
On Communicating Finite-State Machines

D A N I E L B R A N D A N D P I T R O Z A F I R O P U L O

IBM Zurich Research Laboratory, Rdschlikon, Switzerland

Abstract A model of commumcations protocols based on finite-state machines is investigated. The
problem addressed is how to ensure certain generally desirable properties, which make protocols "well-
formed," that is, specify a response to those and only those events that can actually occur. It is determined
to what extent the problem is solvable, and one approach to solving it ts described.

Categories and SubJect Descriptors' C 2 2 [Computer-Conununication Networks]: Network Protocols--
protocol verification; F 1 1 [Computation by Abstract Devices] Models of Computation--automata; G.2.2
[Discrete Mathematics] Graph Theory--graph algoruhms; trees

General Terms: Reliability, Verification

Additional Key Words and Phrases Communications

1. Introduction

The trend toward distributed computing and computer networks is increasing the
complexity of communication protocols. Formal methods of specification and anal-
ysis are being gradually introduced to handle the complexity. We will briefly review
the most common protocol representations and relate our representation to them.
There are several excellent surveys [6, 11, 18, 23] on the subject of protocol speci-
fication and verification.

The most general model describes protocols as parallel programs [7, 14, 15, 22]. In
this framework one can specify all protocols and most of their properties. The cost
of this generality is the undecidability of most properties. Therefore, existing methods
of analysis use human assistance or take advantage of the fact that many protocol
features do not use all the generality available. The latter allows a protocol to be
analyzed as if it were described in a less general formalism.

A Petri net [12, 17, 19, 24] is a less general model. In this formalism, protocols are
more easily analyzable, and some properties undecidable for programs are decidable
for Petri nets (e.g., boundedness [16]). The reduction in expressive power by com-
parison with programming languages is evident in some protocols that require a very
large Petri-net description.

The least powerful model is that of a single finite-state machine describing the
system including all the component processes and interconnecting channels [1, 3, 10,
13]. In this model only certain protocols can be described. (For example, a protocol
allowing an arbitrary number of messages in transit cannot be described.) But
describable protocols are relatively easy to analyze in the sense that all properties are
decidable by exhaustive analysis.

Authors ' present addresses D. Brand, IBM Thomas J. Watson Research Center, P.O. Box 218, Yorktown
Heights, N Y 10598, P. Zafiropulo, IBM Zurich Research Laboratory, 8803 Rilschlikon, Switzerland.

Permission to copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the ACM copynght notice and the title of the publication
and tts date appear, and notice is given that copying is by permission of the Association for Computing
Machinery To copy otherwise, or to republish, requires a fee and/or speofic permission.
© 1983 ACM 0004-5411/83/0100-0323 $00.75

Journal of the As:,oclatlon for Computing Machinery, VoL 30, No 2, Aprd 1983, pp 323-342

324 D. BRAND AND P. ZAFIROPULO

In order to improve the expressive power of finite-state machines and Petri nets,
as well as to reduce the size of their descriptions, a number of extensions have been
proposed [4, 17, 21, 27]. These extensions usually employ some programming
language capability, which in turn makes analysis harder.

Our model [25, 29] uses explicit t'mite-state machines to represent processes and
implicit queues to represent channels (the details are given in Section 2). The
processes communicate by sending messages to one another via the channels. The
queues modeling the channels have unbounded capacity to represent protocols
allowing an arbitrary number of messages in transit. In a physical implementation
all channels must be bounded, but the bound may be too large to be of practical use.
Moreover, since protocols are supposed to operate over different channels with
different capacities, a channel of unbounded capacity is the proper abstraction.

This model is in a certain sense as powerful as programming languages, for the
unbounded channels can in principle be used as memory devices (see [9]). However,
this is not the intention; in modeling a given physical communication system, each
process is supposed to be represented by only one finite-state machine, and the
channels are to be used for communication only. With such a restriction the model
is less powerful in modeling processes than Petri nets (e.g., an unbounded counter
cannot be represented). But it is more powerful in modeling channels (e.g., the FIFO
property is built in).

The suitability of the model for representing and analyzing communication pro-
tocols has been demonstrated [20, 21, 26] on existing protocol designs. It is particularly
appropriate in situations where the propagation delay is not negligible (so that several
messages can be in transit at one time) and in situations where it is natural to describe
the protocol parties and the communication medium as separate entities.

Our protocol model is described in Section 2. Section 3 defines when a protocol is
well formed, and Section 4 presents an approach to ensuring this property. Section
4 first characterizes all well-formed protocols if the processes are restricted to being
trees, rather than general transition graphs. This characterization is then used in a
(partial) solution for general protocols.

The approach has been developed for a protocol synthesizer described previously
[8, 29] and is based on syntactical properties derived from notions of physical
causality and completeness [28]. Because this paper is not directly concerned with
the practical aspects of such a protocol synthesizer, we will describe only the essential
properties of the model and the approach.

2. Model of Protocols

Our model of protocols employs a simple and commonly used representation of the
communicating processes [1, 3], namely, each process is a finite-state machine. Each
pair of communicating processes is connected by a full-duplex, error-free, FIFO
channel. (A nonideal channel is represented using an additional finite-state machine
corrupting messages passing through it; see [29].)

Our notation for expressing transmissions and receptions is illustrated in Figure 1.
A minus sign identifies the transmission of a message, a plus sign its reception. When
a process is in a state from which there is an arc labeled -m, then it can traverse the
arc and enter a new state. (For example, process USER when in state READY can
traverse the arc labeled - R E Q and enter state WAIT.) By traversing such an arc the
message m is transmitted to the destination process via the connecting channel. (The
destination process of a message will not be indicated explicitly by its transmission;

Communicating Finite-State Machines 325

this information will either be in an accompanying text or can be inferred by
observing which process contains receptions of the message.)

There are no assumptions on the time that a process spends in a state before
sending a message, and there are no assumptions on the time that a message spends
in a channel before it is delivered to its destination. I f and when a message m arrives
at a process that is hi a state s, then the process will enter a new state by traversing
arc labeled +m. (If there is no arc +m attached to state s, then the protocol is
incorrect; see Section 3.)

The example of Figure 1 is a siinple protocol between two processes, USER and
SERVER. Initially, both are in their initial s ta tes- -READY and IDLE. USER can
send a request (message REQ) to SERVER. After receiving REQ, SERVER enters
state SERVICE; when it is finished with the service, it goes back to state IDLE while
sending the message DONE to USER. Between sending REQ and receiving DONE,
USER stays in state WAIT.

While idle, SERVER can detect a fault in itself. If so, it informs USER about it by
sending the message ALARM. When USER receives an ALARM, it registers it and
directs SERVER back to its IDLE state by the message ACK.

