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Abstract A model of commumcations protocols based on finite-state machines is investigated. The 
problem addressed is how to ensure certain generally desirable properties, which make protocols "well- 
formed," that is, specify a response to those and only those events that can actually occur. It is determined 
to what extent the problem is solvable, and one approach to solving it ts described. 
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1. Introduction 

The trend toward distributed computing and computer networks is increasing the 
complexity of  communication protocols. Formal methods of  specification and anal- 
ysis are being gradually introduced to handle the complexity. We will briefly review 
the most common protocol representations and relate our representation to them. 
There are several excellent surveys [6, 11, 18, 23] on the subject of  protocol speci- 
fication and verification. 

The most general model describes protocols as parallel programs [7, 14, 15, 22]. In 
this framework one can specify all protocols and most of  their properties. The cost 
of this generality is the undecidability of  most properties. Therefore, existing methods 
of analysis use human assistance or take advantage of the fact that many protocol 
features do not use all the generality available. The latter allows a protocol to be 
analyzed as if it were described in a less general formalism. 

A Petri net [12, 17, 19, 24] is a less general model. In this formalism, protocols are 
more easily analyzable, and some properties undecidable for programs are decidable 
for Petri nets (e.g., boundedness [16]). The reduction in expressive power by com- 
parison with programming languages is evident in some protocols that require a very 
large Petri-net description. 

The least powerful model is that of  a single finite-state machine describing the 
system including all the component processes and interconnecting channels [1, 3, 10, 
13]. In this model only certain protocols can be described. (For example, a protocol 
allowing an arbitrary number of messages in transit cannot be described.) But 
describable protocols are relatively easy to analyze in the sense that all properties are 
decidable by exhaustive analysis. 
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In order to improve the expressive power of finite-state machines and Petri nets, 
as well as to reduce the size of their descriptions, a number of extensions have been 
proposed [4, 17, 21, 27]. These extensions usually employ some programming 
language capability, which in turn makes analysis harder. 

Our model [25, 29] uses explicit t'mite-state machines to represent processes and 
implicit queues to represent channels (the details are given in Section 2). The 
processes communicate by sending messages to one another via the channels. The 
queues modeling the channels have unbounded capacity to represent protocols 
allowing an arbitrary number of messages in transit. In a physical implementation 
all channels must be bounded, but the bound may be too large to be of practical use. 
Moreover, since protocols are supposed to operate over different channels with 
different capacities, a channel of unbounded capacity is the proper abstraction. 

This model is in a certain sense as powerful as programming languages, for the 
unbounded channels can in principle be used as memory devices (see [9]). However, 
this is not the intention; in modeling a given physical communication system, each 
process is supposed to be represented by only one finite-state machine, and the 
channels are to be used for communication only. With such a restriction the model 
is less powerful in modeling processes than Petri nets (e.g., an unbounded counter 
cannot be represented). But it is more powerful in modeling channels (e.g., the FIFO 
property is built in). 

The suitability of the model for representing and analyzing communication pro- 
tocols has been demonstrated [20, 21, 26] on existing protocol designs. It is particularly 
appropriate in situations where the propagation delay is not negligible (so that several 
messages can be in transit at one time) and in situations where it is natural to describe 
the protocol parties and the communication medium as separate entities. 

Our protocol model is described in Section 2. Section 3 defines when a protocol is 
well formed, and Section 4 presents an approach to ensuring this property. Section 
4 first characterizes all well-formed protocols if the processes are restricted to being 
trees, rather than general transition graphs. This characterization is then used in a 
(partial) solution for general protocols. 

The approach has been developed for a protocol synthesizer described previously 
[8, 29] and is based on syntactical properties derived from notions of physical 
causality and completeness [28]. Because this paper is not directly concerned with 
the practical aspects of  such a protocol synthesizer, we will describe only the essential 
properties of the model and the approach. 

2. Model of  Protocols 

Our model of protocols employs a simple and commonly used representation of the 
communicating processes [1, 3], namely, each process is a finite-state machine. Each 
pair of communicating processes is connected by a full-duplex, error-free, FIFO 
channel. (A nonideal channel is represented using an additional finite-state machine 
corrupting messages passing through it; see [29].) 

Our notation for expressing transmissions and receptions is illustrated in Figure 1. 
A minus sign identifies the transmission of a message, a plus sign its reception. When 
a process is in a state from which there is an arc labeled -m,  then it can traverse the 
arc and enter a new state. (For example, process USER when in state READY can 
traverse the arc labeled - R E Q  and enter state WAIT.) By traversing such an arc the 
message m is transmitted to the destination process via the connecting channel. (The 
destination process of a message will not be indicated explicitly by its transmission; 
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this information will either be in an accompanying text or can be inferred by 
observing which process contains receptions of  the message.) 

There are no assumptions on the time that a process spends in a state before 
sending a message, and there are no assumptions on the time that a message spends 
in a channel before it is delivered to its destination. I f  and when a message m arrives 
at a process that is hi a state s, then the process will enter a new state by traversing 
arc labeled +m. (If there is no arc +m attached to state s, then the protocol is 
incorrect; see Section 3.) 

The example of  Figure 1 is a siinple protocol between two processes, USER and 
SERVER. Initially, both are in their initial s ta tes- -READY and IDLE. USER can 
send a request (message REQ) to SERVER. After receiving REQ, SERVER enters 
state SERVICE; when it is finished with the service, it goes back to state IDLE while 
sending the message DONE to USER. Between sending REQ and receiving DONE, 
USER stays in state WAIT. 

While idle, SERVER can detect a fault in itself. If  so, it informs USER about it by 
sending the message ALARM. When USER receives an ALARM, it registers it and 
directs SERVER back to its IDLE state by the message ACK. 

Now we define the model formally. 

