completed by
;I case analysis on why 11 q, II’. 0

111 the opposite direction we can define ;f mapping JJ : FRT - NF by induction

on the depth of the tree:

(a) If tr(r--) is open, then

ddtr) ==x {Arl,(tr(F),+)IA E S(tr(F)))+I).

Testing equivalences for processes 123

We now turn our attention to the .construction of the models Ii. We assume the
reader is familiar with the details of such constructions, which may be found in
[lo, 11, 41. Ii may be described as (FRECJ /ci)“, where FRECr/ci denote:; the
Z-partial order over finite terms generated by Cri, and ()” denotes the ideal
completion. We now use the results of Section 4.4 to show that FRECx/Gi has a
simple representation using normal forms.

For OPE z;(define Opi : NF! - NFj, i = 1,2,3 by
(a) op:(r? ,,.... @=nf(op(n, ,..., nk)),

(b) op& . . . , nd =snfbph l . . 9 w,N,

(c) op3h.. . , nk) = wnfbph, . . . , nd).

It follows from Corollary 4.4.5 that opi is monotonic, i.e., it preserves -+.

Proposition 5.2.8. Wirh the opera tom, (N Fi, c ,) is isomorphic to FRE& /c-~ as 25pos.

Proof. Let id: NFi - FREC be the identity and ei : FRE& - NFi be defined by

&I =nf, Ed =snf and q = wnf. Then obviously id preserves the order and the
operators. From Corollary 4..4.5, if d E, d’, then E~(d) <i I;. The same result
shows that Ei preserves the operators. Therefore (id, Ei) is an isomorphism pair. q

In a similar fashion we can consider FRT; as Zpos. For opt & define
op:: FRT; ---, FRT, by

op:(tr,, . . . 3 td = d4wMtrA.. . , Wrd).

Proposition 5.2.9. With these operators (FRT, <i) is u E-PO and is isomorphic fo

(NF,, q}.

. 0

We are now able to state the final result of the paper.

Theorem 5.2.10. For i = I, 2, 3, RT, is a Scpo which is isomorphic lo Ii and therefore
jirlly-abstract w. r. 1. G :‘.

Proof. We have already shown that RTi is an algebraic cpo with FRTi as finite
elements. To define the continuous functions opi : RT” --, RT, it is sufficient to define
it for the finite elements. This we have already done and so we may consider RTi
as a s -cpo. Moreover, a\~ algebraic X-cpo is uniquely determined (up to isomorph-

ism) by the Spa induced on its finite elements. From Propositions 5.2.9 and 5.2.8
we may conclude that I, is isomorphic to RT,. The result now follows from Theorem
5.1.2. cl

The weakness of this representation theorem is that we have not given a natural
definition of the operators of CCS which apply directly to the trees in RTi. We have

124 R. de Nicola, M.C. B. Hemessy

defined them indirectly by defining them on normal forms and using the isomorphism
between normal forms and the finite trees in RTi. However, these definitions may
be found in [7].

6. Alteraative characterisations

In this section we relate the equivalences for processes generated by the three
preorders introduced in this paper with equivalences presented in other work,
notably observational equivalence [23], weak equivalence [21] and failures
equivalekce [181. In particular we concentrate on Kennaway’s weak equivalence
which al’lows c? deeper insight of our =rz. For all comparisons we consider only
strongly convergent agents, i.e., finite or infinite agents which do not contain
R as a spbprdcess. Formally, a closed term p is sfmng/~ conoergenl if for every
s E A*p + p’ implies p’& This is mainly because either the definitions of the other
equivalences do not involve any notion of divergence [23,21] or an approach very
different from ours is taken [18]. These comparisons suggest alternative characterisa-
tions of our preorders which are discussed in Section 6.4.