Now we define the model formally.

Definition 2.1. A protocol is a quadruple

((S~)~1, (o,}~1, M N, (, ,), , , .~, succ), (1)

where

N is a positive integer (representing the number of processes),

(&) 7-1 are N disjoint finite sets (S, represents the set of states of process i),

each o, is an element of S~ (representing the initial state of process i),

(M,j) N~,~.~ are N 2 disjoint finite sets with M,, empty for all i (M,~ represents the
messages that can be sent from process i to process j) ,

succ is a partial function mapping for each i and j,

S, x My---> 5', and S, x Mj,---> S,.

(suce(s, x) is the state entered after a process transmits or receives message x in state
s. It is a transmission i f x is from M v, a reception i f x is from Mj,.)

For example, in Figure 1,

N~-2,
$1 = (READY, WAIT, REGISTER) ,
$2 -- (IDLE, FAULT, SERVICE),
ol = READY,
o2 -- IDLE,

M12 -- (REQ, ACK),
M21 = (ALARM, DONE) ,

succ(READY, REQ) -- WAIT,
succ(WAIT, DONE) -- READY,

and so on according to Figure 1. The function succ is defmed only for eight argument
pairs, for there are eight arcs in Figure 1. An example of an undefined succ value is
succ(READY, DONE) or succ(SERVICE, ALARM).

326 D. BRAND AND P. ZAFIROPULO

PROCESS 1 PROCESS 2
(USER) (SERVER)

+ ~ - RM
FIGURE 1

The requirement that all the sets M v be disjoint is merely a notaUonal convenience
and does not represent a restriction m practice. I f two processes can send the same
message, then one of the messages can be renamed to achieve distinctness.

There are extensions [8, 21, 25, 29] of the model, which are made for the handling
of practical protocols. For example, a state can be marked as transient [25] so that it
cannot receive messages, or the channels may not be FIFO and allow overtaking of
messages. Such extensions have little impact on the results of this paper and will not
be discussed.

Notation

(i) We use subscripts to identify processes. Thus, s, always refers to a state in
process i, that is, to a member of S,. Similarly, xv refers to a member of M,j, that is,
a message that can be sent from process i to processj. If it is not necessary to indicate
where a state s or a message x belongs, then indices are not used. Unsubscripted
capital letters Q, R, S, T are used for sets of states, each from a different process. X,
Y, Z are used for sequences of messages.

(ii) An N-tuple S always consists of N states (S1 SN), one from each process.
I f a func t ionf i s defined for states, then we extend it to N-tuples componentwise:

f((sa sN)) = (f(Sx), . . . , f (s N)) .

I f a relation p is defined between states, then we extend it componentwise to N-tuples:

S p S' iff s, p s~ for alli.

(iii) We use juxtaposition to express concatenation of message sequences. For
example, if x and y are messages and X and Y are message sequences, then x, xy, x Y,
X Y are examples of message sequences. The first one, x, is of length 1; the second,
xy, is of length 2. We use the symbol E to denote the empty sequence. If a relation
p is defined between messages, then we extend it componentwise to sequences of
equal length:

EpE' and x Y p x ' Y ' iff x p x ' and Yp Y'.

(iv) We extend the function succ to a sequence X of messages in the natural way:

succ(s, ~) = s and suet(s, x Y) = succ(succ(s, x), Y).

(v) For readability purposes we use a plus sign to identify a reception and a
minus sign to identify a transmission. For example, we may write suet(s,, +xs,) or
suet(&, -Yv); here the plus and minus signs provide no new information because the

Communicating Finite-State Machines 327

indices indicate what is a reception and what is a transmission. I f we write suee(s, +x),
then the plus sign does provide some information, namely, that there exist i a n d j so
that s is in S, and x is in Mj, (rather than My). For a message sequence X, i f we write
succ(s, +X) = s', then X contains receptions only.

Properties of a protocol are defined in terms of its execution. An execution is a
sequence of global states [25], where each global state gives the state of all the
processes and contents of the channels. An execution must start from the initial
global state, where each process i is in its initial state o~ and all the channels are
empty. The execution can then proceed; at each step either

(i) a message is sent (process i sends a message x,k, i.e., it is appended to the right
of the channel c,k), or

(ii) a me,;sage is received (process k receives a message x,k, i.e., it is removed from
the left of the channel c,k).

Formally we define

Definition 2.2. A global state (for a protocol of the form (1)) is a pair (S, C),
where S is an N-tuple of states s l , . . . , sN (st represents the current state of process i)
and C is an N2-tuple (cn ClN, C21 CNN), where each cv is a sequence of
messages from M v. (The message sequence c v represents the contents of the channel
from process l to j . Note that every c , is empty, for M , is empty.)

Definition 2.3. We define a binary relation ~- on global states (meaning that one
global state can produce the other in one step of execution): (S, C) t- iS', C') iff
there exist i, k, and x,k satisfying one of the two following conditions.

(i) All the elements of iS, C) and iS ' , C') are equal except

s" = succ(s, -xi~) and c'k ~--- Cik~Cik.

(ii) All the elements of (S, C) and (S' , C ') are equal except

X s~ -- succ(sk, +x,k) and c,k = ,~c,k.

Definition 2.4. Let I-* be the reflexive and transitive closure of I-. Then we
say that a global state iS, C) is reachable iff (S o , C O) I-* iS, C) , where
(S °, C O) = ((o~) ~=1, (E) ~j = 1). ((S °, C O) is the inittal global state with all channels
empty and each process i in its initial state o,.)

The definition of I--- does not restrict us to events (receptions and transmissions)
happening one at a time rather than in parallel. If some events happen simultaneously
in two or more different processes, then we can represent them as happening one
after the other in any order. The definition of t-- implies only a delay between two
transitions in the same process and a delay between the transmission o f a message
and its reception.

3. The Problem

We do not try to prove that a protocol performs its intended function as do, for
example, [4, 7, 22]. Instead, we consider certain properties of interest to all protocols
independent of their intended functions. This has two advantages: specification of
the intended function is unnecessary (usually a difficult and error prone task), and
the problem is computationally more tractable. At the same time we can detect a
large number of common design errors such as missing or unexecutable receptions
[20, 25, 29]. Avoiding errors of this kind is the main subject of this paper. Additionally,

328 D. BRAND AND P. ZAFIROPULO

PROCESS 1 PROCESS 2
(USER) (SERVER)

+ALARM

FIGURE 2

~ RM

+REQ

some interesting properties (e.g., deadlock) can also be discovered from so called
stable N-tuples--reachable global states with all channels empty.