Definition 2.1. A protocol is a quadruple 

((S~)~1, (o,}~1, M N, ( , ,), , , .~, succ), (1) 

where 

N is a positive integer (representing the number of  processes), 

(&)  7-1 are N disjoint finite sets (S, represents the set of  states of  process i), 

each o, is an element of  S~ (representing the initial state of  process i), 

(M,j) N~,~.~ are N 2 disjoint finite sets with M,, empty for all i (M,~ represents the 
messages that can be sent from process i to process j ) ,  

succ is a partial function mapping for each i and j,  

S, x My---> 5', and S, x Mj,---> S,. 

(suce(s, x) is the state entered after a process transmits or receives message x in state 
s. It is a transmission i f x  is from M v, a reception i f x  is from Mj,.) 

For example, in Figure 1, 

N~-2, 
$1 = (READY, WAIT, REGISTER) ,  
$2 -- (IDLE, FAULT,  SERVICE),  
ol = READY, 
o2 -- IDLE, 

M12 -- (REQ, ACK),  
M21 = (ALARM, DONE) ,  

succ(READY, REQ) -- WAIT, 
succ(WAIT, DONE) -- READY, 

and so on according to Figure 1. The function succ is defmed only for eight argument 
pairs, for there are eight arcs in Figure 1. An example of  an undefined succ value is 
succ(READY, DONE) or succ(SERVICE, ALARM). 
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PROCESS 1 PROCESS 2 
(USER) (SERVER) 

+ ~ -  RM 
FIGURE 1 

The requirement that all the sets M v be disjoint is merely a notaUonal convenience 
and does not represent a restriction m practice. I f  two processes can send the same 
message, then one of  the messages can be renamed to achieve distinctness. 

There are extensions [8, 21, 25, 29] of  the model, which are made for the handling 
of  practical protocols. For  example, a state can be marked as transient [25] so that it 
cannot receive messages, or the channels may not be FIFO and allow overtaking of  
messages. Such extensions have little impact on the results of  this paper and will not 
be discussed. 

Notation 

(i) We use subscripts to identify processes. Thus, s, always refers to a state in 
process i, that is, to a member of  S,. Similarly, xv refers to a member of  M,j, that is, 
a message that can be sent from process i to processj. If  it is not necessary to indicate 
where a state s or a message x belongs, then indices are not used. Unsubscripted 
capital letters Q, R, S, T are used for sets of  states, each from a different process. X, 
Y, Z are used for sequences of  messages. 

(ii) An N-tuple S always consists of  N states (S1 . . . . .  SN ), one from each process. 
I f  a func t ionf i s  defined for states, then we extend it to N-tuples componentwise: 

f((sa . . . . .  sN)) = (f(Sx), . . . , f ( s N ) ) .  

I f  a relation p is defined between states, then we extend it componentwise to N-tuples: 

S p S'  iff s, p s~ for alli.  

(iii) We use juxtaposition to express concatenation of  message sequences. For 
example, if  x and y are messages and X and Y are message sequences, then x, xy, x Y, 
X Y  are examples of  message sequences. The first one, x, is of  length 1; the second, 
xy, is of  length 2. We use the symbol E to denote the empty sequence. If  a relation 
p is defined between messages, then we extend it componentwise to sequences of  
equal length: 

EpE' and x Y p x ' Y '  iff  x p x '  and Yp Y'. 

(iv) We extend the function succ to a sequence X of  messages in the natural way: 

succ(s, ~) = s and suet(s, x Y) = succ(succ(s, x), Y). 

(v) For  readability purposes we use a plus sign to identify a reception and a 
minus sign to identify a transmission. For  example, we may write suet(s,, +xs,) or 
suet(&, -Yv); here the plus and minus signs provide no new information because the 
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indices indicate what is a reception and what is a transmission. I f  we write suee(s, +x), 
then the plus sign does provide some information, namely, that there exist i a n d j  so 
that s is in S, and x is in Mj, (rather than My). For a message sequence X, i f  we write 
succ(s, +X)  = s', then X contains receptions only. 

Properties of  a protocol are defined in terms of  its execution. An execution is a 
sequence of  global states [25], where each global state gives the state of  all the 
processes and contents of  the channels. An execution must start from the initial 
global state, where each process i is in its initial state o~ and all the channels are 
empty. The execution can then proceed; at each step either 

(i) a message is sent (process i sends a message x,k, i.e., it is appended to the right 
of  the channel c,k), or 

(ii) a me,;sage is received (process k receives a message x,k, i.e., it is removed from 
the left of the channel c,k). 

Formally we define 

Definition 2.2. A global state (for a protocol of  the form (1)) is a pair (S, C),  
where S is an N-tuple of  states s l , . . . ,  sN (st represents the current state of  process i) 
and C is an N2-tuple (cn . . . . .  ClN, C21 . . . . . . . .  CNN),  where each cv is a sequence of  
messages from M v. (The message sequence c v represents the contents of  the channel 
from process l to j .  Note that every c ,  is empty, for M ,  is empty.) 

Definition 2.3. We define a binary relation ~- on global states (meaning that one 
global state can produce the other in one step of  execution): (S, C) t- iS', C')  iff 
there exist i, k, and x,k satisfying one of  the two following conditions. 

(i) All the elements of  iS, C) and iS ' ,  C')  are equal except 

s" = succ(s, -xi~) and c'k ~--- Cik~Cik.  

(ii) All the elements of  (S, C) and (S' ,  C ' )  are equal except 

X s~ -- succ(sk, +x,k) and c,k = ,~c,k. 

Definition 2.4. Let I-* be the reflexive and transitive closure of  I-. Then we 
say that a global state iS, C) is reachable iff (S o , C O ) I-* iS, C) ,  where 
(S °, C O ) = ((o~) ~=1, (E) ~j = 1 ). ( (S  °, C O ) is the inittal global state with all channels 
empty and each process i in its initial state o,.) 

The definition of  I--- does not restrict us to events (receptions and transmissions) 
happening one at a time rather than in parallel. If  some events happen simultaneously 
in two or more different processes, then we can represent them as happening one 
after the other in any order. The definition of  t-- implies only a delay between two 
transitions in the same process and a delay between the transmission o f  a message 
and its reception. 