The origiiial observation equivalence for CCS [23, IS] is much smaller than = lg
We can show that =3 coincides with =I and =I lies between =I and a,‘. (The
eq:hl valences = ,, are defined in [23, p. 993.) So the observation equivalence of CCS
distinguishes many more terms than we do. The main reason for = being finer (more
discriminating) than =, seems to be the recursive nature of its definition. In some
sense in order to decide if two agents are observationally equivalent one needs to
check that they can perform the same sequences of actions and that the subagents
reached after each sequence still have equivalence behaviour. Some of the resulting
distinctions are concerned only with the internal structure of processes and an
interesting critique of weak equivalence is given in [S]. There the author gives another
equivalence. However, it only applies to finite Berms and there is no obvious extension
IO recursive terms. Even for finite terms his language is less expressive than ours.
‘Nevertheless, the exact relationship between --:, ;lnd his equivalence is not known.

In [2 I], Kennawaly introduces a new notion of equivalence (= weak zquivalence1
for his c;llculus (NSCP). His equivalence though based on Milner‘s one takes into
account considerations which are similar to those used in the definition of our =,‘.
An interesting result is that, though = has the same recursive structure as % and
recursiveness seems to give a deeper insight into the structure of agents, ==--,’ and =5
turn out to coincide for strongly convergent agents. To simplify the comparison we
stork entirely in CC’S We adapt KennLiway.5 definition to CC’S ijge’nts and then

Testing equivalences *for processes 125

prove that this definition can be reduced to an equivalent non-recursive one. Finally,
we Drove that on strongly convergent CCS agent = and z2 coincide.

We start with some definitions based on those of Section 2.
Let A be the set of visible actions, A = 3 u a. L will range over finite subsets of

A. We let SCCRE& denote the set of all strongly convergent closed CCS agents
and let I?, Q, R range over subsets of SCCRECI-.

Let

!!?i!! p) = {oeAlp s], Traces(p)=IsEA*lp &}

and extend the relation 4 to 4s for every s in A* in a natural way:

(i) p 8 Q if p-U,
(ii) p 4 c4”$ if pa and p % p’ implies p’ & s.

As might be expected, 0s denotes the negation of 4s.

p after (c‘ = p

p after cy ={ pqp s,)

and

p after CYS = (p after cy) after s

P after F = P

Paftercu--U(paftera)pEP}

P after cys = lJ{ p after a! 1 p E P} after S.

These preliminary definitions allow us to stat: the following important,Foncepts.

p must L if and only if for all pt such that p + p’, 31 E L such that p’ 3. p must
L if and only if p must L for all p E P.

We are now ready to adapt Kennaway’s equivalence to CCS.

Definition 6.2.1. P y) Q is always true.
P y. + 1 Q if and only if V finite L c A, P must L a Q must L, and

Vcu E A, P after cy = tI Q after (Y.

P == Q if and only if, Wn 2 0, P ;=z t1 Q.

We first give an alternative characterisation of 7-2 which does not involve any
recurrence.

(P after s) must L a (Q after s) must L.

Proof. (+) We prove that P* Q implies 3s E A*, 3L 5 A such that (P after .~ j

must L and (Q after s) r@st L.

If P % Q, then th.ere exists an II :> 0 such that P f ,, Q. We prove the claim by
induction on ~1.

126 R. de Nicoltl, M.C. 9. Hennessy

Induction basis. P = I Q implies there exists some L such that P must L and Q
nyfst L. It follows trivially that (P after E) nwst L and (Q after F) yht L.

Inductive step. We have P #” + I Q if and only if

(i) P#, Q, or
(ii) 3cu E A such that P after cy # n Q after CL

In case (i) the claim follows from the induction basis. In case (ii) we have by the
inductive hypothesis that for some (Y E A, s E A*,

(P after cy) after s must L and (Q after cy) after s q&t L,

i.e., (P after LYS) must L and (Q after LYS) m$st L.
(a) Suppose there exists some s E A* and some finite L or A such that (P after

s) must L and (Q after S) m#st L. We prove by induction on s that P# Q.
Induction basis: s = E. Since P after F = P, it follows that P ;it I Q, i.e., P # Q.
Inductive step: s = cys’. Then (P after cu) after s’ must L whereas (Q after cy) after

s’ mpist L. By induction, P after (Y ;f Q after cy and so P# Q. 0

This resuh allows us to derive an easy corollary.