A protocol has a reception missing if a message x can arrive at a process when it
is in a state s, but the protocol does not specify what state should be entered upon
receiving x in state s. For example, in Figure 1 consider the execution where USER
sends REQ and SERVER sends ALARM before either message arrives at its
destination. Message ALARM arrives when USER is in state WAIT, and the protocol
does not specify what should happen in that situation. Similarly, there is a missing
reception of message REQ in state FAULT.

Now consider Figure 2, which is obtained from Figure 1 by adding the two
receptions discussed above. It has all executable receptions specified. (An example of
an unexecutable reception would be obtained, e.g., by adding a reception +DONE
to state READY.) We say that a protocol with all executable receptions specified
and only executable receptions specified is well formed.

While the protocol of Figure 2 is well formed, it contains the possibility of a
deadlock. In the execution considered above, the two processes first send the messages
REQ and ALARM. They are both received, and then the two processes remain in
states WAIT and FAULT forever, because no other message can arrive. We say that
a protocol can be deadlocked if it is possible to reach a global state where all channels
are empty and there is no transmission from any state. It has been shown [2, 21, 25]
that N-tuples of states reachable with all channels empty (in this paper called stable
N-tuples) are also useful for detecting losses of synchronization. Therefore, it is
important to identify such stable N-tuples.

Definition 3.1. In a protocol of the form (1):

(i) A reception is a pair (s, x) for a state s and a message x. A reception (s, x) is
specified iff succ(s, +x) is defined.

(ii) A reception (s, x) is executable iff there exists a reachable global state (S, C),
where for some i and k, s --- sk and cik is of the form x Y for some sequence IT.

(iii) A protocol is well formed provided each reception is specified iffit is executable.
(iv) We say that an N-tuple S of states is stable iff (S, (a)~j=l) is reachable.

Experience [20, 21, 26] shows that it is important for a protocol to be well formed
independently of its function, and also that the knowledge of stable N-tuples allows
the detection of significant errors. There have been two strategies for assisting a
protocol designer in these aspects. Protocol validation [25, 28] assumes a given

Communicating Finite-State Machines 329

protocol and informs the designer of any missing or unexceutable receptions,
deadlocks, etc. Protocol synthesis [8, 29] assumes input given interactively by the
designer and constructs mechanically a protocol guaranteed to be well formed. From
a theoretical point of view, both approaches have to solve the same problem:

Given a protocol, identify all executable receptions and all stable N-tuples. (2)

In the case of validation, the given protocol is the one constructed by a human
designer; in the case of synthesis, it is the partially constructed protocol at a certain
stage during the protocol's construction. Of course, finding a solution to (2) will not
solve all problems with protocols. For example, Bochmann and Merlin [5] synthesize
a whole process when given all the other processes. For them a solution to (2) would
not determine the transmissions in the synthesized process.

We cannot expect a general solution for (2). Brand and Zafiropulo [9] present a
proof that it is undecidable whether a given reception in a given protocol is
executable. This implies undecidability of other questions of interest: Is a given
protocol well-formed? Is a given N-tuple stable? Is deadlock possible? Therefore, we
can expect a solution only for some classes of protocols; we can get an idea what
classes might or might not be solvable by considering the proof of undecidability. It
reduces the halting problem to problem (2) using the channels to represent the tape
of a Turing machine. This can be done because in our model the channels have
infinite capacity. Therefore, we can expect that solvability will depend on restricting
what messages can be in transit at any one time.

Definition 3.2. We say that the channel from process i to j is bounded by a
constant h iff for every reachable global state (S, C), c~j is a sequence of length at
most h. If no such constant h exists, then we say that the channel is unbounded.

All the channels in the protocols of Figures 1 and 2 are bounded by one.
A simple example of an unbounded channel is given by any protocol where
succ(s, - x) = s (i.e., a state s has a loop transmitting x). Such a protocol can transmit
x any number of times before the first x is received by the other party.

Boundedness of channels is again, in general, undecidable, but many practical
protocols do have all their channels bounded. Protocols with unbounded channels
usually use them in a simple manner, which makes them worth considering. For a
given protocol the bound on its channels can be estimated with a method described
in [9].

The problem (2) is solvable for the class of protocols with all channels bounded.
As we show below, the problem is also solvable for the class of protocols with
N = 2 processes and only one channel unbounded. In contrast, the problem is
unsolvable for N > 2 when any one channel is unbounded. More generally, the
problem is unsolvable for the class of protocols with an unbounded channel, say,
from process i to j, if there exists another way of passing information from i toj . For
example, if we have three processes, then we can use the third process just as a
relaying station between processes i and j bypassing the unbounded channel. The
same situation would exist for N -- 2 if we extended our model by allowing more
than one channel from process i to j.

For those protocols where a complete solution to problem (2) is not available, one
can provide approximate solutions. For example, [25] uses a channel bound h as a
parameter of validation. A validated protocol is guaranteed to have all those
receptions specified that are executable using global states with channels shorter
than h.

330

FIGURE 3

D. BRAND A N D P. ZAFIROPULO

4. A Solution

Most existing approaches [15, 23, 25] to problem (2) are based on a search of
reachable global states. We present an alternative approach; instead of considering
an execution of all the processes as a whole, we consider N executions of the N
processes separately. While the worst-case asymptotic behavior of both approaches
is exponential, ours has a slightly smaller exponent, which indicates a potential for
reducing the combinatorial explosion. However, worst-case asymptotic behavior is
not necessarily a relevant measure here, because in both approaches a protocol can
be analyzed successfully only if its behavior is far from the worst case, as is true for
protocols designed in practice. Therefore, some experimentation will be necessary
before the practical effectiveness of our approach can be determined.

There are reasons to expect the existence of a solution that does not search all
reachable global states. Figure 3 contains a portion of a protocol where we wish to
decide whether state s can receive message x. The reader can see that the answer is
in the affirmative, provided state t can receive x, because an execution which delivers
x before transmitting y implies another possible execution that differs only in that it
is slower in delivering x than in transmitting y. Note that the answer to this question
was independent of the rest of the protocol; we only needed the information that
s = succ(t, - y) and succ(t, +x) is defined. Using this motivation, we aim for rules
characterizing all the executable receptions with minimum information about the rest
of the protocol.

The method proposed here builds N trees, one for each process, representing all
the possible executions of each process. The N trees constitute a protocol according
to Definition 2.1, but because of its restricted form we will call it a tree protocol.
Figure 4 shows a tree protocol corresponding to the general protocol of Figure 2.
Traversing a tree is like traversing the corresponding graph, but with two differences.
First, one state s of a process in Figure 2 is represented in Figure 4 by several separate
states s.0, s.1, s.2, . . . ; each corresponds to a different way of reaching state s from the
initial state. (For example, in Figure 4 states READY.0, READY. 1, READY.2 all
represent the same state READY of Figure 2.) Second, messages are renamed so that
no message is transmitted from two different states in the tree. (For example,
-REQ.0, -REQ.1, and -REQ.2 represent three different transmissions of the same
message REQ.) It should be stressed that the messages REQ.0 and REQ. 1 (as an
example) are completely different from the point of view of the tree protocol. They
merely share their reasons for being in the tree protocol.