3. The Problem 

We do not try to prove that a protocol performs its intended function as do, for 
example, [4, 7, 22]. Instead, we consider certain properties of  interest to all protocols 
independent of  their intended functions. This has two advantages: specification of  
the intended function is unnecessary (usually a difficult and error prone task), and 
the problem is computationally more tractable. At the same time we can detect a 
large number of  common design errors such as missing or unexecutable receptions 
[20, 25, 29]. Avoiding errors of  this kind is the main subject of  this paper. Additionally, 
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PROCESS 1 PROCESS 2 
(USER) (SERVER) 

+ALARM 

FIGURE 2 

~ RM 

+REQ 

some interesting properties (e.g., deadlock) can also be discovered from so called 
stable N-tuples--reachable global states with all channels empty. 

A protocol has a reception missing if a message x can arrive at a process when it 
is in a state s, but the protocol does not specify what state should be entered upon 
receiving x in state s. For example, in Figure 1 consider the execution where USER 
sends REQ and SERVER sends ALARM before either message arrives at its 
destination. Message ALARM arrives when USER is in state WAIT, and the protocol 
does not specify what should happen in that situation. Similarly, there is a missing 
reception of message REQ in state FAULT. 

Now consider Figure 2, which is obtained from Figure 1 by adding the two 
receptions discussed above. It has all executable receptions specified. (An example of 
an unexecutable reception would be obtained, e.g., by adding a reception +DONE 
to state READY.) We say that a protocol with all executable receptions specified 
and only executable receptions specified is well formed. 

While the protocol of Figure 2 is well formed, it contains the possibility of  a 
deadlock. In the execution considered above, the two processes first send the messages 
REQ and ALARM. They are both received, and then the two processes remain in 
states WAIT and FAULT forever, because no other message can arrive. We say that 
a protocol can be deadlocked if it is possible to reach a global state where all channels 
are empty and there is no transmission from any state. It has been shown [2, 21, 25] 
that N-tuples of states reachable with all channels empty (in this paper called stable 
N-tuples) are also useful for detecting losses of  synchronization. Therefore, it is 
important to identify such stable N-tuples. 

Definition 3.1. In a protocol of the form (1): 

(i) A reception is a pair (s, x ) for a state s and a message x. A reception (s, x ) is 
specified iff succ(s, +x) is defined. 

(ii) A reception (s, x) is executable iff there exists a reachable global state (S, C ), 
where for some i and k, s --- sk and cik is of the form x Y for some sequence IT. 

(iii) A protocol is well formed provided each reception is specified iffit is executable. 
(iv) We say that an N-tuple S of states is stable iff (S, (a)~j=l) is reachable. 

Experience [20, 21, 26] shows that it is important for a protocol to be well formed 
independently of its function, and also that the knowledge of stable N-tuples allows 
the detection of significant errors. There have been two strategies for assisting a 
protocol designer in these aspects. Protocol validation [25, 28] assumes a given 
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protocol and informs the designer of any missing or unexceutable receptions, 
deadlocks, etc. Protocol synthesis [8, 29] assumes input given interactively by the 
designer and constructs mechanically a protocol guaranteed to be well formed. From 
a theoretical point of view, both approaches have to solve the same problem: 

Given a protocol, identify all executable receptions and all stable N-tuples. (2) 

In the case of validation, the given protocol is the one constructed by a human 
designer; in the case of synthesis, it is the partially constructed protocol at a certain 
stage during the protocol's construction. Of course, finding a solution to (2) will not 
solve all problems with protocols. For example, Bochmann and Merlin [5] synthesize 
a whole process when given all the other processes. For them a solution to (2) would 
not determine the transmissions in the synthesized process. 

We cannot expect a general solution for (2). Brand and Zafiropulo [9] present a 
proof that it is undecidable whether a given reception in a given protocol is 
executable. This implies undecidability of other questions of interest: Is a given 
protocol well-formed? Is a given N-tuple stable? Is deadlock possible? Therefore, we 
can expect a solution only for some classes of protocols; we can get an idea what 
classes might or might not be solvable by considering the proof of undecidability. It 
reduces the halting problem to problem (2) using the channels to represent the tape 
of a Turing machine. This can be done because in our model the channels have 
infinite capacity. Therefore, we can expect that solvability will depend on restricting 
what messages can be in transit at any one time. 

Definition 3.2. We say that the channel from process i to j is bounded by a 
constant h iff for every reachable global state (S, C), c~j is a sequence of  length at 
most h. If no such constant h exists, then we say that the channel is unbounded. 

All the channels in the protocols of Figures 1 and 2 are bounded by one. 
A simple example of an unbounded channel is given by any protocol where 
succ(s, - x )  = s (i.e., a state s has a loop transmitting x). Such a protocol can transmit 
x any number of times before the first x is received by the other party. 

Boundedness of channels is again, in general, undecidable, but many practical 
protocols do have all their channels bounded. Protocols with unbounded channels 
usually use them in a simple manner, which makes them worth considering. For a 
given protocol the bound on its channels can be estimated with a method described 
in [9]. 

The problem (2) is solvable for the class of protocols with all channels bounded. 
As we show below, the problem is also solvable for the class of protocols with 
N = 2 processes and only one channel unbounded. In contrast, the problem is 
unsolvable for N > 2 when any one channel is unbounded. More generally, the 
problem is unsolvable for the class of protocols with an unbounded channel, say, 
from process i to j, if there exists another way of passing information from i toj .  For 
example, if we have three processes, then we can use the third process just as a 
relaying station between processes i and j bypassing the unbounded channel. The 
same situation would exist for N -- 2 if we extended our model by allowing more 
than one channel from process i to j. 