Corollary 6.2.3. lf p and 4 are strongl! convergent, then p = q implies traces(p) =
traces(y).

Proof. Suppose 3s such that s E tr;ices(p) and s @ triices(Q). Let cy be such that

P z (IY exists since P is strongly convergent). Then (p after .s) m#st (a) whereas
vacuously (y after s) must {a}, i.e., p -C y. Cl

Given the alternative chiiracterisation of Kennaway’s equivalence for CCS YW

can relate it to the equivalence generated by the preorder F?.
We first prove the following lemma.

Lemma 62.4. [fp and 4 are sfrongl_~ mnver;pcrU andp 1 2 q, thw traces(p) = traces(y).

Proof. Suppose there exist s such that s c traces(p) and s $ traces(q). If s denotes

~Y~LY~. . . a,, let 0, = 70+(~,(70+- . 9-t m~+ii,,). . ,). Then since q 4 s for all s c A”,
4 must satisfy o, while p m#st satisfy I t ,, which contradicts the fact that p --- 2 4. il2

We can now prove the main theorem of this section which states the equivalence

of -~ and -=:. In fact, because of the previous lemma it is immediate that =? and

i coincide for :+trongly convergent terms. Consequently we will ,~lso ha-e that, in

this case, r coincides with = ,.

Testing equivalences for processes 127

implies 5, L. such that (p after s) must L and (q after s) m$st L or vice versa.
Without loss of generality we can assume that there exist s E A* and
a finite Lc A such that p a p’ implies there exjsts an cy E L such that p’ + while

5
either q & or there exist q’, q + q’, and q’ + for no LY E L. In case q 74, the

previous lemma implies p fz q. In case q & q’ and q’ $ for all CY E L, if s =

CylcyZ.. . a, let o2 denote 710 + G,(rw + &(. . . ii,_,(70 + ii&,, L 6’~) . . .). Then,
since p 4 s for all s E A* , p must satisfy o2 while q m#st satisfy o2 and so p p52 q.

(e) We prove p 7=2 q implies p =t q. We have that p F q implies there exists an
obser pa- vbl u stich that p must satisfy o and q m$st satisfy o or vice versa. Suppose
q n$st satisfy o. This would imply:

(a) there exists a finite derivation

q1o=qJo,--+ q,10,- l l *- Lj”IO,,

such that q,# 1 o, -r, and o, Z+ for every i, 0~ i s n, or
(ID) there exists an iniinite derivation

Y I 0 = 4% i 0,1- 01 - . t/k

Let sequence performed derivations.
we have b:T 6.2.3 s E traces(p). p must o, (p after S)

must Jnit(o,,). it follows that p r q since (q after S) m#t Init(o,,). In case (b), p

must satisfy o implies that s(k) & trtices[i,i for some finite prefix, s(k), of s. Once
more by Corollary 6 2.3 it follows that p * q. Cl

As an immediate consequenct: of Theorems 6.2.2 and 6.2.5 bve have an alternative
characterization of -c .

Corollary 6.2.6. For strong!,~ mwergent terms p, q, p== 2 q ~f‘umi only if

Ws, VL(p after s) m&t L fund only [f

(q after s) must L

This corollary and the observers used ig the proofs of Theorem 62.5 and Lemma
6.2.4 suggest that we only need specific obljervers in order to distinguish between

prOCt2WS.

Let
(2 I= NILI,,!: tuco(rw-t/W,

* I

and

p &>q it Vo E 6: I, must satisfy 0 implies q must satisfy 0.

We have the following theorem.