It should be clear that given a general protocol as in Figure 2, we can construct
tree protocols (like Figure 4) by tracing all possible executions. In general, there is an
infinite number of such tree protocols, depending on how long we trace the execu-
tions. Conversely, given a tree protocol, we can construct the corresponding general
protocol by merging equivalent states and messages. This is the basis of our approach;
we grow the N trees and interpret any findings about the trees (executable receptions,
stable N-tuples) in terms of the general protocol.

IN

c l ~ w

rl

~ J

O v

am

Q ~

o
O

ill

~ L~J

R

332 D. BRAND AND P. ZAFIROPULO

Thus we reduce the general problem (2) into two subproblems: first, how to solve
problem (2) for tree protocols; and second, when to terminate growing of the trees
without missing any receptions or stable N-tuples in the corresponding general
protocol. The first problem is solved in Section 4.1. The second problem is, in general,
unsolvable, and a limited solution is presented in Section 4.2. But first we define a
tree protocol.

Definition 4.1. We call a protocol of the form (1) a tree protocol iff the following
two conditions are satisfied:

(i) For every state s, there is a unique sequence X of messages so that
s~ = succ(o~, x) .

(ii) For every message x there is a unique state t so that succ(t, - x) is defined.

Condition (i) is the usual definition of a tree. The unique sequence X is called the
branch leading from the root o, to state s,. Condition (ii) is independent of any
treelike qualities; we introduce it because it will be convenient to have a unique state
from which a message can be transmitted. I f succ(t, - x) is defined, then we call t the
departure state of the transmission of x and succ(t, - x) the entry state of the
transmission.

Condition (ii) does not constitute a restriction on the protocols that the approach
can handle. It merely implies that in constructing a tree protocol from a general
protocol, every new transmission must be renamed.

Notation. In a tree protocol:

(i) s <_ s' iff there exists a (possibly empty) sequence X so that succ(s, X) = s'. We
call X the path from s to s'. I f X is not empty, then s < s'. For example, in
Figure 4 READY.0 _< WAIT. l , but neither REGISTER.0 _ WAIT.1 nor
WAIT.1 _< REGISTER.0. In particular, note that s _< s ' only i f s and s' are in
the same process.

(ii) s ~, s ' i f f s _< s' or s' <_ s (i.e., s and s ' are on the same branch).

(iii) max(s, s ') -- s ' i f s --< s',
max(s, s ') = s if s ' _< s,
max(s, s ') is undefined if it is not the case that s ~ s'.

4.1 ARC SPECIFICATION FOR TREE PROTOCOLS. This section shows how to con-
struct well-formed tree protocols, independent of any general protocol that might
correspond to the tree protocol. It gives necessary and sufficient conditions for a
reception to be executable. These conditions are expressed in terms of three functions:
From, To, and L. All three take two arguments--a process identifier i and a state s.

Fromt(s) is the last message received from process i on the branch to state s. I f
no such message exists, then Fromt(s) = *, where • is a special symbol used for
this purpose. For example, in Figure 4, From2(REGISTER.2) = ALARM.l ,
From~(WAIT.0) = . . In general, Fromt(s,) = * for any st.

To,(s) is the last message transmitted to process i by the branch to state s. For
example, To, (READY.I) = REQ.0, Tol(SERVICE.0) = .. In general, To,(s,) = *
for any st.

Lt(s) is the last state in process i that must have been reached before state s can be
reached. (L is precisely defined in Definition 4.3.) For illustration, consider the
protocol of Figure 5. Process 2 sends message 1 to process 1 followed by message 2
to process 3. Upon receiving message 2, process 3 sends message 3 to process 1.
Process 1 follows two different paths, depending on whether message 1 or 3 arrives

Communicating Finite-State Machines

PROCESS 1 PROCESS 2 PROCESS 3

333

FIGURE 5

-1

-2

+2

3

first. In determining the value of L2(sl) we take the position that we can observe the
state of process 1 only and try to say as much as possible about the state of process
2. Since +1 has been received, process 2 cannot be in state o2; it must be in state t2
or further. But we know even more. Since message 3 cannot be sent without message
2 being sent first, we know that process 2 must have entered state s2. In fact, in this
example L z (S l) - - s2 and La(Sl) =- sa.

Using the same reasoning, L2(tl) = s~. Thus, when process 1 reaches state tx, it
knows that process 2 must have already sent message 1. This ability o f a process to
find out that a message has been sent to it before receiving the message is not present
for protocols with N = 2 processes only. Therefore, for two processes the solution
[29] is different from the general solution presented here.

When a process i reaches a state s,, then of course it knows that process i is in state
s,; therefore always L,(s,) = s,. Thus the function L assigns an N-tuple to every state
in the protocol: L(s) = (Ll(s) LN(s)) .

Using the function L, we express three conditions, which we wiU later prove to
be necessary and sufficient in order that a state rk can receive a message x,k (see
Figure 6):

(i) Process k can receive x,k only after it has received all messages previously sent
to it by process i. This first condition is expressed by

From,(rk) = Tok(t,). (3)

(ii) I f rk is to receive x,k, then the knowledge possessed by processes i and k about
any third processj must be consistent in the following sense. When process k is
in state rk, then processj must have reached state Lj(rk). After process i transmits
x,k entering state t,', then process j must have reached state Lj(t',). These two
states of processj must lie on the same branch, or, using the notation introduced
before Section 4.1,

L,(t ;) -~ L,(rk) for all j # k. (4)

(iii) In order that rk can receive x,k, condition (4) must also be satisfied f o r j - k, in
which case it can be simplified to Lk(t,) -~ rk. But this is not sufficient, because
it allows rk < Lk(t,). I f that were the case, then process k must have passed state
rk by the time x~ has been transmitted, and therefore rk could not receive x,k.
Therefore, we require

Lk(t,) <- rk. (5)

Using these three conditions, we now define a constructible reception and a
constructible protocol. Later we will prove that "constructible" is equivalent to

334

P R O C E S S I

D. BRAND AND P. ZAFIROPULO

PROCESS k PROCESS I

I I '

,

I I
f t
,

" 9
I

,,
I
f

1
I
I

F I G U R E 6

"executable." The function L is defined in Definition 4.3 together with a constructible
tree protocol because they are interdependent--constructible protocols are charac-
terized in terms of the function L, and the function L exists only for constructible
tree protocols.