For those protocols where a complete solution to problem (2) is not available, one 
can provide approximate solutions. For example, [25] uses a channel bound h as a 
parameter of validation. A validated protocol is guaranteed to have all those 
receptions specified that are executable using global states with channels shorter 
than h. 
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FIGURE 3 
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4. A Solution 

Most existing approaches [15, 23, 25] to problem (2) are based on a search of 
reachable global states. We present an alternative approach; instead of considering 
an execution of  all the processes as a whole, we consider N executions of the N 
processes separately. While the worst-case asymptotic behavior of both approaches 
is exponential, ours has a slightly smaller exponent, which indicates a potential for 
reducing the combinatorial explosion. However, worst-case asymptotic behavior is 
not necessarily a relevant measure here, because in both approaches a protocol can 
be analyzed successfully only if its behavior is far from the worst case, as is true for 
protocols designed in practice. Therefore, some experimentation will be necessary 
before the practical effectiveness of our approach can be determined. 

There are reasons to expect the existence of a solution that does not search all 
reachable global states. Figure 3 contains a portion of a protocol where we wish to 
decide whether state s can receive message x. The reader can see that the answer is 
in the affirmative, provided state t can receive x, because an execution which delivers 
x before transmitting y implies another possible execution that differs only in that it 
is slower in delivering x than in transmitting y. Note that the answer to this question 
was independent of the rest of the protocol; we only needed the information that 
s = succ(t, - y )  and succ(t, +x) is defined. Using this motivation, we aim for rules 
characterizing all the executable receptions with minimum information about the rest 
of the protocol. 

The method proposed here builds N trees, one for each process, representing all 
the possible executions of each process. The N trees constitute a protocol according 
to Definition 2.1, but because of its restricted form we will call it a tree protocol. 
Figure 4 shows a tree protocol corresponding to the general protocol of Figure 2. 
Traversing a tree is like traversing the corresponding graph, but with two differences. 
First, one state s of a process in Figure 2 is represented in Figure 4 by several separate 
states s.0, s.1, s.2, . . .  ; each corresponds to a different way of reaching state s from the 
initial state. (For example, in Figure 4 states READY.0, READY. 1, READY.2 all 
represent the same state READY of Figure 2.) Second, messages are renamed so that 
no message is transmitted from two different states in the tree. (For example, 
-REQ.0,  -REQ.1,  and -REQ.2  represent three different transmissions of the same 
message REQ.) It should be stressed that the messages REQ.0 and REQ. 1 (as an 
example) are completely different from the point of view of the tree protocol. They 
merely share their reasons for being in the tree protocol. 

It should be clear that given a general protocol as in Figure 2, we can construct 
tree protocols (like Figure 4) by tracing all possible executions. In general, there is an 
infinite number of such tree protocols, depending on how long we trace the execu- 
tions. Conversely, given a tree protocol, we can construct the corresponding general 
protocol by merging equivalent states and messages. This is the basis of our approach; 
we grow the N trees and interpret any findings about the trees (executable receptions, 
stable N-tuples) in terms of the general protocol. 
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Thus we reduce the general problem (2) into two subproblems: first, how to solve 
problem (2) for tree protocols; and second, when to terminate growing of  the trees 
without missing any receptions or stable N-tuples in the corresponding general 
protocol. The first problem is solved in Section 4.1. The second problem is, in general, 
unsolvable, and a limited solution is presented in Section 4.2. But first we define a 
tree protocol. 

Definition 4.1. We call a protocol of  the form (1) a tree protocol iff the following 
two conditions are satisfied: 

(i) For  every state s, there is a unique sequence X of  messages so that 
s~ = succ(o~,  x ) .  

(ii) For  every message x there is a unique state t so that succ(t, - x )  is defined. 

Condition (i) is the usual definition of  a tree. The unique sequence X is called the 
branch leading from the root o, to state s,. Condition (ii) is independent of  any 
treelike qualities; we introduce it because it will be convenient to have a unique state 
from which a message can be transmitted. I f  succ(t, - x )  is defined, then we call t the 
departure state of  the transmission of  x and succ(t, - x )  the entry state of  the 
transmission. 

Condition (ii) does not constitute a restriction on the protocols that the approach 
can handle. It merely implies that in constructing a tree protocol from a general 
protocol, every new transmission must be renamed. 

Notation. In a tree protocol: 

(i) s <_ s' iff there exists a (possibly empty) sequence X so that succ(s, X) = s'. We 
call X the path from s to s'. I f  X is not empty, then s < s'. For example, in 
Figure 4 READY.0 _< WAIT. l ,  but neither REGISTER.0  _ WAIT.1 nor 
WAIT.1 _< REGISTER.0.  In particular, note that s _< s '  only i f s  and s'  are in 
the same process. 

(ii) s ~, s '  i f f s  _< s' or s'  <_ s (i.e., s and s '  are on the same branch). 

(iii) max(s, s ')  -- s '  i f  s --< s', 
max(s, s ')  = s if  s '  _< s, 
max(s, s ')  is undefined if it is not the case that s ~ s'. 

4.1 ARC SPECIFICATION FOR TREE PROTOCOLS. This section shows how to con- 
struct well-formed tree protocols, independent of  any general protocol that might 
correspond to the tree protocol. It gives necessary and sufficient conditions for a 
reception to be executable. These conditions are expressed in terms of  three functions: 
From, To, and L. All three take two arguments--a  process identifier i and a state s. 

Fromt(s) is the last message received from process i on the branch to state s. I f  
no such message exists, then Fromt(s) = *, where • is a special symbol used for 
this purpose. For  example, in Figure 4, From2(REGISTER.2) = ALARM.l ,  
From~(WAIT.0) = . .  In general, Fromt(s,) = * for any st. 

To,(s) is the last message transmitted to process i by the branch to state s. For  
example, To, (READY.I)  = REQ.0, Tol(SERVICE.0) = .. In general, To,(s,) = * 
for any st. 

Lt(s) is the last state in process i that must have been reached before state s can be 
reached. (L is precisely defined in Definition 4.3.) For  illustration, consider the 
protocol of  Figure 5. Process 2 sends message 1 to process 1 followed by message 2 
to process 3. Upon receiving message 2, process 3 sends message 3 to process 1. 
Process 1 follows two different paths, depending on whether message 1 or 3 arrives 
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first. In determining the value of  L2(sl) we take the position that we can observe the 
state of  process 1 only and try to say as much as possible about the state of  process 
2. Since +1 has been received, process 2 cannot be in state o2; it must be in state t2 
or further. But we know even more. Since message 3 cannot be sent without message 
2 being sent first, we know that process 2 must have entered state s2. In fact, in this 
example L z ( S l )  - -  s2 and La(Sl) =- sa. 