128 R. de Nicoh, M.C.R. Hennessy

Proof. The result in one direction is trivial since O’? c 8:
To prove the converse we need to show that p := 9 implies there exists an o E O’?

such that p must satisfy o and 9 m$st satisfy o or vice versa. But the claim follows
from the previous corollary and from part (+) of the proof of Theorem 6.2.5, since
the observers used in the proof of Lemma 6.2.4 and Theorem 6.2.5 belong to C&
(01, 01 E eg. n

6.3

A mathematical model of processes, called the refusal set model was introduced
in [181 and developed further in [2 1] as refusal-acceptance-machines. Basically, the
refusal set model defines a process as a set of pairs (s, X) where s is a string of
actions and X is a nonempty set of sets of actions, the refusal sets. Such a pair
means that the process may perform the sequence of actions s and may then refuse
any set of actions in X, This is quite similar to our SRT with our acceptance sets
being the complement of the refusal sets. There are seemingly minor but important
differences. For example, it is crucial for us to have the empty set as an acceptance
set in order to handle T and it is not clear what the corresponding refusal set is. An
ordering is’ defined on this model which is somewhat similar to + defined on SRT
(at least the version of the ordering in [213). There is, however, a crucial ditference
between + and their order. There are two reasons why p + 9. The first is that
intuitively ,‘I is more nondeterministic than 9, the second that some undefined
component of p (specified by 0 or an open leaf) has been improved upon in 9.
‘l-he second component seems to be absent from their ordering. Nevertheless, this

ordering turns out to be a complete partial order and various operators are shown

to be continuous. (A notable omission from the relevant theorem [21, Theorem 4.11
i .Y

after s r@st A’, and the result

then follows from the new characterisation of k ,‘ in C“orotl;lry 0.2.0.

In Section 6.2 we have given an alternative ch;!ractsril;rttion of y--: for strongly

<i;ni’crgsrit terms ivhich is independent from the notion of ohser\xx-s. :This kind ot

i~lar~cteri~atl~.!n can ix gken for a11 the preorder-s G, over arbitrary thrms. In this

section we give this alternative characterisation for &i and use it to define directly
c’ ‘c IV i.e., preotders which are preserved by all CCS operators and which are also
independent of the notion of observers.

Definition 6.4.1
p G i 9 if traces(p) c traces(q),
p G 5 9 if Ys E A*, W finite L E A, p 8 s implies

(i) 9 JL s, and
(ii) (p after s) must L implies (9 after s) must L,

~$9 if ~$9andp~19.

Before provi,lg the main characterisation theorem we need two more lemmas.

Lemma 6.4.2. !j’p G: 9, rRen,.for all s E A", p 4 s implies

W 9&q,
(ii) s f traces{ 9) implies 3 c tracesi p).

Proof. (i) Supy-se there exists s = cyI . . . a,, such that p u s and 9 Q s. Then if we
choose 05 := ro+cY,(~o+-a+&,, ,(~r)+&,x~)...) wehavepmustsatisfyo~and

q pdst satisfy .w, i.e., p p 9.
(ii) Suppoq: there exist s = cyI . . . q1 such that p 4 s, s E traces(9) and

.u!traces(p). Then if we choose o:= 70+4(7~+- l -+&,,.,(7co+LY,,). . .) we have
p must satisfy II: and 9 m#st satisfy d, i.e., p G$ 9. Ll

J.*emma 6.4.3. !f‘ (9 after s 1 mjst L jbr sorne L c_ A, hen s E traces(9).

Proof. Suppose s E traces(91, then 9 after s = (13 and we have by definition 0 must

I, for every finite L c A. El

Lemma 6.4.4. !/'I, & s and p G : 9, iherr P c traces(9) implies s E traces{ p).

Proof. Suppose there exists some s such that s E traces(9), p u s and s & traces(p).
By the previous lemma, (p after s) must L for every finite L CI: A. Since 9 8 s we
have that U (Init(97, 9’~ 9 after s} is finite. Consequently, we can find an cy such
that y =. Then (y after s) nvfs’ { CU} while (p after s) must ((u), which contradicts
the fact that p C> y. Cl

We are now ready to prove the main characterisation theorem.

Theorem 6.4.5

I30 R. de Nicoltr, M. C. B. Hennessy

proof. Because the way 5, and E i have been de*fined we need only to prove the

theorem for i = 2, 3.
i=3: For SEA* let 03= SO. Then s E traces(p) if and only if p may satisfy 0~.