Definition 4.2. Assume a tree protocol of the form (1) in Definition 2.1 and a
function

L: S1 0 . . . tO SN---> $1 x . . . x SN.

A reception irk, x,k) is constructible iff conditions (3)-(5) are satisfied, where t, and
t', are the departure and entry states of --X,k, respectively.

The next definition states that a tree protocol is constructible iff it is obtainable in
any number of steps:

(i) starting from the roots,
(ii) by adding a new transmission - x to any state t,, or

(iii) by adding any constructible reception.

Definition 4.3. A tree protocol P of the form (l) is constructible, and

L: $1 U . . . tO SN ~ S1 x . . , X aN

is a function associated with P iff P and L are obtainable by the following inductive
definition.

(i) P is constructible if S, = (o,} for all i and M,~ is empty for all i,j . The following
function L is associated with P:L(o,) = (ol ON) for all i.

(ii) Let P be a constructible tree protocol of the form (1), i # k two fixed process
indices, t, a state in S,, and x and s new symbols. Let P ' be the tree protocol
obtained from P by replacing S, with S~ tJ (s) and M,k with M~k U (x) and
extending succ to succ(t,, - x) = s. Then P' is a constructible tree protocol.

If L is associated with P, then the following extension L' is associated with P':

L~(s) = s, Lj(s) = L (t ,) , for all j # i.

(iii) Let P be a constructible tree protocol of the form (1), L a function associated
with P, (rk, x,k) an unspecified constructible reception (with respect to L), and
s a new symbol. Let P ' be the tree protocol obtained from P by replacing Sk

Communicating Finite-State Machines 335

with Sh O (s} and extending succ to succ(rh, +x,h) = s. Then P ' is a constructible
tree protocol.

I f L is associated with P, then the following extension L ' is associated with P':

L'k(s) = s, L~(s) = max(Lj(rk), Lj(t;)), for all j # k,

where t~ is the entry state o f -x ,~ . (Note that L~(s) is well det'med because (4)
is satisfied.)

Condition (i) of Definition 4.3 is the basis of the inductive definition. It defines the
initial protocol, where each process has only one state (the root o,) and there are no
messages. The associated function L has the same value for all the roots o,, namely,
the N-tuple of roots.

Condition (ii) says that to any state t, of a constructible tree protocol P we can
append the transmission - x of a new message x and again obtain a constructible tree
protocol. In order that the result of the addition is a tree again, we have to create a
new state s for the entry state of - x . The function L ' will have the same value on s
as on t,, because by sending a message x we have learned nothing new about the
other processes. For process i itself we know that after sending x it is in state s.
Therefore L,(s) = s.

Condition (iii) describes the expansion of a constructible tree protocol by the
addition of a reception (rk, +x,k ~. As in (ii), we have to create a new state s as the
entry state of +x,k. In order that the new reception is executable, +xik can be attached
only where the conditions (3)-(5) are satisfied. The extension of L to s expresses that
after a reception new information about the other processes can be gained. When
process k receives x~h, then the transmitting process i must have reached state t~'. And
for that to happen, any process j must have reached Lj(t;). However, it is possible
that r~ has more information about a process j than t; has; therefore we take the
maximum of the two.

Definition 4.3 allows many ways of obtaining the same constructible tree protocol.
It is conceivable that different ways might lead to different associated functions. The
next Lemma 4.1 states that this is not so, and therefore from now on L will always
be the function associated with a constructible tree protocol. Proofs for the following
lemma and theorem are outlined in Appendix A and carried out in [9].

LV.MMA 4.1. I f L and L' are two functions associated with a constructible tree
protocol, then L = L'.

THEOm~M 4.1. A tree protocol is constructible f f each of its specified receptions is
executable.

COROLLARY 4.1. A tree protocol is well formed iff it is constructible and all
constructible receptions are specified.

Theorem 4.1 says that (3)-(5) are necessary and sufficient conditions for receptions
to be executable. Corollary 4.1 implies that well-formed tree protocols can be
constructed by applying Definition 4.3, where step (iii) is used to specify all the
receptions allowed by conditions (3)-(5).

Such a construction can be made more efficiently than suggested by Det'mition
4.3. In the rest of this section we outline an algorithm for finding all the receptions
that must be specified as a result of a transmission. This is followed by an algorithm
for finding all the stable N-tuples. The correctness of the algorithms is established
in [91 .

Assume a well-formed tree protocol that has been expanded by adding the
transmission succ(tl, - x) = t~ (see Figure 7). We will identify all the new receptions

336

PROCESS 1

D . B R A N D A N D P. Z A F I R O P U L O

PROCESS 2

l
i
t

\\

t t x k

Z_ A L

FIGURE 7

that must be specified in order that the resulting tree protocol is again well formed.
Part of the construction is also the calculation of the function L for newly introduced
states. The algorithm is described for the case of the new message x being sent from
process 1 to process 2; the general case is obtained by renumbering the processes.

The first step of the algorithm, called propagation along negative arcs, copies the
positive subtree of 6 below t~. That is, for every s1 -- succ(6, + }1) for some sequence
Y, a new state s~ = succ(t~, + Y) is generated:

Lx(s'~) = s'~ and L , (s ' 0 = Lj(Sl) for all j # 1.

The second step finds all the executable receptions of x in process 2 by testing
conditions (3)-(5). (This can be done relatively efficiently by taking advantage of the
tree structure.)

The last step is called propagation along positive arcs. It is done for every state of
process 2 bottom up; that is, it is applied to a state r2 only after it is applied to the
whole subtree of r2. If there are z, q, q' so that succ(r2, +z) = q, succ(r2, +x) = q',
and succ(q, +x) = u, then we create a new state u ' ~= succ(q', +z) and copy the
subtree of u below u'. (Note that the subtree of u contains only receptions, for the
subtree was created in previous iterations of this step, which generates only recep-
tions.) The copying is done as in the propagation along negative arcs: a new state
s~ -- succ(u', + W) is created for every s2 -- succ(u, + W):

L~(s'2) = s [and Lj(s '2) = Lj(s2) for all j # 2.

At the same time as all the new receptions are being added we can also identify all
the new stable N-tuples. Assume a list of all the stable N-tuples in the original
protocol before the addition of - x . We will expand the list by all the new stable
N-tuples in the new protocol.

During the second step (finding all the receptions of x) identify all the stable
N-tuples (Sl, q, s3 sN), where Sl = succ(6, +Y) for some sequence Y and
succ(q, +x) -- u. Add (S'l, u, s3 SN) to the list of stable N-tuples, where
s l = succ(tl , + Y).