Using the same reasoning, L2(tl) = s~. Thus, when process 1 reaches state tx, it 
knows that process 2 must have already sent message 1. This ability o f  a process to 
find out that a message has been sent to it before receiving the message is not present 
for protocols with N = 2 processes only. Therefore, for two processes the solution 
[29] is different from the general solution presented here. 

When a process i reaches a state s,, then of course it knows that process i is in state 
s,; therefore always L,(s,) = s,. Thus the function L assigns an N-tuple to every state 
in the protocol: L(s) = (Ll(s) . . . . .  LN(s)) .  

Using the function L, we express three conditions, which we wiU later prove to 
be necessary and sufficient in order that a state rk can receive a message x,k (see 
Figure 6): 

(i) Process k can receive x,k only after it has received all messages previously sent 
to it by process i. This first condition is expressed by 

From,(rk) = Tok(t,). (3) 

(ii) I f  rk is to receive x,k, then the knowledge possessed by processes i and k about 
any third processj  must be consistent in the following sense. When process k is 
in state rk, then processj  must have reached state Lj(rk). After process i transmits 
x,k entering state t,', then process j must have reached state Lj(t',). These two 
states of processj  must lie on the same branch, or, using the notation introduced 
before Section 4.1, 

L,( t ; )  -~ L,(rk) for all j # k. (4) 

(iii) In order that rk can receive x,k, condition (4) must also be satisfied f o r j  - k, in 
which case it can be simplified to Lk(t,) -~ rk. But this is not sufficient, because 
it allows rk < Lk(t,). I f  that were the case, then process k must have passed state 
rk by the time x~ has been transmitted, and therefore rk could not receive x,k. 
Therefore, we require 

Lk(t,) <- rk. (5) 

Using these three conditions, we now define a constructible reception and a 
constructible protocol. Later we will prove that "constructible" is equivalent to 
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"executable." The function L is defined in Definition 4.3 together with a constructible 
tree protocol because they are interdependent--constructible protocols are charac- 
terized in terms of the function L, and the function L exists only for constructible 
tree protocols. 

Definition 4.2. Assume a tree protocol of the form (1) in Definition 2.1 and a 
function 

L: S1 0 . . .  tO SN---> $1 x . . .  x SN. 

A reception irk, x,k) is constructible iff conditions (3)-(5) are satisfied, where t, and 
t', are the departure and entry states of --X,k, respectively. 

The next definition states that a tree protocol is constructible iff it is obtainable in 
any number of steps: 

(i) starting from the roots, 
(ii) by adding a new transmission - x  to any state t,, or 

(iii) by adding any constructible reception. 

Definition 4.3. A tree protocol P of  the form (l) is constructible, and 

L: $1 U . . .  tO SN ~ S1 x . . ,  X aN 

is a function associated with P iff P and L are obtainable by the following inductive 
definition. 

(i) P is constructible if  S, = (o,} for all i and M,~ is empty for all i,j .  The following 
function L is associated with P:L(o,)  = (ol . . . . .  ON) for all i. 

(ii) Let P be a constructible tree protocol of the form (1), i # k two fixed process 
indices, t, a state in S,, and x and s new symbols. Let P '  be the tree protocol 
obtained from P by replacing S, with S~ tJ (s) and M,k with M~k U (x) and 
extending succ to succ(t,, - x )  = s. Then P'  is a constructible tree protocol. 

If  L is associated with P, then the following extension L'  is associated with P': 

L~(s) = s, Lj(s) = L ( t , ) ,  for all j # i. 

(iii) Let P be a constructible tree protocol of the form (1), L a function associated 
with P, (rk, x,k) an unspecified constructible reception (with respect to L), and 
s a new symbol. Let P '  be the tree protocol obtained from P by replacing Sk 
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with Sh O (s} and extending succ to succ(rh, +x,h) = s. Then P '  is a constructible 
tree protocol. 

I f  L is associated with P, then the following extension L '  is associated with P':  

L'k(s) = s, L~(s) = max(Lj(rk), Lj(t;)), for all j # k, 

where t~ is the entry state o f -x ,~ .  (Note that L~(s) is well det'med because (4) 
is satisfied.) 

Condition (i) of  Definition 4.3 is the basis of  the inductive definition. It defines the 
initial protocol, where each process has only one state (the root o,) and there are no 
messages. The associated function L has the same value for all the roots o,, namely, 
the N-tuple of  roots. 

Condition (ii) says that to any state t, of  a constructible tree protocol P we can 
append the transmission - x  of  a new message x and again obtain a constructible tree 
protocol. In order that the result of  the addition is a tree again, we have to create a 
new state s for the entry state of  - x .  The function L '  will have the same value on s 
as on t,, because by sending a message x we have learned nothing new about the 
other processes. For  process i itself we know that after sending x it is in state s. 
Therefore L,(s) = s. 

Condition (iii) describes the expansion of  a constructible tree protocol by the 
addition of a reception (rk, +x,k ~. As in (ii), we have to create a new state s as the 
entry state of  +x,k. In order that the new reception is executable, +xik can be attached 
only where the conditions (3)-(5) are satisfied. The extension of  L to s expresses that 
after a reception new information about the other processes can be gained. When 
process k receives x~h, then the transmitting process i must have reached state t~'. And 
for that to happen, any process j must have reached Lj(t;). However, it is possible 
that r~ has more information about a process j than t; has; therefore we take the 
maximum of the two. 

Definition 4.3 allows many ways of  obtaining the same constructible tree protocol. 
It is conceivable that different ways might lead to different associated functions. The 
next Lemma 4.1 states that this is not so, and therefore from now on L will always 
be the function associated with a constructible tree protocol. Proofs for the following 
lemma and theorem are outlined in Appendix A and carried out in [9]. 