The claim is arz easy corollary of this fact.
i = 2: (a) We prove first p SE; q implies p !& 9*
If p g 5 9, then 3, I. such that p 8 s and (9 fl s or for some finite L C A (p after

S) must L and (9 after S) m$st L). If p 4 s and 9 fl s by Lemma 6.42 we have
p g2 4. If p u s and 9 & s but for some finite L, (TV after s) must L and (4 after .d
mjst I_., then by Lemma 4.6.3 we have that s E traces(q). Therefore, if we define, as
in part (a) of the proof of Theorem 6.2.5, ok = ~cI)+ cY,(rw +- l l +

G,, ,(7(r) + & c,, I Go) . . .) we have p must satisfy ok and 9 m$t satisfy O&

(b) We sketch the proof of p 5;fz 9 implies p & 9.
It follows the same line as part (e) of the proof of Theorem 6.2.5. We need also

to take into account the possibility 9 m$st satisfy o because 91 o =
y,, j 0,; - m * * ---, 9n 1 (I,, and 9,, 1 o,,? and oj -& for all o s n, i.e., there exists some s such
that 9 3 9,1, o & o,, and 9 fi s or o Q S. However, since p must satisfy o, we have
$.$ 3 and either p =& or o & 5. in the former case, Lemma 6.4.4 implies p !Z 5 9: in
the latter case we have 9 fl s which also implies p # > 9 since p 6 s. EI

The: proofs of Lemma 6.4.2 and Theorem 6.43 suggest we need only specific
observers to distinguisht between processes. Let C,, F‘, be the set of observers

generated by the following grammars:

C-NlLjTWi 1 cud/Wt-p
(I’ 1

and

I .:- ttj j u:f.

Finally, let (;‘ , = C ? u Cl,.

Theorem 6.46

p !g, q $Ymd owlet if p Eg f i q, i - I, 2, 3.

Proof. We need to prove the claim only for i = 2, 3. The ‘onI> if’ part is immediate

since C I c C, where P is the set of observers used to generate G ,. We only need to

prove the ‘if’ part.

implies, as shown in the proofs of Theorem 6.45 and Lemma

Wisfv 0 and y niyist satisfy 0 for some 0 E C;,. 2

WC a)nclude by deriving ;1 ch;trxteris;ltion of C:‘ in the sam2

gi\cn in Theorem 6.45 We first need the following lemmas.

6.42, that p must

Testing equivalences for processes 131

Lemma 6.4.7. If p &2 q, then

(i) p L implies p c, s q

(ii) p 43 implies up s; q

(iii) p A, q -c* implres 7 5= S q.

Proof. (i) Suppose r-I r must satisfy o. Then, since p L, p must satisfy o. Therefore
q must satisfy o ;&ch ir; turn implies that r+ q must satisfy o. It follows that p ES q.

(ii) Suppose r+ up must satisfy o. Then once more p must satisfy o which leads,
as in case (i) to the result that r+ y must satisfy o.

(iii) Suppose r+ p must satisfy 0. If p 10 A, then from the characterisation of 62
in Theorem 6.4.5 it follows that q 1 o & It follows that in this case r+ q must satisfy

o. On the other hand, if p(o A, then p must satisfy o. Since we are assuming that
p ~~ q it follows that q must satisfy o and therefore r + y must satisfy o. q

Lemma 6.4.8. !f p C--;! q arad (pa, q L) implies p L, then p & S q.

Proof. If p+ then the result follows from the previous lemma. If ~9, then the

result is trivially true. Therefore, we may assume that ~8, q f, and p -& From part
(iii) ol’ the prevbus lemma it follows once more that p ~5 q. 0

Theorem 6.4.9. (i) J?G; q ifand only [f‘traces(p) c traces(y).
(ii) p GS q ifand only if

(a) pu and q f_ implies p&,
(h) for ul1.w A* and jrzite L c A, p & s implies

0) 4 v s,
(ii) (p after S) must L implies (q after S) iuust L.