During the third step (propagation along positive arcs) identify all the stable
N-tuples <sl, s2, s~, . . . , SN), where sl = succ(t~, +Y) for some sequence Y and
s2 = succ(u, + W) for some sequence W. Add <s~, s~, s3, . . . , sN) to the list of stable
N-tuples, where s~ = succ(u', +W) .

Communicating Finite-State Machines 337

4.2 7I'EgMI~ATION. In this section we assume a solution to problem (2) for tree
protocols and therefore are dealing with well-formed tree protocols only. In contrast
to the previous section we assume the existence of a general protocol, for which
problem (2) is supposed to be solved. As explained at the beginning of Section 4, the
solution is obtained by expanding a tree protocol looking for missing receptions and
stable N-tuples. The purpose of this section is to determine when to stop this
expansion. Appendix B outlines proofs of validity, namely, that stopping the expan-
sion of the trees will not cause any receptions or stable N-tuples in the general
protocol to be missed. This appendix also outlines proofs of termination, namely, for
what classes of general protocols the method guarantees that the tree expansion be
stopped (and hence for what classes it solves problem (2)).

More specifically, this section assumes a given well-formed tree protocol and a
given equivalence relation - on states and messages of that tree protocol. This
equivalence relation represents all the information we need about the general
protocol: Two states of the tree protocol are equivalent if they respect the same state
of the general protocol, and similarly for equivalent messages. Therefore, we assume
that ~ relates states from the same process St and messages from the same set M,j.
Moreover, ~ is a congruence relation with respect to succ:

I f s ~ s' and x ~ x' , then succ(s, x) ~ succ(s', x ') whenever both sides are defined.

In Figure 4, naming is used to indicate the equivalence; two states or messages are
equivalent if they have the same name except for the number following the period.
For example, READY.0, READY. 1, READY.2 are equivalent (and no other states
belong to this equivalence class).

This section gives a partial solution to the problem of deciding whether further
expansion of the tree protocol can uncover new properties of the general graph--a
new reception or stable N-tuple. It operates by marking states; we call such a marked
state, as well as all states in its subtree, dead. The criteria for marking a state
guarantee that the subtree of a dead state cannot contribute any new information to
the given general graph. Thus the expansion of the tree protocol terminates when
new transmissions can be appended below dead states only.

For example, suppose that in Figure 4 our criteria allow states READY.I,
READY.2, IDLE. 1, and IDLE.2 to be marked dead (as is actually the case). Then
we do not need to generate the transmissions REQ.I, REQ.2, ALARM.l , and
ALARM.2. Thus the tree construction can stop after building three levels only, and
state WAIT.2 as well as all the other states on the fourth level are not needed.

There are two criteria under which a state can be marked dead, yielding two types
of dead states--types 0 and 1. The criterion for type 0 is analogous to the termination
mechanism of the perturbation method [25]. That method generates reachable global
states; a newly generated global state can be ignored if it is equal to a previously
generated global state. Our criterion for marking a state s dead of type 0 considers
only that global state containing s which is reached in the least number of steps.
These steps do not have to be carried out, because this minimum global state is given
by (L(s), C), where C --- Channels(L(s)) (see Definition 4.4). The state s can be
marked dead if this minimal global state is equivalent to the minimal global state for
some previous state s'.

Definition 4.4. For an N-tuple S in a tree protocol we define Channels(S),
provided there exists a reachable global state (S, C). In that case Channels(S) -- C.

Note that it is a proper definition; given S, there is at most one C so that the global
state (S, C) is reachable. For if s, and sj are in S, then the channel from i t o j consists

338 D. BRAND AND P. ZAFIROPULO

of all the messages on the branch to s, that have been sent to process j but not
received on the branch to s~. Thus, calculating Channels(S) is a purely syntactic
process, which does not involve searching for a reachable global state (S, C). The
condition under which Channels(S) are defined can also be stated without reference
to execution (Appendix A). For the method, it is necessary to determine Channels
only for Notuples of the form L(s), and Lemma B7 guarantees that Channels(L(s))
are always defined.

Definition 4.5. We say that a state s ' is aprecursor of a state s, provided

(i) s" < s,
(ii) L(s ') ~ L(s), and

(iii) Channels(L(s')) ~ Channels(L(s)).

As an example we show why in Figure 4 READY.0 is a precursor of READY. 1:

L(READY.0) = (READY.0, IDLE.0),
Channels(L(READY.0)) ffi (E, ~, e, E),

L(READY. 1) = (READY. I, IDLE. 1),
Channels(L(READY.1)) -- (~, e, E, ¢).

Hence all three conditions for being a precursor are satisfied.
Having a precursor is the condition for a state s to be marked dead of type 0. The

criterion for a state s to be marked dead of type 1 is motivated by the following
natural expectation: If all receptions of a message can be ignored (because they are
below dead states), then the transmission can be ignored, too. This condition is not
valid for protocols with more than two processes, but a stronger condition expressed
in Definition 4.6 is valid.

According to this stronger condition~ the subtree of a state t, can be ignored if tl
"can send" to dead states only, that is, if any message sent from t, can be received at
dead states only. The relation "can send" is obtained from Definition 4.2 of a
constructible reception by substituting the condition (6) for (4). Condition (6) is
implied by (4) and differs from (4) only f o r j -- i, ((6) refers to t, rather than t~). It
does not require that the knowledge of state rk be consistent with the transmission of
any specific message. Thus it allows the possibility that rk will be consistent with any
message sent form t,. This could be a message only later introduced into the protocol.

Definiaon 4.6. A state t, can send to a state rk provided the three conditions (3),
(5), and

L,(t,) ~ L,(rk) for all j # k. (6)

Definition 4.7. A tree protocol is well marked iff it is a well-formed tree protocol
with two distinguished subsets of all the states--states marked dead of type 0 and
states marked dead of type 1--satisfying the three conditions below. If s >_ s' for
some s ' marked dead of type n, then we will call s dead of type n.

(i) I f s and t are two marked states, then it is not the case that s ~. t.
(ii) I f s is marked dead of type 0, then s has a precursor.

(iii) I f t is marked dead of type 1 And t can send to r, then r must be dead of type 0.

Please note the difference between a state s' marked dead and a state s dead just
by virtue of being in the subtree of s'. Note that condition (i) guarantees that there
is just one type associated with every dead state.