LV.MMA 4.1. I f  L and L'  are two functions associated with a constructible tree 
protocol, then L = L'. 

THEOm~M 4.1. A tree protocol is constructible f f  each of its specified receptions is 
executable. 

COROLLARY 4.1. A tree protocol is well formed iff it is constructible and all 
constructible receptions are specified. 

Theorem 4.1 says that (3)-(5) are necessary and sufficient conditions for receptions 
to be executable. Corollary 4.1 implies that well-formed tree protocols can be 
constructed by applying Definition 4.3, where step (iii) is used to specify all the 
receptions allowed by conditions (3)-(5). 

Such a construction can be made more efficiently than suggested by Det'mition 
4.3. In the rest of  this section we outline an algorithm for finding all the receptions 
that must be specified as a result of  a transmission. This is followed by an algorithm 
for finding all the stable N-tuples. The correctness of the algorithms is established 
in [91 . 

Assume a well-formed tree protocol that has been expanded by adding the 
transmission succ(tl, - x )  = t~ (see Figure 7). We will identify all the new receptions 
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that must be specified in order that the resulting tree protocol is again well formed. 
Part of  the construction is also the calculation of the function L for newly introduced 
states. The algorithm is described for the case of  the new message x being sent from 
process 1 to process 2; the general case is obtained by renumbering the processes. 

The first step of  the algorithm, called propagation along negative arcs, copies the 
positive subtree of  6 below t~. That is, for every s1 -- succ(6, + }1) for some sequence 
Y, a new state s~ = succ(t~, + Y) is generated: 

Lx(s'~) = s'~ and L , ( s '  0 = Lj(Sl) for all j # 1. 

The second step finds all the executable receptions of  x in process 2 by testing 
conditions (3)-(5). (This can be done relatively efficiently by taking advantage of the 
tree structure.) 

The last step is called propagation along positive arcs. It is done for every state of 
process 2 bottom up; that is, it is applied to a state r2 only after it is applied to the 
whole subtree of r2. If  there are z, q, q' so that succ(r2, +z) = q, succ(r2, +x)  = q', 
and succ(q, +x)  = u, then we create a new state u '  ~= succ(q', +z) and copy the 
subtree of u below u'. (Note that the subtree of  u contains only receptions, for the 
subtree was created in previous iterations of this step, which generates only recep- 
tions.) The copying is done as in the propagation along negative arcs: a new state 
s~ -- succ(u', + W) is created for every s2 -- succ(u, + W): 

L~(s'2) = s [  and Lj(s '2)  = Lj(s2) for all j # 2. 

At the same time as all the new receptions are being added we can also identify all 
the new stable N-tuples. Assume a list of all the stable N-tuples in the original 
protocol before the addition of  - x .  We will expand the list by all the new stable 
N-tuples in the new protocol. 

During the second step (finding all the receptions of x) identify all the stable 
N-tuples (Sl, q, s3 . . . . .  sN), where Sl = succ(6, +Y)  for some sequence Y and 
succ(q, +x) -- u. Add (S'l, u, s3 . . . . .  SN)  to the list of  stable N-tuples, where 
s l  = succ(tl ,  + Y). 

During the third step (propagation along positive arcs) identify all the stable 
N-tuples <sl, s2, s~, . . . ,  SN), where sl = succ(t~, +Y)  for some sequence Y and 
s2 = succ(u, + W )  for some sequence W. Add <s~, s~, s3, . . . ,  sN) to the list of stable 
N-tuples, where s~ = succ(u', +W) .  
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4.2 7I'EgMI~ATION. In this section we assume a solution to problem (2) for tree 
protocols and therefore are dealing with well-formed tree protocols only. In contrast 
to the previous section we assume the existence of  a general protocol, for which 
problem (2) is supposed to be solved. As explained at the beginning of Section 4, the 
solution is obtained by expanding a tree protocol looking for missing receptions and 
stable N-tuples. The purpose of this section is to determine when to stop this 
expansion. Appendix B outlines proofs of validity, namely, that stopping the expan- 
sion of the trees will not cause any receptions or stable N-tuples in the general 
protocol to be missed. This appendix also outlines proofs of termination, namely, for 
what classes of general protocols the method guarantees that the tree expansion be 
stopped (and hence for what classes it solves problem (2)). 

More specifically, this section assumes a given well-formed tree protocol and a 
given equivalence relation - on states and messages of that tree protocol. This 
equivalence relation represents all the information we need about the general 
protocol: Two states of  the tree protocol are equivalent if they respect the same state 
of the general protocol, and similarly for equivalent messages. Therefore, we assume 
that ~ relates states from the same process St and messages from the same set M,j. 
Moreover, ~ is a congruence relation with respect to succ: 

I f  s ~ s' and x ~ x' ,  then succ(s, x) ~ succ(s', x ' )  whenever both sides are defined. 

In Figure 4, naming is used to indicate the equivalence; two states or messages are 
equivalent if they have the same name except for the number following the period. 
For example, READY.0, READY. 1, READY.2 are equivalent (and no other states 
belong to this equivalence class). 

This section gives a partial solution to the problem of  deciding whether further 
expansion of  the tree protocol can uncover new properties of  the general graph--a  
new reception or stable N-tuple. It operates by marking states; we call such a marked 
state, as well as all states in its subtree, dead. The criteria for marking a state 
guarantee that the subtree of a dead state cannot contribute any new information to 
the given general graph. Thus the expansion of  the tree protocol terminates when 
new transmissions can be appended below dead states only. 

For example, suppose that in Figure 4 our criteria allow states READY.I,  
READY.2, IDLE. 1, and IDLE.2 to be marked dead (as is actually the case). Then 
we do not need to generate the transmissions REQ.I, REQ.2, ALARM.l ,  and 
ALARM.2. Thus the tree construction can stop after building three levels only, and 
state WAIT.2 as well as all the other states on the fourth level are not needed. 