Proof. (i) Follows from the fact that !+ preserves all of the operators of KS.
(ii j In one direction it follows from Lemma 4.1.1 and Theorem 6.4.5. In the

opposite direction it follows from the same theorem and the predious lemma. Cl

7. Conclusion

We lirst of ail recapitulate on the results of the paper. We started with a rather

general notion of equivalence between processes based on a simple tabulation of

the possible effects of interactions between observers and processes. This equivalence

was in turn decomposed into three different preorders in a natural way. The

remainder of the paper is an investigation of these preorders in the language KS.

For each of these we gave a complete proof system based on a set of axioms and

a rule of induction. These proof systems lead in a natural way to fuliy abstract

denotational models. These are constructed as term models but in Section 5 we
&owed that the!; have very intuitive representations as particular kinds of trees.

132 R. de Nicola, M.C. B. Hennessy

Moreover, in ihe final section, we gave alternative characterisations of the various
preorders and oi the largest precongruences contained in them which are indepen-
dent from the notion of observers.

Much remains to be done. For example, the representations of the fully-abstract
models need to be more fully investigated. These new equivalences should also be
investigated for the more general version of CCS which allows value-passing. More
generally, we should be able to produce models for CSP [161, Distributed Processes
[3] and such languages which are more intuitive than the model in [IS], for example.
The axioms systems presented in this paper may also lead to more convenient calculi
for proving equivalence of processes and more generally the correctness of processes.
It would be interesting to examine the various example proofs in [23] to see if our
axioms lead to simpler proofs.

Acknowledgment

The authors would like to thank R. Milner and G. ilotkin for many useful
discussions. The first author would like to acknowledge the financial assistance of

the Italian Research Council (C.N.R.) and the second author wishes to express his
gratitude to the University of Genoa for their hospitality. Credit for the excellent
typing is due to E. Kerse.

Appendix A. Proof of Proposition 1.1.9(b)

Suppose p must siatisfy o. Consider the computation tree from o lp where the

leaves are labelled by. terms 0’1p’ such that 11’ %. Every term has ;1. tinite number
of successors. Therefore this tree is finite. We use induction on the size of the tree.

Furthermore, because of Lemma 4.1.8 it is suflicient to show that there exists a (1

huch that ti G, p and ti must satisfy o. If ~0, then o z and the required tl is .!I. So

IW rnriy assume ~6 and therefore in hnf. Furthermore, we may as~u me 0 -& There
xe two cases according to the form of 11:

C ‘UW (i) p-y,,, ,, Ap,,. Let L’ denote the set of I\ CC L such that
1) -2 [II -1 - . ’ L o,, L+, where ok ?+ for 1 s k s II. If L_’ = 0, then the required (1 is
\’ ur. I AI). So we may assume L’ f Cl. For each h E L’ let D(h) denote the set of 0’
such that o A o, 1 . ’

1
’ m - o,, - 0’ where ok -P+ for I 5~ k s n. Then, for every of E

04 A 1, pA must satisfy 0’. Ry induction on the size of the comput;ltion tree there

&tit3 a finite term d(A, 07 such that ci(A, o 1 must satisfy o’ and tl(h, 07 EZ, ph. The

rq_Cred tl is y (Aci(A, 0’) 1 h c.. L’, o’t: Il(h)} v x,,, I hf).

t ‘IJW (ii 1 p -7 1, , , 7,. f Ap,,. Let pI denote l.I, I hp,,. Then for err-)’ it L’, pf
must satisfy o. Rq’ induction on the size of compuMon tree there exists ;i i-i, such

thigt d, must satisfy o, and d, E , pr . The required (i is XI. I rd,. E

Tesring equivalences for procesws f33

References

[I] S. Bloom, Varieties of ordered algebras, J. Compur. Systems Sci. 13 (1976) 200-212.
[2] P. Brinch-Hansen, The programming language concurrent Pascal, Ilk!? TSI 1 (1975) 99-205.

[3] P. Brinch-Hansen, Distributed processes: A concurrent programming concept, Comm. ACM 21

(I I) (1978) 934-941.

[4] B. Courcelle and M. Nivat, Algebraic families qf interpretations, Proc. 17rh FOCS Ann. Symp.,
HOWkX, i 976.