For example, ha the protocol in Figure 4 we can mark states READY.I and
IDLE.2 as dead of type 0 because they have precursors READY.0 and IDLE.0,

Communicating Finite-State Machines 339

respectively. This also makes states WAIT.2, REGISTER.I, SERVICE.2, and
FAULT.2 dead of type 0. State IDLE.1 can send to state REA_DY.I and WAIT.2
only, both of which are dead of type 0, so IDLE.1 can be marked dead of type 1.
Similarly, READY.2 can be marked dead of type 1. If all this marking is done, then
the states READY.l, WAIT.2, REGISTER.l, IDLE.2, SERVICE.2, FAULT.2 are
dead of type 0, and the states READY.2, WAIT.3, REGISTER.2, IDLE.I, SER-
VICE.I, FAULT.3 are dead of type 1. But only states READY.I and IDLE.2 are
marked dead of type 0, and only states READY.2 and IDLE.1 are marked dead of
type 1.

Appendix B shows that this approach guarantees tree-growth termination for
protocols with all channels bounded, even if we restrict ourselves to type-0 dead
states. If we allow dead states of type 1, then we can terminate the growth of some
protocols with unbounded channels; in particular, we prove that termination is
guaranteed for protocols with only two processes and one channel unbounded.

For an implementation the following consideration must be taken into account. A
state dead of type 0 can remain dead even when new transmissions are introduced
into the protocol. This is not necessarily the case for a state t dead of type 1. A new
transmission may cause new states to be created to which t can send. If one of such
new states is not dead of type 0, then t must be "revived." Therefore states dead of
type 1 should be used only in a fmal check on a completed protocol.

5. Conclusions

The purpose of this paper was to investigate a model of communications protocols
from the point of view of certain properties (executable receptions and stable N-
tuples). As we documented in the introduction, this model and the properties
considered provide useful information for protocol designers--first, the class of errors
prevented often have a crippling effect in an implementation; and second, experience
has shown that designers are prone to making errors of this class.

After showing that the properties of interest are undecidable in general, we
concentrated on one approach to establishing those properties for some classes of
protocols. This approach has its goal in considering the execution of each process
separately, as compared with considering executions of the global system of all the
processes.

The whole problem was divided into two subproblems--first, growing of trees in
the search for all executable receptions and stable N-tuples, and second, determining
when the tree growth can be stopped. We feel that the first problem was solved
successfully. We found necessary and sufficient conditions characterizing all execut-
able receptions. In contrast, terminating the tree growth is much more difficult. First
of all, it is undecidable when we can stop growing the trees. Therefore, we have to
expect only partial solutions. We described a procedure that is guaranteed to
terminate the tree growth if all channel capacities are finite (without any restriction
on the number of processes). Termination of tree growth is also guaranteed if there
are only two processes and one channel in unbounded. This is as far as we can relax
the need for bounding the channels and keep the problem solvable.

The limitations of the approach lie in the termination. Since a complete solution
cannot be expected, the user must be able to specify a parameter limiting the search
for a solution. Such a limiting parameter should be natural to the user, easy to guess
for common protocols, and easy to incorporate into a termination procedure. This
area requires more research.

340 D. BRAND AND P. ZAFIROPULO

Appendix A. Proof Outlines for Section 4.1

(For details of these proofs see [9, App. B].)
Lemma 4.1 is proved by induction on the construction of the protocol essentially

following Definition 4.3. However, one tree protocol may be constructed following
Definition 4.3 in many different ways. Therefore we order all the states of a
constructible tree protocol by a relation << and its transitive closure <<+. Intuitively,
"t <<+ s" means that the state t must be constructed before s can be constructed, or
in other words, in any execution t must be reached before s can be reached. The
ordering <<+ is well founded; thus Lemma 4.1 can be proved by induction on <<+.

Theorem 4.1 has to be proved in two directions.

(1) First we assume a tree protocol with all specified receptions executable and
prove that P is constructible. Imagine generating all the reachable global states of P:
start with the initial global state with empty channels, and proceed by sending and
receiving messages in all possible combinations according to Definition 2.3. In
parallel we can construct the protocol P: obtaining a new global state by a transmis-
sion (or reception) corresponds to adding a transmission (or reception) arc to the
protocol. Note that it is necessary to prove that any such added reception arc is
constructible. This process will result in constructing the whole protocol, because
every reception in P is executable and thus will be exercised during generation of all
the reachable global states.

(2) We assume a constructible tree protocol P and show that any specified
reception +x must be executable. Let s -- succ(t, +x); to show that x is executable,
it is enough to show that there is reachable global state containing s. The global state
(L(s), Channels(L(s)) contains s and is reachable because it satisfies the following
necessary and sufficient condition for reachability:

(S, Channels(S)) is reachable iff for all i,j, L,(s:) <_ s,.

Appendix B. Proof Outlines for Section 4.2

(For details of these proofs see [9, App. D].)

We have to prove (1) validity and (2) termination.

(1) For validity assume that P is a tree protocol obtained by tracing all possible
executions of a general protocol. This determines the equivalence relation - . Assume
that P has been expanded very far, even far beyond the point where our criteria
would allow the expansion to be stopped. Let P" be the subprotocol of P obtained
if the expansion had been stopped as soon as our criteria allowed that. We have to
prove two properties.

(a) By restricting ourselves to P" we will not miss any receptions. That means that
whenever succ(r, +y) is defined in P, then in P" there exist r" - r a n d y " - y so
that succ(r", +y ") is defined.

(b) By restricting ourselves to P" we will not miss any stable N-tuples. That is,
whenever P has a stable N-tuple S, then P" has a stable N-tuple S" ~ S.

The proof is based on a number of lemmas, which are generally proved by
induction on the tree structure. Some examples follow.

COROLLARY D. 1. Every state dead of type 0 has a precursor (not just states marked
dead of type 0).

Communicating Finite-State Machines 341

LEMMA D.2. I f a state s has a precursor s' and Q is a reachable global state with
Q >_ L(s), then there exists an equivalent reachable global state Q' ~_ L(s'). Moreover,
the paths from L(s') to Q' are equivalent to the paths from L(s) to Q.

COROLLARY D.2. Every state outside P" either has a precursor or is dead of
type 1.

LEMMA D.11. I f a state t dead of type 1 can send to a state r, then r has a precursor.

Part (a) is proved by induction on the tree structure. The induction step has to
show that there are r ' ~ r and y ' ~ y with succ(r', +y ') defined and with r ' being
closer to the root than r. Let t be the state from which the messagey is being sent. Let
us restrict ourselves to the interesting situation when t is outside P" .

I f t happens to have a precursor, then we can apply Lemma D.2 to the global state
reached just before y is received at r; Lemma D.2 gives us an equivalent global state
closer to the roots. If t does not have a precursor, then by Corollary D.2 t is dead of
type 1. By Lemma D.11, r has a precursor. Therefore we can apply Lemma D.2
again.

The proof of (b) uses Corollary D.2 and Lemma D. 11 to show that at least one
state of S must have a precursor. Then Lemma D.2 can be applied to S to get an
equivalent stable N-tuple closet to the roots.