There are two criteria under which a state can be marked dead, yielding two types 
of  dead states--types 0 and 1. The criterion for type 0 is analogous to the termination 
mechanism of the perturbation method [25]. That method generates reachable global 
states; a newly generated global state can be ignored if it is equal to a previously 
generated global state. Our criterion for marking a state s dead of  type 0 considers 
only that global state containing s which is reached in the least number of  steps. 
These steps do not have to be carried out, because this minimum global state is given 
by (L(s), C), where C --- Channels(L(s)) (see Definition 4.4). The state s can be 
marked dead if this minimal global state is equivalent to the minimal global state for 
some previous state s'. 

Definition 4.4. For an N-tuple S in a tree protocol we define Channels(S), 
provided there exists a reachable global state (S, C). In that case Channels(S) -- C. 

Note that it is a proper definition; given S, there is at most one C so that the global 
state (S, C) is reachable. For if  s, and sj are in S, then the channel from i t o j  consists 
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of all the messages on the branch to s, that have been sent to process j but not 
received on the branch to s~. Thus, calculating Channels(S) is a purely syntactic 
process, which does not involve searching for a reachable global state (S, C).  The 
condition under which Channels(S) are defined can also be stated without reference 
to execution (Appendix A). For the method, it is necessary to determine Channels 
only for Notuples of  the form L(s), and Lemma B7 guarantees that Channels(L(s)) 
are always defined. 

Definition 4.5. We say that a state s '  is aprecursor of a state s, provided 

(i) s" < s, 
(ii) L(s ' )  ~ L(s), and 

(iii) Channels(L(s')) ~ Channels(L(s)). 

As an example we show why in Figure 4 READY.0 is a precursor of  READY. 1: 

L(READY.0) = (READY.0, IDLE.0), 
Channels(L(READY.0)) ffi (E, ~, e, E), 

L(READY. 1) = (READY. I, IDLE. 1 ), 
Channels(L(READY.1)) -- (~, e, E, ¢). 

Hence all three conditions for being a precursor are satisfied. 
Having a precursor is the condition for a state s to be marked dead of  type 0. The 

criterion for a state s to be marked dead of type 1 is motivated by the following 
natural expectation: If  all receptions of  a message can be ignored (because they are 
below dead states), then the transmission can be ignored, too. This condition is not 
valid for protocols with more than two processes, but a stronger condition expressed 
in Definition 4.6 is valid. 

According to this stronger condition~ the subtree of  a state t, can be ignored if  tl 
"can send" to dead states only, that is, if  any message sent from t, can be received at 
dead states only. The relation "can send" is obtained from Definition 4.2 of  a 
constructible reception by substituting the condition (6) for (4). Condition (6) is 
implied by (4) and differs from (4) only f o r j  -- i, ((6) refers to t, rather than t~). It 
does not require that the knowledge of state rk be consistent with the transmission of  
any specific message. Thus it allows the possibility that rk will be consistent with any 
message sent form t,. This could be a message only later introduced into the protocol. 

Definiaon 4.6. A state t, can send to a state rk provided the three conditions (3), 
(5), and 

L,(t,) ~ L,(rk) for all j # k. (6) 

Definition 4.7. A tree protocol is well marked iff it is a well-formed tree protocol 
with two distinguished subsets of  all the states--states marked dead of  type 0 and 
states marked dead of  type 1--satisfying the three conditions below. If  s >_ s' for 
some s '  marked dead of type n, then we will call s dead of type n. 

(i) I f  s and t are two marked states, then it is not the case that s ~. t. 
(ii) I f  s is marked dead of type 0, then s has a precursor. 

(iii) I f  t is marked dead of  type 1 And t can send to r, then r must be dead of  type 0. 

Please note the difference between a state s' marked dead and a state s dead just 
by virtue of  being in the subtree of  s'. Note that condition (i) guarantees that there 
is just one type associated with every dead state. 

For example, ha the protocol in Figure 4 we can mark states READY.I and 
IDLE.2 as dead of  type 0 because they have precursors READY.0 and IDLE.0, 
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respectively. This also makes states WAIT.2, REGISTER.I, SERVICE.2, and 
FAULT.2 dead of type 0. State IDLE.1 can send to state REA_DY.I and WAIT.2 
only, both of which are dead of type 0, so IDLE.1 can be marked dead of type 1. 
Similarly, READY.2 can be marked dead of type 1. If all this marking is done, then 
the states READY.l, WAIT.2, REGISTER.l, IDLE.2, SERVICE.2, FAULT.2 are 
dead of type 0, and the states READY.2, WAIT.3, REGISTER.2, IDLE.I, SER- 
VICE.I, FAULT.3 are dead of type 1. But only states READY.I and IDLE.2 are 
marked dead of type 0, and only states READY.2 and IDLE.1 are marked dead of 
type 1. 

Appendix B shows that this approach guarantees tree-growth termination for 
protocols with all channels bounded, even if we restrict ourselves to type-0 dead 
states. If we allow dead states of type 1, then we can terminate the growth of some 
protocols with unbounded channels; in particular, we prove that termination is 
guaranteed for protocols with only two processes and one channel unbounded. 

For an implementation the following consideration must be taken into account. A 
state dead of type 0 can remain dead even when new transmissions are introduced 
into the protocol. This is not necessarily the case for a state t dead of type 1. A new 
transmission may cause new states to be created to which t can send. If one of such 
new states is not dead of type 0, then t must be "revived." Therefore states dead of 
type 1 should be used only in a fmal check on a completed protocol. 

5. Conclusions 

The purpose of this paper was to investigate a model of communications protocols 
from the point of view of certain properties (executable receptions and stable N- 
tuples). As we documented in the introduction, this model and the properties 
considered provide useful information for protocol designers--first, the class of errors 
prevented often have a crippling effect in an implementation; and second, experience 
has shown that designers are prone to making errors of this class. 

After showing that the properties of interest are undecidable in general, we 
concentrated on one approach to establishing those properties for some classes of 
protocols. This approach has its goal in considering the execution of each process 
separately, as compared with considering executions of the global system of all the 
processes. 