[S] Ph. Darondeau, An enlarged definition and complete axiomatization of observational congruence
of finite processes, in: Lecture Notes in Computer Science 137 (Springer, Berlin, 1982) pp. 47-62.

[6] R. De Nicola, A complete set of axioms for a theory of communicating sequential processes, Proc.

FCT ‘83, Lecture Notes in Computer Science 15s (Springer, Berlin, 1983) pp. I 15 126.
[7] R. De Nico!a, Ph.D. Thesis, Dept. of Computer Science, Univ. of Edinburgh, forthcoming.
[83 N. Francez, C.A.R. Hoare, D.J. Lehmann and W.-P. de Roever, Semantics of nondeterminism,

concurrency and communication, J. Compuf. System Sci. 19 (1979) 290-308.

[9] M. Gordon, The Denotational Description t~f Programming Languages (Springer, Berlin, 1979).

[IO] J.A. Goguen, J.W. Thatcher and J.B. Wright, Initial algebra semantics and continuous algebras, J.
ACM 24 (1) (1977) 68-95.

[I I] 1. Guessarian, Algebraic semantics, in: Lecture Notes in Computer Science 99 (Springer, Berlin, 19s I I.
[121 M. Hennessy, Powerdomains and nondeterministic recursive definitions, in: Lecrure Notes in

Computer Sckwe 137 (Springer, Berlin, ! 982) pp. I78 193.
[135 M. Hem. :bsy :‘:a G. Plotkin, A term model for CCS. in: Lecture Notes in Cornpurer Science 88

(Springe 7: Berlin, 1980) pp. 261-274.

[141 M. Hennessy, A term model for synchronous process, Injkrmation and Control 51 (I) (198 1) 58-75.
[151 M. Hennessy and R. Milner, On observing nondeterminism and concurrency, in: Lecrure Notes in

Computer Science 85 (Springer, Berlin, 198Oj pp. 299-309.

[161 C.A.R. Hoare, Communicating sequential processes, Cumm. A j_‘M 21 (8) (lo??!.
1171 C.A.R. Hoare, A model for communicating sequential processes, Tech. Monograph Prg-22. Comput-

ing Laboratory, University of Oxford, 1981.

; 181 C.A.R. Hoare, S.D. Brookes and A.D. Roscoe, A theory of communicating sequential processes,
Tech. Monograph Prg-16, Computing Laboratory, University of Oxford, 1981.

[191 J.D. lchbiah et al., Reference Manual for the ADA Programming language, United States Department

of Defence, July 1980.
[ZO) J.K. Kennaw;y and C.A.R. Hoare, A theory of nondeterminism, in: Lecture Notes in Computer

Science 85 (Springer, Berlin, 1980) pp. 338-350.
[2 I] J.K. Kennaway, Formal semantics of nondeterminism and parallelism, Ph.D. Thesis, University of‘

Oxford, 198 I.
[22] B.W. Lampson and D.D. Redell, Experience with processes and monitors in Meca, Chrnm. AC&I

23 (2) (1980) 105-107.
[23] R. Milner, A calculus of communicating systems, in: Lecture Notes in Computer Science 92 (Springer,

Berlin, 1980).
[241 G. Plotkin, A powerdomain construction, .Sl,4 M J. C’ompur. 5 (1976) 452-486.

(251 W.C. Rounds and SD. Brookes, Possible futures, acceptances, refusals and communicating pro-

ceases, P~c,cB. Xnd FIX‘S Srn:p., TN,

iZ6! 1j.s. Scott, Datrl tvpes as l;ntices, SlAM J. C’ompw. 5 (3) (1976).
[271 h1.R. Smyth, Po\ver dom,,ins, J. (-ourput. .S~*sfenr Sci. 2 (197X) 23-26.

[2X] .i. Stoy, Dcnorafiorwl Semantics: The Scott- Strwhey Approach to Programmin,~ 1 anc~m~e

(MIT Press,
[291 Programming in Module-2 (Sprnger, 1983).