(2) For termination assume a general protocol expanded into an infinite tree
protocol. We have to show that our criteria for termination allow us to ignore all but
a finite portion of that infinite tree protocol. For that it is enough to show that every
infinite branch will have a state with a precursor. Consider (L(s), Channels(L(s))) for
every state s along an infinite branch. If all channels are bounded, then there are
only a finite number of nonequivalent global states (L(s), _Channels(L(s))). And
therefore one of the states along the infinite branch will have to have a precursor.

The assumption i~h~at all channels are bounded can be relaxed in the case of two
processes only; in this case it is enough when just one channels is bounded, because
every infinite branch in the protocol sending over the finite channel will have a state
with a precursor (i.e., a state dead of type 0), and every infinite branch of the other
protocol must have a state that can send to states dead of type 0 only (i.e., a state
dead of type 1).

ACKNOWLEDGMENTS. We are grateful to D.D. Cowan, R. Hauser, H. Rudin, M.
Sherman, and C.H. West for valuable discussions and careful reading of the manu-
script.

REFERENCES

1 BARTLETT, K A., SCANTLEBURY, R A, AND WILKINSON, P T A note on refiable full-duplex trans-
mission over haft-duplex links Commun, A C M 12, 5 (May 1969), 260-261.

2. BOCHMANN, G V Commumcatlon protocols and error recovery procedures, A C M Oper. Syst Rev.
9, 3 (July 1975), pp 45-50

3. BOCHMANN G V Finite state description of communicauons protocols. Proc. Computer Network
Protocols Symp., Liege, Belgium, Feb. 1978, pp F3-I-F3-11

4. BOCHMANN, G.V, AND GESCEI, J. A unified method for specification and ver~¢ation of protocols.
Proc IFIP 77, AFIPS Press, Arhngton, Va, 1977, pp 229-234

5 BOCHMANN, G.V, AND MERLIN, P. On the construction of communication protocols. Proc. Int.
Conf on Computer Commumcatlons, Oct 1980, pp 371-378

6. BOCHMANN, G.V., AND SUNSHINE, C. Use of formal methods in communication protocol design.
IEEE Trans. Commun COM-28, 4 (Apr. 1980), 624-631

342 D. BRAND AND P. ZAFIROPULO

7. BRAND, D., AND JOYNER, W.H, JR. Verification of protocols using symbolic execution. Comput.
Networks 2, 4/5 (Sept./Oct. 1978), 351-360.

8. BRAND, D., AND ZAFIROPULO, P. Synthesis of protocols for an unlimited number of processes. In
Proc. of Trends and Applicatwns 1980: Computer Network Protocols, National Bureau of Standards,
Gaithersburg, Md., May 1980, pp. 29--40.

9. BRAND, D., AND ZAFIROPULO, P. On communicatmg fimte-state machines. Tech Pep. RZ 1053,
IBM Zurich Research Lab., Riischlikon, Switzerland, Jan. 1981.

10. CCITT. Recommendation X 21 (revised), AP VI, No. 55-E, Geneve, Switzerland, 1976.
11 DANTHINE, A, ED Proc Computer Network Protocols Symp, Liege, Belgium, 1978; see also special

issue on computer network protocols, Comput Networks 2, 4/5 (Sept/Oct. 1978)
12 DEVY, i . , AND DIAZ, M Multilevel specification and validation of the control in communication

systems. Conf. on Distributed Comput. Syst, Oct 1979, pp. 43-50
13. GOUDA, M.G, AND MANNING, E.G On the modehng, analysts and design of protocols--A special

class of software structures Proc. 2nd Int Conf on Software Engineenng, San Francisco, Calif, Oct.
1976, pp. 256-262

14 HAILPERN, B., AND OWICKI, S. Venfymg network protocols using temporal logic. In Proc Trends
and Applicatwns 198ff Computer Network Protocols, National Bureau of Standards, Galthersburg,
Md., May 1980, pp 18-28.

15. HAJEK, J Automatically verified data transfer protocols Proc Int Conf on Computer Communi-
cations, Kyoto, Japan, Sept 1978, pp. 749-756

16. KARP, R M, AND MILLER, R E Parallel program schemata: A mathemaucal model for parallel
computation Conf Rec 8th Ann. IEEE Symp on Sw:tchmg and Automata Theory (Oct 1967), IEEE,
New York, pp 55-61.

17. MERLIN, P.M. A methodology for the design and implementation of communication protocols
IEEE Trans Commun. COM-24, 6 (June 1976), 614-621.

18. MERLIN, P.M. Specification and vahdatton of protocols. IEEE Trans Commun. COM-27, 11 (Nov
1979), 1671-1680

19. PETERSON, J L Petrl nets Comput. Surv. 9, 3 (Sept. 1977), 223-251
20 RODIN, H, WEST, C H., A~D ZArlROPULO, P Automated protocol validation. One chain of devel-

opment Proc Computer Network Protocols Conf., Liege, Belgium, Feb 1978, pp F4-l-F4-6
21. SCaIILTZ, G D., ROSE, D B., WEST, C H, AND GRAY, J.P. Executable descnpuon and validation of

SNA. IEEE Trans. Commun COM-28, 4 (Apr. 1980), 661-667.
22 STENNING, N V. A data transfer protocol Comput Networks 1, 2 (Sept 1976), 99-110
23. SUNSHINE, C.A Commumcat:on Protocol Modehng. Artech House, Dedham, Mass, 1981
24 SYMONS, F J.W Representation, analysts and verification of commumcatton protocols. Rep. No

7380, Telecom Australia Research Labs, November 1980,
25. WEST, C H. General techmque for communications protocol vahdanon IBM J. Res. Devel. 22, 4

(July 1978), 393--404.
26. WEST, C H, AND ZAEmOPULO, P Automated vahdation of a communications protocol. The CCITT

X 21 recommendation IBM J Res Devel 22, 1 (Jan. 1978), 60-71
27, YOELI, M., AND BARZILAI, Z. Behavioral description of commumcatlon switching systems using

extended Petn nets. Digital Processes 3 (1977), 307-320.
28 ZAFIROPULO, P. Protocol vahdation by duologue-matrix analysts IEEE Trans Commun COM-26,

8 (Aug 1978), 1187-1194
29 ZAFIROPULO, P, WEST, C H, RUDIN, H, COWAN, D.D, AND BRAND, D. Towards analyzing and

synthesizing protocols IEEE Trans Commun COM-28, 4 (ApT 1980), 651-661

RECEIVED JANUARY 1981; REVISED APRIL 1981, ACCEPTED NOVEMBER 1981

Journal of the Association for Computing Machmery, Vol 30, No 2, Apnl 1983