The whole problem was divided into two subproblems--first, growing of trees in 
the search for all executable receptions and stable N-tuples, and second, determining 
when the tree growth can be stopped. We feel that the first problem was solved 
successfully. We found necessary and sufficient conditions characterizing all execut- 
able receptions. In contrast, terminating the tree growth is much more difficult. First 
of all, it is undecidable when we can stop growing the trees. Therefore, we have to 
expect only partial solutions. We described a procedure that is guaranteed to 
terminate the tree growth if all channel capacities are finite (without any restriction 
on the number of processes). Termination of tree growth is also guaranteed if there 
are only two processes and one channel in unbounded. This is as far as we can relax 
the need for bounding the channels and keep the problem solvable. 

The limitations of the approach lie in the termination. Since a complete solution 
cannot be expected, the user must be able to specify a parameter limiting the search 
for a solution. Such a limiting parameter should be natural to the user, easy to guess 
for common protocols, and easy to incorporate into a termination procedure. This 
area requires more research. 
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Appendix A. Proof Outlines for Section 4.1 

(For details of these proofs see [9, App. B].) 
Lemma 4.1 is proved by induction on the construction of the protocol essentially 

following Definition 4.3. However, one tree protocol may be constructed following 
Definition 4.3 in many different ways. Therefore we order all the states of a 
constructible tree protocol by a relation << and its transitive closure <<+. Intuitively, 
"t <<+ s" means that the state t must be constructed before s can be constructed, or 
in other words, in any execution t must be reached before s can be reached. The 
ordering <<+ is well founded; thus Lemma 4.1 can be proved by induction on <<+. 

Theorem 4.1 has to be proved in two directions. 

(1) First we assume a tree protocol with all specified receptions executable and 
prove that P is constructible. Imagine generating all the reachable global states of P: 
start with the initial global state with empty channels, and proceed by sending and 
receiving messages in all possible combinations according to Definition 2.3. In 
parallel we can construct the protocol P: obtaining a new global state by a transmis- 
sion (or reception) corresponds to adding a transmission (or reception) arc to the 
protocol. Note that it is necessary to prove that any such added reception arc is 
constructible. This process will result in constructing the whole protocol, because 
every reception in P is executable and thus will be exercised during generation of all 
the reachable global states. 

(2) We assume a constructible tree protocol P and show that any specified 
reception +x must be executable. Let s -- succ(t, +x); to show that x is executable, 
it is enough to show that there is reachable global state containing s. The global state 
(L(s), Channels(L(s)) contains s and is reachable because it satisfies the following 
necessary and sufficient condition for reachability: 

(S, Channels(S)) is reachable iff for all i,j, L,(s:) <_ s,. 

Appendix B. Proof Outlines for Section 4.2 

(For details of these proofs see [9, App. D].) 

We have to prove (1) validity and (2) termination. 

(1) For validity assume that P is a tree protocol obtained by tracing all possible 
executions of a general protocol. This determines the equivalence relation - .  Assume 
that P has been expanded very far, even far beyond the point where our criteria 
would allow the expansion to be stopped. Let P" be the subprotocol of P obtained 
if the expansion had been stopped as soon as our criteria allowed that. We have to 
prove two properties. 

(a) By restricting ourselves to P" we will not miss any receptions. That means that 
whenever succ(r, +y) is defined in P, then in P" there exist r" - r a n d y "  - y so 
that succ(r", +y ") is defined. 

(b) By restricting ourselves to P" we will not miss any stable N-tuples. That is, 
whenever P has a stable N-tuple S, then P"  has a stable N-tuple S" ~ S. 

The proof is based on a number of lemmas, which are generally proved by 
induction on the tree structure. Some examples follow. 

COROLLARY D. 1. Every state dead of  type 0 has a precursor (not just states marked 
dead of type 0). 
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LEMMA D.2. I f  a state s has a precursor s' and Q is a reachable global state with 
Q >_ L(s), then there exists an equivalent reachable global state Q' ~_ L(s'). Moreover, 
the paths from L(s') to Q' are equivalent to the paths from L(s) to Q. 

COROLLARY D.2. Every state outside P" either has a precursor or is dead of  
type 1. 

LEMMA D.11. I f  a state t dead of  type 1 can send to a state r, then r has a precursor. 

Part (a) is proved by induction on the tree structure. The induction step has to 
show that there are r '  ~ r and y '  ~ y with succ(r', +y ' )  defined and with r '  being 
closer to the root than r. Let t be the state from which the messagey is being sent. Let 
us restrict ourselves to the interesting situation when t is outside P" .  

I f  t happens to have a precursor, then we can apply Lemma D.2 to the global state 
reached just before y is received at r; Lemma D.2 gives us an equivalent global state 
closer to the roots. If  t does not have a precursor, then by Corollary D.2 t is dead of  
type 1. By Lemma D.11, r has a precursor. Therefore we can apply Lemma D.2 
again. 

The proof  of  (b) uses Corollary D.2 and Lemma D. 11 to show that at least one 
state of  S must have a precursor. Then Lemma D.2 can be applied to S to get an 
equivalent stable N-tuple closet to the roots. 

(2) For  termination assume a general protocol expanded into an infinite tree 
protocol. We have to show that our criteria for termination allow us to ignore all but 
a finite portion of  that infinite tree protocol. For that it is enough to show that every 
infinite branch will have a state with a precursor. Consider (L(s), Channels(L(s))) for 
every state s along an infinite branch. If  all channels are bounded, then there are 
only a finite number of  nonequivalent global states (L(s), _Channels(L(s))). And 
therefore one of  the states along the infinite branch will have to have a precursor. 

The assumption i~h~at all channels are bounded can be relaxed in the case of  two 
processes only; in this case it is enough when just one channels is bounded, because 
every infinite branch in the protocol sending over the finite channel will have a state 
with a precursor (i.e., a state dead of  type 0), and every infinite branch of  the other 
protocol must have a state that can send to states dead of  type 0 only (i.e., a state 
dead of  type 1). 
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